@inproceedings{GoettscheHoffschmidtSchmitzetal.2008, author = {G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, S. and Sauerborn, Markus and Rebholz, C. and Iffland, D. and Badst{\"u}bner, R. and Buck, R. and Teufel, E.}, title = {Test of a mini-mirror array for solar concentrating systems}, series = {EuroSun 2008 : 1st International Conference on Solar Heating, Cooling and Buildings ; 7th - 10th October 2008, Lisbon, Portugal : key lectures / ISES, International Solar Energy Society. Vol. 1}, booktitle = {EuroSun 2008 : 1st International Conference on Solar Heating, Cooling and Buildings ; 7th - 10th October 2008, Lisbon, Portugal : key lectures / ISES, International Solar Energy Society. Vol. 1}, publisher = {Sociedade Portuguesa De Energia Solar (SPES)}, address = {Lissabon}, isbn = {978-1-61782-228-5}, pages = {1242 -- 1250}, year = {2008}, language = {en} } @inproceedings{NeumannAdamBackesetal.2021, author = {Neumann, Hannah and Adam, Mario and Backes, Klaus and B{\"o}rner, Martin and Clees, Tanja and Doetsch, Christian and Glaeser, Susanne and Herrmann, Ulf and May, Johanna and Rosenthal, Florian and Sauer, Dirk Uwe and Stadler, Ingo}, title = {Development of open educational resources for renewable energy and the energy transition process}, series = {ISES SWC 2021}, booktitle = {ISES SWC 2021}, publisher = {International Solar Energy Society}, address = {Freiburg}, doi = {10.18086/swc.2021.47.03}, pages = {6 Seiten}, year = {2021}, abstract = {The dissemination of knowledge about renewable energies is understood as a social task with the highest topicality. The transfer of teaching content on renewable energies into digital open educational resources offers the opportunity to significantly accelerate the implementation of the energy transition. Thus, in the here presented project six German universities create open educational resources for the energy transition. These materials are available to the public on the internet under a free license. So far there has been no publicly accessible, editable media that cover entire learning units about renewable energies extensively and in high technical quality. Thus, in this project, the content that remains up-to-date for a longer period is appropriately prepared in terms of media didactics. The materials enable lecturers to provide students with in-depth training about technologies for the energy transition. In a particular way, the created material is also suitable for making the general public knowledgeable about the energy transition with scientifically based material.}, language = {en} } @inproceedings{SchwagerAngeleSchwarzboezletal.2023, author = {Schwager, Christian and Angele, Florian and Schwarzb{\"o}zl, Peter and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Model predictive assistance for operational decision making in molten salt receiver systems}, series = {SolarPACES: Solar Power \& Chemical Energy Systems}, booktitle = {SolarPACES: Solar Power \& Chemical Energy Systems}, number = {2815 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4623-6}, issn = {1551-7616 (online)}, doi = {10.1063/5.0151514}, pages = {8 Seiten}, year = {2023}, abstract = {Despite the challenges of pioneering molten salt towers (MST), it remains the leading technology in central receiver power plants today, thanks to cost effective storage integration and high cost reduction potential. The limited controllability in volatile solar conditions can cause significant losses, which are difficult to estimate without comprehensive modeling [1]. This paper presents a Methodology to generate predictions of the dynamic behavior of the receiver system as part of an operating assistance system (OAS). Based on this, it delivers proposals if and when to drain and refill the receiver during a cloudy period in order maximize the net yield and quantifies the amount of net electricity gained by this. After prior analysis with a detailed dynamic two-phase model of the entire receiver system, two different reduced modeling approaches where developed and implemented in the OAS. A tailored decision algorithm utilizes both models to deliver the desired predictions efficiently and with appropriate accuracy.}, language = {en} } @inproceedings{SchwagerAngeleNourietal.2022, author = {Schwager, Christian and Angele, Florian and Nouri, Bijan and Schwarzb{\"o}zl, Peter and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Impact of DNI forecast quality on performance prediction for a commercial scale solar tower: Application of nowcasting DNI maps to dynamic solar tower simulation}, series = {SolarPACES 2022 conference proceedings}, booktitle = {SolarPACES 2022 conference proceedings}, number = {1}, publisher = {TIB Open Publishing}, address = {Hannover}, issn = {2751-9899 (online)}, doi = {10.52825/solarpaces.v1i.675}, pages = {9 Seiten}, year = {2022}, abstract = {Concerning current efforts to improve operational efficiency and to lower overall costs of concentrating solar power (CSP) plants with prediction-based algorithms, this study investigates the quality and uncertainty of nowcasting data regarding the implications for process predictions. DNI (direct normal irradiation) maps from an all-sky imager-based nowcasting system are applied to a dynamic prediction model coupled with ray tracing. The results underline the need for high-resolution DNI maps in order to predict net yield and receiver outlet temperature realistically. Furthermore, based on a statistical uncertainty analysis, a correlation is developed, which allows for predicting the uncertainty of the net power prediction based on the corresponding DNI forecast uncertainty. However, the study reveals significant prediction errors and the demand for further improvement in the accuracy at which local shadings are forecasted.}, language = {en} } @inproceedings{SchulteSchwagerFrantzetal.2022, author = {Schulte, Jonas and Schwager, Christian and Frantz, Cathy and Schloms, Felix and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Control concept for a molten salt receiver in star design: Development, optimization and testing with cloud passage scenarios}, series = {SolarPACES 2022 conference proceedings}, booktitle = {SolarPACES 2022 conference proceedings}, number = {1}, publisher = {TIB Open Publishing}, address = {Hannover}, issn = {2751-9899 (online)}, doi = {10.52825/solarpaces.v1i.693}, pages = {9 Seiten}, year = {2022}, abstract = {A promising approach to reduce the system costs of molten salt solar receivers is to enable the irradiation of the absorber tubes on both sides. The star design is an innovative receiver design, pursuing this approach. The unconventional design leads to new challenges in controlling the system. This paper presents a control concept for a molten salt receiver system in star design. The control parameters are optimized in a defined test cycle by minimizing a cost function. The control concept is tested in realistic cloud passage scenarios based on real weather data. During these tests, the control system showed no sign of unstable behavior, but to perform sufficiently in every scenario further research and development like integrating Model Predictive Controls (MPCs) need to be done. The presented concept is a starting point to do so.}, language = {en} } @inproceedings{LatzkeAlexopoulosKronhardtetal.2015, author = {Latzke, Markus and Alexopoulos, Spiros and Kronhardt, Valentina and Rend{\´o}n, Carlos and Sattler, Johannes Christoph}, title = {Comparison of Potential Sites in China for Erecting a Hybrid Solar Tower Power Plant with Air Receiver}, series = {Energy Procedia}, booktitle = {Energy Procedia}, issn = {1876-6102}, doi = {10.1016/j.egypro.2015.03.142}, pages = {1327 -- 1334}, year = {2015}, language = {en} } @inproceedings{ChicoCaminosSchmitzAttietal.2022, author = {Chico Caminos, Ricardo Alexander and Schmitz, Pascal and Atti, Vikrama and Mahdi, Zahra and Teixeira Boura, Cristiano Jos{\´e} and Sattler, Johannes Christoph and Herrmann, Ulf and Hilger, Patrick and Dieckmann, Simon}, title = {Development of a micro heliostat and optical qualification assessment with a 3D laser scanning method}, series = {SOLARPACES 2020}, booktitle = {SOLARPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086262}, pages = {8 Seiten}, year = {2022}, abstract = {The Solar-Institut J{\"u}lich (SIJ) and the companies Hilger GmbH and Heliokon GmbH from Germany have developed a small-scale cost-effective heliostat, called "micro heliostat". Micro heliostats can be deployed in small-scale concentrated solar power (CSP) plants to concentrate the sun's radiation for electricity generation, space or domestic water heating or industrial process heat. In contrast to conventional heliostats, the special feature of a micro heliostat is that it consists of dozens of parallel-moving, interconnected, rotatable mirror facets. The mirror facets array is fixed inside a box-shaped module and is protected from weathering and wind forces by a transparent glass cover. The choice of the building materials for the box, tracking mechanism and mirrors is largely dependent on the selected production process and the intended application of the micro heliostat. Special attention was paid to the material of the tracking mechanism as this has a direct influence on the accuracy of the micro heliostat. The choice of materials for the mirror support structure and the tracking mechanism is made in favor of plastic molded parts. A qualification assessment method has been developed by the SIJ in which a 3D laser scanner is used in combination with a coordinate measuring machine (CMM). For the validation of this assessment method, a single mirror facet was scanned and the slope deviation was computed.}, language = {en} } @inproceedings{BaumannTeixeiraBouraGoettscheetal.2011, author = {Baumann, Torsten and Teixeira Boura, Cristiano Jos{\´e} and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, Stefan and Zunft, Stefan}, title = {Air-sand heat exchanger: materials and flow properties}, series = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, booktitle = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, address = {Granada}, pages = {1 CD-ROM}, year = {2011}, language = {en} } @inproceedings{FrickeZiolkoAnthrakidisetal.2011, author = {Fricke, Barbara and Ziolko, C. and Anthrakidis, Anette and Alexopoulos, Spiros and Hoffschmidt, Bernhard and Dillig, M. and Giese, F.}, title = {InnoSol - life cycle analysis of solar power tower plants}, series = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, booktitle = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, address = {Granada}, pages = {1 CD-ROM}, year = {2011}, language = {en} } @inproceedings{LahrsKrisamHerrmann2023, author = {Lahrs, Lennart and Krisam, Pierre and Herrmann, Ulf}, title = {Envisioning a collaborative energy system planning platform for the energy transition at the district level}, series = {ECOS 2023. The 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems}, booktitle = {ECOS 2023. The 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems}, publisher = {Procedings of ECOS 2023}, doi = {10.52202/069564-0284}, pages = {3163 -- 3170}, year = {2023}, abstract = {Residential and commercial buildings account for more than one-third of global energy-related greenhouse gas emissions. Integrated multi-energy systems at the district level are a promising way to reduce greenhouse gas emissions by exploiting economies of scale and synergies between energy sources. Planning district energy systems comes with many challenges in an ever-changing environment. Computational modelling established itself as the state-of-the-art method for district energy system planning. Unfortunately, it is still cumbersome to combine standalone models to generate insights that surpass their original purpose. Ideally, planning processes could be solved by using modular tools that easily incorporate the variety of competing and complementing computational models. Our contribution is a vision for a collaborative development and application platform for multi-energy system planning tools at the district level. We present challenges of district energy system planning identified in the literature and evaluate whether this platform can help to overcome these challenges. Further, we propose a toolkit that represents the core technical elements of the platform. Lastly, we discuss community management and its relevance for the success of projects with collaboration and knowledge sharing at their core.}, language = {en} } @inproceedings{SauerbornLiebenstundRaueetal.2017, author = {Sauerborn, Markus and Liebenstund, Lena and Raue, Markus and Mang, Thomas and Herrmann, Ulf and Dueing, Andreas}, title = {Analytic method for material aging and quality analyzing to forecast long time stability of plastic micro heliostat components}, series = {AIP Conference Proceedings}, volume = {1850}, booktitle = {AIP Conference Proceedings}, number = {1}, doi = {10.1063/1.4984388}, pages = {030045-1 -- 030045-8}, year = {2017}, language = {en} } @inproceedings{WarerkarSchmitzGoettscheetal.2009, author = {Warerkar, Shashikant and Schmitz, Stefan and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Reißel, Martin and Tamme, Rainer}, title = {Air-sand heat exchanger for high-temperature storage}, series = {Proceedings of the ASME 3rd International Conference on Energy Sustainability : July 19 - 23, 2009, San Francisco, California, USA. Vol. 2}, booktitle = {Proceedings of the ASME 3rd International Conference on Energy Sustainability : July 19 - 23, 2009, San Francisco, California, USA. Vol. 2}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-4890-6}, pages = {655 -- 661}, year = {2009}, language = {en} } @inproceedings{FrantzBinderBuschetal.2020, author = {Frantz, Cathy and Binder, Matthias and Busch, Konrad and Ebert, Miriam and Heinrich, Andreas and Kaczmarkiewicz, Nadine and Schl{\"o}gl-Knothe, B{\"a}rbel and Kunze, Tobias and Schuhbauer, Christian and Stetka, Markus and Schwager, Christian and Spiegel, Michael and Teixeira Boura, Cristiano Jos{\´e} and Bauer, Thomas and Bonk, Alexander and Eisen, Stefan and Funck, Bernhard}, title = {Basic Engineering of a High Performance Molten Salt Tower Receiver System}, series = {AIP Conference Proceedings}, booktitle = {AIP Conference Proceedings}, doi = {10.1063/5.0085895}, pages = {1 -- 10}, year = {2020}, abstract = {The production of dispatchable renewable energy will be one of the most important key factors of the future energy supply. Concentrated solar power (CSP) plants operated with molten salt as heat transfer and storage media are one opportunity to meet this challenge. Due to the high concentration factor of the solar tower technology the maximum process temperature can be further increased which ultimately decreases the levelized costs of electricity of the technology (LCOE). The development of an improved tubular molten salt receiver for the next generation of molten salt solar tower plants is the aim of this work. The receiver is designed for a receiver outlet temperature up to 600 °C. Together with a complete molten salt system, the receiver will be integrated into the Multi-Focus-Tower (MFT) in J{\"u}lich (Germany). The paper describes the basic engineering of the receiver, the molten salt tower system and a laboratory corrosion setup.}, language = {en} } @inproceedings{KreyerMuellerEsch2020, author = {Kreyer, J{\"o}rg and M{\"u}ller, Marvin and Esch, Thomas}, title = {A Map-Based Model for the Determination of Fuel Consumption for Internal Combustion Engines as a Function of Flight Altitude}, publisher = {DGLR}, address = {Bonn}, doi = {10.25967/490162}, pages = {13 Seiten}, year = {2020}, abstract = {In addition to very high safety and reliability requirements, the design of internal combustion engines (ICE) in aviation focuses on economic efficiency. The objective must be to design the aircraft powertrain optimized for a specific flight mission with respect to fuel consumption and specific engine power. Against this background, expert tools provide valuable decision-making assistance for the customer. In this paper, a mathematical calculation model for the fuel consumption of aircraft ICE is presented. This model enables the derivation of fuel consumption maps for different engine configurations. Depending on the flight conditions and based on these maps, the current and the integrated fuel consumption for freely definable flight emissions is calculated. For that purpose, an interpolation method is used, that has been optimized for accuracy and calculation time. The mission boundary conditions flight altitude and power requirement of the ICE form the basis for this calculation. The mathematical fuel consumption model is embedded in a parent program. This parent program presents the simulated fuel consumption by means of an example flight mission for a representative airplane. The focus of the work is therefore on reproducing exact consumption data for flight operations. By use of the empirical approaches according to Gagg-Farrar [1] the power and fuel consumption as a function of the flight altitude are determined. To substantiate this approaches, a 1-D ICE model based on the multi-physical simulation tool GT-Suite® has been created. This 1-D engine model offers the possibility to analyze the filling and gas change processes, the internal combustion as well as heat and friction losses for an ICE under altitude environmental conditions. Performance measurements on a dynamometer at sea level for a naturally aspirated ICE with a displacement of 1211 ccm used in an aviation aircraft has been done to validate the 1-D ICE model. To check the plausibility of the empirical approaches with respect to the fuel consumption and performance adjustment for the flight altitude an analysis of the ICE efficiency chain of the 1-D engine model is done. In addition, a comparison of literature and manufacturer data with the simulation results is presented.}, language = {en} } @inproceedings{SchulzeBuxlohGross2021, author = {Schulze-Buxloh, Lina and Groß, Rolf Fritz}, title = {Interdisciplinary Course Smart Building Engineering: A new approach of teaching freshmen in remote teamwork project under pandemic restrictions}, series = {New Perspectives in Science Education - International Conference}, booktitle = {New Perspectives in Science Education - International Conference}, publisher = {Filodiritto}, address = {Bologna}, pages = {4 Seiten}, year = {2021}, abstract = {In the context of the Corona pandemic and its impact on teaching like digital lectures and exercises a new concept especially for freshmen in demanding courses of Smart Building Engineering became necessary. As there were hardly any face-to-face events at the university, the new teaching concept should enable a good start into engineering studies under pandemic conditions anyway and should also replace the written exam at the end. The students should become active themselves in small teams instead of listening passively to a lecture broadcast online with almost no personal contact. For this purpose, a role play was developed in which the freshmen had to work out a complete solution to the realistic problem of designing, construction planning and implementing a small guesthouse. Each student of the team had to take a certain role like architect, site manager, BIM-manager, electrician and the technitian for HVAC installations. Technical specifications must be complied with, as well as documentation, time planning and cost estimate. The final project folder had to contain technical documents like circuit diagrams for electrical components, circuit diagrams for water and heating, design calculations and components lists. On the other hand construction schedule, construction implementation plan, documentation of the construction progress and minutes of meetings between the various trades had to be submitted as well. In addition to the project folder, a model of the construction project must also be created either as a handmade model or as a digital 3D-model using Computer-aided design (CAD) software. The first steps in the field of Building information modelling (BIM) had also been taken by creating a digital model of the building showing the current planning status in real time as a digital twin. This project turned out to be an excellent training of important student competencies like teamwork, communication skills, and self -organisation and also increased motivation to work on complex technical questions. The aim of giving the student a first impression on the challenges and solutions in building projects with many different technical trades and their points of view was very well achieved and should be continued in the future.}, language = {en} } @inproceedings{SchulzeBuxlohGross2021, author = {Schulze-Buxloh, Lina and Groß, Rolf Fritz}, title = {Miniature urban farming plant: a complex educational "Toy" for engineering students}, series = {The Future of Education 11th Edition 2021}, booktitle = {The Future of Education 11th Edition 2021}, pages = {4 Seiten}, year = {2021}, abstract = {Urban farming is an innovative and sustainable way of food production and is becoming more and more important in smart city and quarter concepts. It also enables the production of certain foods in places where they usually dare not produced, such as production of fish or shrimps in large cities far away from the coast. Unfortunately, it is not always possible to show students such concepts and systems in real life as part of courses: visits of such industry plants are sometimes not possible because of distance or are permitted by the operator for hygienic reasons. In order to give the students the opportunity of getting into contact with such an urban farming system and its complex operation, an industrial urban farming plant was set up on a significantly smaller scale. Therefore, all needed technical components like water aeriation, biological and mechanical filtration or water circulation have been replaced either by aquarium components or by self-designed parts also using a 3D-printer. Students from different courses like mechanical engineering, smart building engineering, biology, electrical engineering, automation technology and civil engineering were involved in this project. This "miniature industrial plant" was also able to start operation and has now been running for two years successfully. Due to Corona pandemic, home office and remote online lectures, the automation of this miniature plant should be brought to a higher level in future for providing a good control over the system and water quality remotely. The aim of giving the student a chance to get to know the operation of an urban farming plant was very well achieved and the students had lots of fun in "playing" and learning with it in a realistic way.}, language = {en} } @inproceedings{SchulzeBuxlohGrossUlbrich2021, author = {Schulze-Buxloh, Lina and Groß, Rolf Fritz and Ulbrich, Michelle}, title = {Digital planning using building information modelling and virtual reality: new approach for students' remote practical training under lockdown conditions in the course of smart building engineering}, series = {Proceedings of International Conference on Education in Mathematics, Science and Technology 2021}, booktitle = {Proceedings of International Conference on Education in Mathematics, Science and Technology 2021}, publisher = {ISTES Organization}, address = {San Antonio, TX}, isbn = {978-1-952092-17-6}, pages = {118 -- 123}, year = {2021}, abstract = {The worldwide Corona pandemic has severely restricted student projects in the higher semesters of engineering courses. In order not to delay the graduation, a new concept had to be developed for projects under lockdown conditions. Therefore, unused rooms at the university should be digitally recorded in order to develop a new usage concept as laboratory rooms. An inventory of the actual state of the rooms was done first by taking photos and listing up all flaws and peculiarities. After that, a digital site measuring was done with a 360° laser scanner and these recorded scans were linked to a coherent point cloud and transferred to a software for planning technical building services and supporting Building Information Modelling (BIM). In order to better illustrate the difference between the actual and target state, two virtual reality models were created for realistic demonstration. During the project, the students had to go through the entire digital planning phases. Technical specifications had to be complied with, as well as documentation, time planning and cost estimate. This project turned out to be an excellent alternative to on-site practical training under lockdown conditions and increased the students' motivation to deal with complex technical questions.}, language = {en} } @inproceedings{AlexopoulosBreitbachHoffschmidt2009, author = {Alexopoulos, Spiros and Breitbach, Gerd and Hoffschmidt, Bernhard}, title = {Optimization of the channel form geometry of porous ReSiC ceramic membrane modules}, series = {Proceedings / International Conference \& Exhibition for Filtration and Separation Technology, FILTECH 2009 : October 13 - 15, 2009, Wiesbaden, Germany. Vol. 2}, booktitle = {Proceedings / International Conference \& Exhibition for Filtration and Separation Technology, FILTECH 2009 : October 13 - 15, 2009, Wiesbaden, Germany. Vol. 2}, publisher = {Filtech Exhibitions Germany}, address = {Meerbusch}, isbn = {978-3-941655-36-2}, pages = {686 -- 693}, year = {2009}, language = {en} } @inproceedings{AhlbrinkAlexopoulosAnderssonetal.2009, author = {Ahlbrink, N. and Alexopoulos, Spiros and Andersson, J. and Belhomme, B. and Teixeira Boura, Cristiano Jos{\´e} and Gall, J. and Hirsch, T.}, title = {viCERP - the Virtual Institute of Central Receiver Power Plant}, series = {MATHMOD 2009 - 6th Vienna International Conference on Mathematical Modelling : February 11 - 13, 2009, Vienna, Austria. ARGESIM Report. No. 35}, booktitle = {MATHMOD 2009 - 6th Vienna International Conference on Mathematical Modelling : February 11 - 13, 2009, Vienna, Austria. ARGESIM Report. No. 35}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-3-901608-35-3}, year = {2009}, language = {en} } @inproceedings{ElMoussaouiKassmiAlexopoulosetal.2021, author = {El Moussaoui, Noureddine and Kassmi, Khalil and Alexopoulos, Spiros and Schwarzer, Klemens and Chayeb, Hamid and Bachiri, Najib}, title = {Simulation studies on a new innovative design of a hybrid solar distiller MSDH alimented with a thermal and photovoltaic energy}, series = {Materialstoday: Proceedings}, volume = {45}, booktitle = {Materialstoday: Proceedings}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2214-7853}, doi = {10.1016/j.matpr.2021.03.115}, pages = {7653 -- 7660}, year = {2021}, abstract = {In this paper, we present the structure, the simulation the operation of a multi-stage, hybrid solar desalination system (MSDH), powered by thermal and photovoltaic (PV) (MSDH) energy. The MSDH system consists of a lower basin, eight horizontal stages, a field of four flat thermal collectors with a total area of 8.4 m2, 3 Kw PV panels and solar batteries. During the day the system is heated by thermal energy, and at night by heating resistors, powered by solar batteries. These batteries are charged by the photovoltaic panels during the day. More specifically, during the day and at night, we analyse the temperature of the stages and the production of distilled water according to the solar irradiation intensity and the electric heating power, supplied by the solar batteries. The simulations were carried out in the meteorological conditions of the winter month (February 2020), presenting intensities of irradiance and ambient temperature reaching 824 W/m2 and 23 °C respectively. The results obtained show that during the day the system is heated by the thermal collectors, the temperature of the stages and the quantity of water produced reach 80 °C and 30 Kg respectively. At night, from 6p.m. the system is heated by the electric energy stored in the batteries, the temperature of the stages and the quantity of water produced reach respectively 90 °C and 104 Kg for an electric heating power of 2 Kw. Moreover, when the electric power varies from 1 Kw to 3 Kw the quantity of water produced varies from 92 Kg to 134 Kg. The analysis of these results and their comparison with conventional solar thermal desalination systems shows a clear improvement both in the heating of the stages, by 10\%, and in the quantity of water produced by a factor of 3.}, language = {en} } @inproceedings{AlexopoulosKluczkaVaessenetal.2012, author = {Alexopoulos, Spiros and Kluczka, Sven and Vaeßen, Christiane and Roeb, M. and Neises, M.}, title = {Scenario development for efficient methanol production using CO2 and solar energy}, series = {Eurosun 2012 : Solar energy for a brighter future : conference proceedings : Rijeka, 18.-22.09.2012}, booktitle = {Eurosun 2012 : Solar energy for a brighter future : conference proceedings : Rijeka, 18.-22.09.2012}, address = {Rijeka}, pages = {ID 99}, year = {2012}, language = {en} } @inproceedings{AnthrakidisRusackSchwarzer2010, author = {Anthrakidis, Anette and Rusack, Markus and Schwarzer, Klemens}, title = {Low effort measurement method of PTC-efficiency}, series = {SolarPACES 2010 : the CSP conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, booktitle = {SolarPACES 2010 : the CSP conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, publisher = {Soc. OSC}, address = {Saint Maur}, pages = {48 -- 49}, year = {2010}, language = {en} } @inproceedings{BaumannTeixeiraBouraEcksteinetal.2012, author = {Baumann, Torsten and Teixeira Boura, Cristiano Jos{\´e} and Eckstein, Julian and Dabrowski, Jan and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, Stefan and Zunft, Stefan}, title = {Properties of bulk materials for high-temperature air-sand heat exchangers}, series = {30th ISES Biennial Solar World Congress 2011 : Kassel, Germany, 28 August - 2 September 2011. Vol. 2}, booktitle = {30th ISES Biennial Solar World Congress 2011 : Kassel, Germany, 28 August - 2 September 2011. Vol. 2}, publisher = {Curran}, address = {Red Hook, NY}, organization = {International Solar Energy Society}, isbn = {978-1-61839-364-7}, pages = {1270 -- 1278}, year = {2012}, language = {en} } @inproceedings{AlexopoulosHoffschmidtRauetal.2011, author = {Alexopoulos, Spiros and Hoffschmidt, Bernhard and Rau, Christoph and Sattler, Johannes Christoph}, title = {Choice of solar share of a hybrid power plant of a central receiver system and a biogas plant in dependency of the geographical latitude}, series = {World Renewable Energy Congress-Sweden : 8 -13 May, 2011, Link{\"o}ping, Sweden / ed.: Bahram Moshfegh}, booktitle = {World Renewable Energy Congress-Sweden : 8 -13 May, 2011, Link{\"o}ping, Sweden / ed.: Bahram Moshfegh}, publisher = {Univ. Electronic Pr.}, address = {Link{\"o}ping}, isbn = {9789173930703}, pages = {3710 -- 3717}, year = {2011}, language = {en} } @inproceedings{AchenbachBoschBreitbachetal.2013, author = {Achenbach, Timm and Bosch, Timo and Breitbach, Gerd and G{\"o}ttsche, Joachim and Sauerborn, Markus}, title = {Theoretical and experimental investigations regarding open volumetric receivers of CRS}, series = {Energy procedia : proceedings of the SolarPACES 2013 International Conference}, volume = {Vol. 49}, booktitle = {Energy procedia : proceedings of the SolarPACES 2013 International Conference}, issn = {1876-6102}, pages = {1259 -- 1268}, year = {2013}, language = {en} } @inproceedings{AlexopoulosHoffschmidtRauetal.2009, author = {Alexopoulos, Spiros and Hoffschmidt, Bernhard and Rau, Christoph and Schwarzb{\"o}zl, Peter}, title = {Simulation results for a hybridization concept of a small solar tower power plant}, series = {SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings}, booktitle = {SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings}, publisher = {Deutsches Zentrum f. Luft- u. Raumfahrt}, address = {Stuttgart}, isbn = {9783000287558}, pages = {1 CD-ROM}, year = {2009}, language = {en} } @inproceedings{SchulteSchwagerNoureldinetal.2023, author = {Schulte, Jonas and Schwager, Christian and Noureldin, Kareem and May, Martin and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Gradient controlled startup procedure of a molten-salt power-to-heat energy storage plant based on dynamic process simulation}, series = {SolarPACES: Solar Power \& Chemical Energy Systems}, booktitle = {SolarPACES: Solar Power \& Chemical Energy Systems}, number = {2815 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4623-6}, issn = {1551-7616 (online)}, doi = {10.1063/5.0148741}, pages = {9 Seiten}, year = {2023}, abstract = {The integration of high temperature thermal energy storages into existing conventional power plants can help to reduce the CO2 emissions of those plants and lead to lower capital expenditures for building energy storage systems, due to the use of synergy effects [1]. One possibility to implement that, is a molten salt storage system with a powerful power-to-heat unit. This paper presents two possible control concepts for the startup of the charging system of such a facility. The procedures are implemented in a detailed dynamic process model. The performance and safety regarding the film temperatures at heat transmitting surfaces are investigated in the process simulations. To improve the accuracy in predicting the film temperatures, CFD simulations of the electrical heater are carried out and the results are merged with the dynamic model. The results show that both investigated control concepts are safe regarding the temperature limits. The gradient controlled startup performed better than the temperature-controlled startup. Nevertheless, there are several uncertainties that need to be investigated further.}, language = {en} } @inproceedings{RendonDieckmannWeidleetal.2018, author = {Rendon, Carlos and Dieckmann, Simon and Weidle, Mathias and Dersch, J{\"u}rgen and Teixeira Boura, Cristiano Jos{\´e} and Polklas, Thomas and Kuschel, Marcus and Herrmann, Ulf}, title = {Retrofitting of existing parabolic trough collector power plants with molten salt tower systems}, series = {AIP Conference Proceedings}, volume = {2033}, booktitle = {AIP Conference Proceedings}, number = {1}, doi = {10.1063/1.5067030}, pages = {030014-1 -- 030014-8}, year = {2018}, language = {en} } @inproceedings{AchenbachGeimerGoettscheetal.2011, author = {Achenbach, Timm and Geimer, K. and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Lynen, A. and Bauer, J.}, title = {Simulation and flow measurements of volumetric high temperature absorbers for solar tower power plants}, series = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, booktitle = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, address = {Granada}, pages = {1 CD-ROM}, year = {2011}, language = {en} } @inproceedings{TeixeiraBouraEcksteinFelinksetal.2011, author = {Teixeira Boura, Cristiano Jos{\´e} and Eckstein, J. and Felinks, J. and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, S.}, title = {3-D CFD simulation of an air-sand heat exchanger}, series = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, booktitle = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, address = {Granada}, pages = {1 CD-ROM}, year = {2011}, language = {en} } @inproceedings{AchenbachGoettscheKaufholdetal.2011, author = {Achenbach, Timm and G{\"o}ttsche, Joachim and Kaufhold, O. and Hoffschmidt, Bernhard}, title = {Development of an edge module for open volumetric receiver for the use of the radiation at the receiver boundary region}, series = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, booktitle = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, address = {Granada}, pages = {1 CD-ROM}, year = {2011}, language = {en} } @inproceedings{AlexopoulosHoffschmidtRau2011, author = {Alexopoulos, Spiros and Hoffschmidt, Bernhard and Rau, Christoph}, title = {Comparison of steady-state and transient simulations for solar tower power plants with open-volumetric receiver}, series = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, booktitle = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, address = {Granada}, pages = {1 CD-ROM}, year = {2011}, language = {en} } @inproceedings{AlexopoulosHoffschmidtRauetal.2010, author = {Alexopoulos, Spiros and Hoffschmidt, Bernhard and Rau, Christoph and Schmitz, M. and Schwarzb{\"o}zl, P. and Pomp, Stefan}, title = {Simulation results for a hybridized operation of a gas turbine or a burner for a small solar tower power plant}, series = {SolarPACES 2010 : the CSP Conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, booktitle = {SolarPACES 2010 : the CSP Conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, publisher = {Soc. OSC}, address = {Saint Maur}, pages = {82 -- 83}, year = {2010}, language = {en} } @inproceedings{ZiolkoSchmitzSattleretal.2010, author = {Ziolko, C. and Schmitz, M. and Sattler, Johannes Christoph and Khedim, Ahmed and Hoffschmidt, Bernhard}, title = {AlSol - the open volumetric receiver technology moves to Africa}, series = {SolarPACES 2010 : the CSP Conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, booktitle = {SolarPACES 2010 : the CSP Conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, publisher = {Soc. OSC}, address = {Saint Maur}, pages = {93 -- 94}, year = {2010}, language = {en} } @inproceedings{AlexopoulosRauHoffschmidtetal.2012, author = {Alexopoulos, Spiros and Rau, Christoph and Hoffschmidt, Bernhard and Breitbach, Gerd and Latzke, Markus}, title = {Modelling and validation of a transient heat recovery steam generator of the solar tower power plant Juelich}, series = {Eurosun 2012 : Solar energy for a brighter future : conference proceedings : Rijeka, 18.-22.09.2012}, booktitle = {Eurosun 2012 : Solar energy for a brighter future : conference proceedings : Rijeka, 18.-22.09.2012}, address = {Rijeka}, pages = {ID 97}, year = {2012}, language = {en} } @inproceedings{SattlerChicoCaminosUerlingsetal.2020, author = {Sattler, Johannes Christoph and Chico Caminos, Ricardo Alexander and {\"U}rlings, Nicolas and Dutta, Siddharth and Ruiz, Victor and Kalogirou, Soteris and Ktistis, Panayiotis and Agathokleous, Rafaela and Jung, Christian and Alexopoulos, Spiros and Atti, Vikrama Nagababu and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Operational experience and behaviour of a parabolic trough collector system with concrete thermal energy storage for process steam generation in Cyprus}, series = {AIP Conference Proceedings}, booktitle = {AIP Conference Proceedings}, number = {2303}, doi = {10.1063/5.0029278}, pages = {140004-1 -- 140004-10}, year = {2020}, abstract = {As part of the transnational research project EDITOR, a parabolic trough collector system (PTC) with concrete thermal energy storage (C-TES) was installed and commissioned in Limassol, Cyprus. The system is located on the premises of the beverage manufacturer KEAN Soft Drinks Ltd. and its function is to supply process steam for the factory's pasteurisation process [1]. Depending on the factory's seasonally varying capacity for beverage production, the solar system delivers between 5 and 25 \% of the total steam demand. In combination with the C-TES, the solar plant can supply process steam on demand before sunrise or after sunset. Furthermore, the C-TES compensates the PTC during the day in fluctuating weather conditions. The parabolic trough collector as well as the control and oil handling unit is designed and manufactured by Protarget AG, Germany. The C-TES is designed and produced by CADE Soluciones de Ingenier{\´i}a, S.L., Spain. In the focus of this paper is the description of the operational experience with the PTC, C-TES and boiler during the commissioning and operation phase. Additionally, innovative optimisation measures are presented.}, language = {en} } @inproceedings{SattlerAlexopoulosChicoCaminosetal.2019, author = {Sattler, Johannes Christoph and Alexopoulos, Spiros and Chico Caminos, Ricardo Alexander and Mitchell, John C. and Ruiz, Victor C. and Kalogirou, Soteris and Ktistis, Panayiotis K. and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Dynamic simulation model of a parabolic trough collector system with concrete thermal energy storage for process steam generation}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, issn = {0094243X}, doi = {10.1063/1.5117663}, pages = {150007-1 -- 150007-8}, year = {2019}, language = {en} } @inproceedings{AnthrakidisHerrmannSchornetal.2015, author = {Anthrakidis, Anette and Herrmann, Ulf and Schorn, Christian and Schwarzer, Klemens and Wedding, Philipp and Weis, Fabian}, title = {Development and Testing of a Novel Method for the Determination of the Efficiency of Concentrating Solar Thermal Collectors}, series = {Conference Proceedings Solar World Congress 2015, Daegu, Korea, 08 - 12 November 2015}, booktitle = {Conference Proceedings Solar World Congress 2015, Daegu, Korea, 08 - 12 November 2015}, pages = {9 Seiten}, year = {2015}, language = {en} } @inproceedings{HerrmannWorringerGraeteretal.2006, author = {Herrmann, Ulf and Worringer, S. and Graeter, F. and Nava, P.}, title = {Three Years of Operation Experience of the SKAL-ET Collector Loop at SEGS V}, series = {13th International Symposium Concentrated Solar Power and Chemical Energy Technologies, June 20 - 23, 2006, Seville, Spain}, booktitle = {13th International Symposium Concentrated Solar Power and Chemical Energy Technologies, June 20 - 23, 2006, Seville, Spain}, editor = {Romero, Manuel}, publisher = {SolarPACES [u.a.]}, address = {[s.l.]}, isbn = {84-7834-519-1}, pages = {1 CD-ROM}, year = {2006}, language = {en} } @inproceedings{HerrmannGraeterNava2004, author = {Herrmann, Ulf and Graeter, F. and Nava, P.}, title = {Performance of the SKAL-ET Collector Loop at KJC Operating Company}, series = {12th International Symposium Solar Power and Chemical Energy Systems, October 6-8, 2004, Oaxaca Mexico ; SolarPACES International Symposium, 12}, booktitle = {12th International Symposium Solar Power and Chemical Energy Systems, October 6-8, 2004, Oaxaca Mexico ; SolarPACES International Symposium, 12}, editor = {Ramos, C.}, publisher = {Instituto de Investigaciones Electricas}, address = {[s.l.]}, isbn = {968-6114-18-1}, year = {2004}, language = {en} } @inproceedings{AringhoffGeyerHerrmannetal.2002, author = {Aringhoff, R. and Geyer, Michael and Herrmann, Ulf and Kistner, Rainer and Nava, P. and Osuna, R.}, title = {AndaSol : 50MW Solar Plants with 9 Hour Storage for Southern Spain}, series = {Proceedings of the 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies : September 4 - 6, 2002, Zurich, Switzerland / Paul Scherrer Institut, PSI; ETH, Eidgen{\"o}ssische Technische Hochschule Z{\"u}rich}, booktitle = {Proceedings of the 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies : September 4 - 6, 2002, Zurich, Switzerland / Paul Scherrer Institut, PSI; ETH, Eidgen{\"o}ssische Technische Hochschule Z{\"u}rich}, editor = {Steinfeld, Aldo}, publisher = {Paul Scherrer Inst.}, address = {Villingen}, isbn = {3-9521409-3-7}, pages = {37 -- 42}, year = {2002}, language = {en} } @inproceedings{HerrmannKellyPrice2002, author = {Herrmann, Ulf and Kelly, Bruce and Price, Henry}, title = {Two Tank Molten Salt Storage for Parabolic Trough Solar Power Plants}, series = {Proceedings of the 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies : September 4 - 6, 2002, Zurich, Switzerland / Paul Scherrer Institut, PSI; ETH, Eidgen{\"o}ssische Technische Hochschule Z{\"u}rich}, booktitle = {Proceedings of the 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies : September 4 - 6, 2002, Zurich, Switzerland / Paul Scherrer Institut, PSI; ETH, Eidgen{\"o}ssische Technische Hochschule Z{\"u}rich}, editor = {Steinfeld, Aldo}, publisher = {Paul Scherrer Inst.}, address = {Villingen}, isbn = {3-9521409-3-7}, pages = {517 -- 524}, year = {2002}, language = {en} } @inproceedings{JanotteFecklerKoetteretal.2014, author = {Janotte, N. and Feckler, G. and K{\"o}tter, Jens and Decker, Stefan and Herrmann, Ulf and Schmitz, Mark and L{\"u}pfert, E.}, title = {Dynamic performance evaluation of the HelioTrough® collector demonstration loop : towards a new benchmark in parabolic trough qualification}, series = {SolarPACES International Conference 2013, Las Vegas, Nevada, USA, 17 - 20 September 2013 : [proceedings]. - Pt. 1. - (Energy procedia ; 49)}, booktitle = {SolarPACES International Conference 2013, Las Vegas, Nevada, USA, 17 - 20 September 2013 : [proceedings]. - Pt. 1. - (Energy procedia ; 49)}, publisher = {Curran}, address = {Red Hook, NY}, isbn = {978-1-63266-904-9}, issn = {1876-6102}, doi = {10.1016/j.egypro.2014.03.012}, pages = {109 -- 117}, year = {2014}, language = {en} } @inproceedings{KellyHerrmannHale2001, author = {Kelly, Bruce and Herrmann, Ulf and Hale, M.-J.}, title = {Optimization Studies for Integrated Solar Combined Cycle Systems}, series = {Solar engineering 2001 : proceedings of the International Solar Energy Conference ; presented at the 2001 International Solar Energy Conference, a part of Forum 2001 - Solar energy: the power to choose, April 21 - 25, 2001, Washington, D.C.}, booktitle = {Solar engineering 2001 : proceedings of the International Solar Energy Conference ; presented at the 2001 International Solar Energy Conference, a part of Forum 2001 - Solar energy: the power to choose, April 21 - 25, 2001, Washington, D.C.}, publisher = {ASME}, address = {New York, NY}, isbn = {0-7918-1670-2}, pages = {393 -- 398}, year = {2001}, language = {en} } @inproceedings{MayBreitbachAlexopoulosetal.2019, author = {May, Martin and Breitbach, Gerd and Alexopoulos, Spiros and Latzke, Markus and B{\"a}umer, Klaus and Uhlig, Ralf and S{\"o}hn, Matthias and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Experimental facility for investigations of wire mesh absorbers for pressurized gases}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, issn = {0094243X}, doi = {10.1063/1.5117547}, pages = {030035-1 -- 030035-9}, year = {2019}, language = {en} } @inproceedings{SchwagerTeixeiraBouraFleschetal.2019, author = {Schwager, Christian and Teixeira Boura, Cristiano Jos{\´e} and Flesch, Robert and Alexopoulos, Spiros and Herrmann, Ulf}, title = {Improved efficiency prediction of a molten salt receiver based on dynamic cloud passage simulation}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, number = {1}, isbn = {978-0-7354-1866-0}, doi = {10.1063/1.5117566}, pages = {030054-1 -- 030054-8}, year = {2019}, language = {en} } @inproceedings{TeixeiraBouraNiederwestbergMcLeodetal.2016, author = {Teixeira Boura, Cristiano Jos{\´e} and Niederwestberg, Stefan and McLeod, Jacqueline and Herrmann, Ulf and Hoffschmidt, Bernhard}, title = {Development of heat exchanger for high temperature energy storage with bulk materials}, series = {AIP Conference Proceedings}, volume = {1734}, booktitle = {AIP Conference Proceedings}, number = {1}, doi = {10.1063/1.4949106}, pages = {050008-1 -- 050008-7}, year = {2016}, language = {en} } @inproceedings{BlankeDringVonteinetal.2018, author = {Blanke, Tobias and Dring, Bernd and Vontein, Marius and Kuhnhenne, Markus}, title = {Climate Change Mitigation Potentials of Vertical Building Integrated Photovoltaic}, series = {8th International Workshop on Integration of Solar Power into Power Systems : 16-17 October 2018, Stockholm, Sweden}, booktitle = {8th International Workshop on Integration of Solar Power into Power Systems : 16-17 October 2018, Stockholm, Sweden}, pages = {1 -- 7}, year = {2018}, language = {en} } @inproceedings{MahdiRendonSchwageretal.2019, author = {Mahdi, Zahra and Rend{\´o}n, Carlos and Schwager, Christian and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Novel concept for indirect solar-heated methane reforming}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, publisher = {AIP Publishing}, address = {Melville, NY}, issn = {0094-243X}, doi = {10.1063/1.5117694}, pages = {180014-1 -- 180014-7}, year = {2019}, language = {en} } @inproceedings{AlexopoulosHoffschmidtRauetal.2012, author = {Alexopoulos, Spiros and Hoffschmidt, Bernhard and Rau, Christoph and Sattler, Johannes Christoph}, title = {Simulation of hybrid solar tower power plants}, series = {30th ISES Biennial Solar World Congress 2011 : Kassel, Germany, 28 August - 2 September 2011. Vol. 5}, booktitle = {30th ISES Biennial Solar World Congress 2011 : Kassel, Germany, 28 August - 2 September 2011. Vol. 5}, publisher = {Curran}, address = {Red Hook, NY}, organization = {International Solar Energy Society}, pages = {4044 -- 4050}, year = {2012}, language = {en} } @inproceedings{MohanGrossMenzeletal.2021, author = {Mohan, Nijanthan and Groß, Rolf Fritz and Menzel, Karsten and Theis, Fabian}, title = {Opportunities and Challenges in the Implementation of Building Information Modeling for Prefabrication of Heating, Ventilation and Air Conditioning Systems in Small and Medium-Sized Contracting Companies in Germany - A Case Study}, series = {WIT Transactions on The Built Environment, Vol. 205}, booktitle = {WIT Transactions on The Built Environment, Vol. 205}, publisher = {WIT Press}, address = {Southampton}, issn = {1743-3509}, doi = {10.2495/BIM210101}, pages = {117 -- 126}, year = {2021}, abstract = {Even though BIM (Building Information Modelling) is successfully implemented in most of the world, it is still in the early stages in Germany, since the stakeholders are sceptical of its reliability and efficiency. The purpose of this paper is to analyse the opportunities and obstacles to implementing BIM for prefabrication. Among all other advantages of BIM, prefabrication is chosen for this paper because it plays a vital role in creating an impact on the time and cost factors of a construction project. The project stakeholders and participants can explicitly observe the positive impact of prefabrication, which enables the breakthrough of the scepticism factor among the small-scale construction companies. The analysis consists of the development of a process workflow for implementing prefabrication in building construction followed by a practical approach, which was executed with two case studies. It was planned in such a way that, the first case study gives a first-hand experience for the workers at the site on the BIM model so that they can make much use of the created BIM model, which is a better representation compared to the traditional 2D plan. The main aim of the first case study is to create a belief in the implementation of BIM Models, which was succeeded by the execution of offshore prefabrication in the second case study. Based on the case studies, the time analysis was made and it is inferred that the implementation of BIM for prefabrication can reduce construction time, ensures minimal wastes, better accuracy, less problem-solving at the construction site. It was observed that this process requires more planning time, better communication between different disciplines, which was the major obstacle for successful implementation. This paper was carried out from the perspective of small and medium-sized mechanical contracting companies for the private building sector in Germany.}, language = {en} } @inproceedings{GorzalkaDahlkeGoettscheetal.2018, author = {Gorzalka, Philip and Dahlke, Dennis and G{\"o}ttsche, Joachim and Israel, Martin and Patel, Dhruvkumar and Prahl, Christoph and Schmiedt, Jacob Estevam and Frommholz, Dirk and Hoffschmidt, Bernhard and Linkiewicz, Magdalena}, title = {Building Tomograph-From Remote Sensing Data of Existing Buildings to Building Energy Simulation Input}, series = {EBC, Annex 71, Fifth expert meeting, October 17-19, 2018, Innsbruck, Austria}, booktitle = {EBC, Annex 71, Fifth expert meeting, October 17-19, 2018, Innsbruck, Austria}, pages = {17 Seiten}, year = {2018}, language = {en} } @inproceedings{DerschGeyerHerrmannetal.2002, author = {Dersch, J{\"u}rgen and Geyer, Michael and Herrmann, Ulf and Jones, Scott A. and Kelly, Bruce and Kistner, Rainer and Ortmanns, Winfried and Pitz-Paal, Robert and Price, Henry}, title = {Trough integration into power plants : a study on the performance and economy of integrated solar combined cycle systems}, series = {Proceedings of the 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies : September 4 - 6, 2002, Zurich, Switzerland / Paul Scherrer Institut, PSI; ETH, Eidgen{\"o}ssische Technische Hochschule Z{\"u}rich}, booktitle = {Proceedings of the 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies : September 4 - 6, 2002, Zurich, Switzerland / Paul Scherrer Institut, PSI; ETH, Eidgen{\"o}ssische Technische Hochschule Z{\"u}rich}, editor = {Steinfeld, Aldo}, publisher = {Paul Scherrer Inst.}, address = {Villingen}, isbn = {3-9521409-3-7}, pages = {661 -- 671}, year = {2002}, language = {en} } @inproceedings{HahneHerrmannRheinlaender1997, author = {Hahne, E. and Herrmann, Ulf and Rheinl{\"a}nder, J.}, title = {The Effect of Tilt on Flow Pattern of Water/Steam Flow Through Heated Tubes}, series = {Experimental heat transfer, fluid mechanics and thermodynamics 1997 : proceedings of the 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Brussels, June 2 - 6, 1997. - Vol. 2}, booktitle = {Experimental heat transfer, fluid mechanics and thermodynamics 1997 : proceedings of the 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Brussels, June 2 - 6, 1997. - Vol. 2}, editor = {Girot, Michel}, publisher = {Ed. ETS}, address = {Pisa}, isbn = {88-467-0014-7}, pages = {925 -- 934}, year = {1997}, language = {en} } @inproceedings{DerschGeyerHerrmannetal.2002, author = {Dersch, J{\"u}rgen and Geyer, Michael and Herrmann, Ulf and Jones, Scott A. and Kelly, Bruce and Kistner, Rainer and Ortmanns, Winfried and Pitz-Paal, Robert and Price, Henry}, title = {Solar Trough Integration Into Combined Cycle Systems}, series = {Solar engineering 2002 : proceedings of the International Solar Energy Conference ; presented at the 2002 International Solar Energy Conference, a part of Solar 2002 - Sunrise on the Reliable Energy Economy, June 15 - 20, 2002, Reno, Nevada}, booktitle = {Solar engineering 2002 : proceedings of the International Solar Energy Conference ; presented at the 2002 International Solar Energy Conference, a part of Solar 2002 - Sunrise on the Reliable Energy Economy, June 15 - 20, 2002, Reno, Nevada}, editor = {Pearson, J. Boise}, publisher = {ASME}, isbn = {0-7918-1689-3}, doi = {doi:10.1115/SED2002-1072}, pages = {351 -- 359}, year = {2002}, language = {en} } @inproceedings{LuepfertHerrmannPriceetal.2004, author = {L{\"u}pfert, E. and Herrmann, Ulf and Price, Henry and Zarza, E. and Kistener, R.}, title = {Towards Standard Performance Analysis for Parabolic Trough Collector Fields}, series = {12th International Symposium Solar Power and Chemical Energy Systems, October 6-8, 2004, Oaxaca Mexico ; SolarPACES International Symposium, 12}, booktitle = {12th International Symposium Solar Power and Chemical Energy Systems, October 6-8, 2004, Oaxaca Mexico ; SolarPACES International Symposium, 12}, editor = {Ramos, C.}, publisher = {Instituto de Investigaciones Electricas}, address = {[s.l.]}, isbn = {968-6114-18-1}, year = {2004}, language = {en} } @inproceedings{HerrmannVorbruggNava2009, author = {Herrmann, Ulf and Vorbrugg, O. and Nava, P.}, title = {Construction and Commissioning Process of the Andasol Solar Field}, series = {SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings}, booktitle = {SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings}, publisher = {Deutsches Zentrum f{\"u}r Luft- u. Raumfahrt}, address = {Stuttgart}, isbn = {978-3-00-028755-8}, pages = {1 CD-ROM}, year = {2009}, language = {en} } @inproceedings{HerrmannRheinlaenderLippke1997, author = {Herrmann, Ulf and Rheinl{\"a}nder, J. and Lippke, F.}, title = {Solar Fields for Direct Steam Generation in Parabolic Trough Collectors}, series = {Components, tools, facilities and measurement techniques. - (Solar thermal concentrating technologies : proceedings of the 8th international symposium, October, 6 - 11, 1996, K{\"o}ln, Germany ; Vol. 2)}, booktitle = {Components, tools, facilities and measurement techniques. - (Solar thermal concentrating technologies : proceedings of the 8th international symposium, October, 6 - 11, 1996, K{\"o}ln, Germany ; Vol. 2)}, editor = {Becker, Manfred}, publisher = {M{\"u}ller}, address = {Heidelberg}, isbn = {3-7880-7616-X}, pages = {815 -- 834}, year = {1997}, language = {en} }