@inproceedings{AchenbachBoschBreitbachetal.2013, author = {Achenbach, Timm and Bosch, Timo and Breitbach, Gerd and G{\"o}ttsche, Joachim and Sauerborn, Markus}, title = {Theoretical and experimental investigations regarding open volumetric receivers of CRS}, series = {Energy procedia : proceedings of the SolarPACES 2013 International Conference}, volume = {Vol. 49}, booktitle = {Energy procedia : proceedings of the SolarPACES 2013 International Conference}, issn = {1876-6102}, pages = {1259 -- 1268}, year = {2013}, language = {en} } @inproceedings{AchenbachGeimerGoettscheetal.2011, author = {Achenbach, Timm and Geimer, K. and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Lynen, A. and Bauer, J.}, title = {Simulation and flow measurements of volumetric high temperature absorbers for solar tower power plants}, series = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, booktitle = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, address = {Granada}, pages = {1 CD-ROM}, year = {2011}, language = {en} } @inproceedings{AchenbachGeimerLynenetal.2012, author = {Achenbach, Timm and Geimer, Konstantin and Lynen, Arthur and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard}, title = {Simulation of thermo-mechanical processes in open volumetric absorber modules}, series = {SolarPaces 2012 : concentrating solar power and chemical energy systems : Sept. 11 - 14 2012, Marrakech, Marokko}, booktitle = {SolarPaces 2012 : concentrating solar power and chemical energy systems : Sept. 11 - 14 2012, Marrakech, Marokko}, pages = {1 -- 8}, year = {2012}, language = {en} } @inproceedings{AchenbachGoettscheKaufholdetal.2011, author = {Achenbach, Timm and G{\"o}ttsche, Joachim and Kaufhold, O. and Hoffschmidt, Bernhard}, title = {Development of an edge module for open volumetric receiver for the use of the radiation at the receiver boundary region}, series = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, booktitle = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, address = {Granada}, pages = {1 CD-ROM}, year = {2011}, language = {en} } @article{AgrafiotisMavroidisKonstandopoulosetal.2007, author = {Agrafiotis, Christos C. and Mavroidis, Ilias and Konstandopoulos, Athansios G. and Hoffschmidt, Bernhard and Stobbe, Per and Romero, Manuel and Fernandez-Quero, Valerio}, title = {Evaluation of porous silicon carbide monolithic honeycombs as volumetric receivers/collectors of concentrated solar radiation}, series = {Solar energy materials and solar cells}, volume = {Vol. 91}, journal = {Solar energy materials and solar cells}, number = {Iss. 6}, issn = {1879-3398 (E-Journal); 0927-0248 (Print)}, pages = {474 -- 488}, year = {2007}, language = {en} } @inproceedings{AhlbrinkAlexopoulosAnderssonetal.2009, author = {Ahlbrink, N. and Alexopoulos, Spiros and Andersson, J. and Belhomme, B. and Teixeira Boura, Cristiano Jos{\´e} and Gall, J. and Hirsch, T.}, title = {viCERP - the Virtual Institute of Central Receiver Power Plant}, series = {MATHMOD 2009 - 6th Vienna International Conference on Mathematical Modelling : February 11 - 13, 2009, Vienna, Austria. ARGESIM Report. No. 35}, booktitle = {MATHMOD 2009 - 6th Vienna International Conference on Mathematical Modelling : February 11 - 13, 2009, Vienna, Austria. ARGESIM Report. No. 35}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-3-901608-35-3}, year = {2009}, language = {en} } @article{Alexopoulos2012, author = {Alexopoulos, Spiros}, title = {Biogas systems: basics, biogas multifunction, principle of fermentation and hybrid application with a solar tower for the treatment of waste animal manure}, series = {Journal of Engineering Science and Technology Review}, volume = {5}, journal = {Journal of Engineering Science and Technology Review}, number = {4}, issn = {1791-2377}, pages = {48 -- 55}, year = {2012}, abstract = {Two of the main environmental problems of today's society are the continuously increasing production of organic wastes as well as the increase of carbon dioxide in the atmosphere and the related green house effect. A way to solve these problems is the production of biogas. Biogas is a combustible gas consisting of methane, carbon dioxide and small amounts of other gases and trace elements. Production of biogas through anaerobic digestion of animal manure and slurries as well as of a wide range of digestible organic wastes and agricultural residues, converts these substrates into electricity and heat and offers a natural fertiliser for agriculture. The microbiological process of decomposition of organic matter, in the absence of oxygen takes place in reactors, called digesters. Biogas can be used as a fuel in a gas turbine or burner and can be used in a hybrid solar tower system offering a solution for waste treatment of agricultural and animal residues. A solar tower system consists of a heliostat field, which concentrates direct solar irradiation on an open volumetric central receiver. The receiver heats up ambient air to temperatures of around 700°C. The hot air's heat energy is transferred to a steam Rankine cycle in a heat recovery steam generator (HRSG). The steam drives a steam turbine, which in turn drives a generator for producing electricity. In order to increase the operational hours of a solar tower power plant, a heat storage system and/ or hybridization may be considered. The advantage of solar-fossil hybrid power plants, compared to solar-only systems, lies in low additional investment costs due to an adaptable solar share and reduced technical and economical risks. On sunny days the hybrid system operates in a solar-only mode with the central receiver and on cloudy days and at night with the gas turbine only. As an alternative to methane gas, environmentally neutral biogas can be used for operating the gas turbine. Hence, the hybrid system is operated to 100\% from renewable energy sources}, language = {en} } @incollection{Alexopoulos2013, author = {Alexopoulos, Spiros}, title = {Biomass technology and bio-fuels: Heating/cooling and power}, series = {Renewable energy systems : theory, innovations, and intelligent applications / eds.: Socrates Kaplanis and Eleni Kaplani}, booktitle = {Renewable energy systems : theory, innovations, and intelligent applications / eds.: Socrates Kaplanis and Eleni Kaplani}, publisher = {Nova Science Publ.}, address = {Hauppauge, NY}, isbn = {9781624177415}, pages = {501 -- 523}, year = {2013}, language = {en} } @article{Alexopoulos2015, author = {Alexopoulos, Spiros}, title = {Simulation model for the transient process behaviour of solar aluminium recycling in a rotary kiln}, series = {Applied Thermal Engineering}, volume = {78}, journal = {Applied Thermal Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1359-4311}, doi = {10.1016/j.applthermaleng.2015.01.007}, pages = {387 -- 396}, year = {2015}, language = {en} } @inproceedings{AlexopoulosBreitbachHoffschmidt2009, author = {Alexopoulos, Spiros and Breitbach, Gerd and Hoffschmidt, Bernhard}, title = {Optimization of the channel form geometry of porous ReSiC ceramic membrane modules}, series = {Proceedings / International Conference \& Exhibition for Filtration and Separation Technology, FILTECH 2009 : October 13 - 15, 2009, Wiesbaden, Germany. Vol. 2}, booktitle = {Proceedings / International Conference \& Exhibition for Filtration and Separation Technology, FILTECH 2009 : October 13 - 15, 2009, Wiesbaden, Germany. Vol. 2}, publisher = {Filtech Exhibitions Germany}, address = {Meerbusch}, isbn = {978-3-941655-36-2}, pages = {686 -- 693}, year = {2009}, language = {en} } @article{AlexopoulosHoffschmidt2017, author = {Alexopoulos, Spiros and Hoffschmidt, Bernhard}, title = {Advances in solar tower technology}, series = {Wiley interdisciplinary reviews : Energy and Environment : WIREs}, volume = {6}, journal = {Wiley interdisciplinary reviews : Energy and Environment : WIREs}, number = {1}, publisher = {Wiley}, address = {Weinheim}, issn = {2041-840X}, doi = {10.1002/wene.217}, pages = {1 -- 19}, year = {2017}, language = {en} } @inproceedings{AlexopoulosHoffschmidtRau2011, author = {Alexopoulos, Spiros and Hoffschmidt, Bernhard and Rau, Christoph}, title = {Comparison of steady-state and transient simulations for solar tower power plants with open-volumetric receiver}, series = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, booktitle = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, address = {Granada}, pages = {1 CD-ROM}, year = {2011}, language = {en} } @inproceedings{AlexopoulosHoffschmidtRauetal.2012, author = {Alexopoulos, Spiros and Hoffschmidt, Bernhard and Rau, Christoph and Sattler, Johannes, Christoph}, title = {Simulation of hybrid solar tower power plants}, series = {30th ISES Biennial Solar World Congress 2011 : Kassel, Germany, 28 August - 2 September 2011. Vol. 5}, booktitle = {30th ISES Biennial Solar World Congress 2011 : Kassel, Germany, 28 August - 2 September 2011. Vol. 5}, publisher = {Curran}, address = {Red Hook, NY}, organization = {International Solar Energy Society}, pages = {4044 -- 4050}, year = {2012}, language = {en} } @inproceedings{AlexopoulosHoffschmidtRauetal.2011, author = {Alexopoulos, Spiros and Hoffschmidt, Bernhard and Rau, Christoph and Sattler, Johannes, Christoph}, title = {Choice of solar share of a hybrid power plant of a central receiver system and a biogas plant in dependency of the geographical latitude}, series = {World Renewable Energy Congress-Sweden : 8 -13 May, 2011, Link{\"o}ping, Sweden / ed.: Bahram Moshfegh}, booktitle = {World Renewable Energy Congress-Sweden : 8 -13 May, 2011, Link{\"o}ping, Sweden / ed.: Bahram Moshfegh}, publisher = {Univ. Electronic Pr.}, address = {Link{\"o}ping}, isbn = {9789173930703}, pages = {3710 -- 3717}, year = {2011}, language = {en} } @inproceedings{AlexopoulosHoffschmidtRauetal.2010, author = {Alexopoulos, Spiros and Hoffschmidt, Bernhard and Rau, Christoph and Schmitz, M. and Schwarzb{\"o}zl, P. and Pomp, Stefan}, title = {Simulation results for a hybridized operation of a gas turbine or a burner for a small solar tower power plant}, series = {SolarPACES 2010 : the CSP Conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, booktitle = {SolarPACES 2010 : the CSP Conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, publisher = {Soc. OSC}, address = {Saint Maur}, pages = {82 -- 83}, year = {2010}, language = {en} } @inproceedings{AlexopoulosHoffschmidtRauetal.2009, author = {Alexopoulos, Spiros and Hoffschmidt, Bernhard and Rau, Christoph and Schwarzb{\"o}zl, Peter}, title = {Simulation results for a hybridization concept of a small solar tower power plant}, series = {SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings}, booktitle = {SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings}, publisher = {Deutsches Zentrum f. Luft- u. Raumfahrt}, address = {Stuttgart}, isbn = {9783000287558}, pages = {1 CD-ROM}, year = {2009}, language = {en} } @inproceedings{AlexopoulosKluczkaVaessenetal.2012, author = {Alexopoulos, Spiros and Kluczka, Sven and Vaeßen, Christiane and Roeb, M. and Neises, M.}, title = {Scenario development for efficient methanol production using CO2 and solar energy}, series = {Eurosun 2012 : Solar energy for a brighter future : conference proceedings : Rijeka, 18.-22.09.2012}, booktitle = {Eurosun 2012 : Solar energy for a brighter future : conference proceedings : Rijeka, 18.-22.09.2012}, address = {Rijeka}, pages = {ID 99}, year = {2012}, language = {en} } @inproceedings{AlexopoulosRauHoffschmidtetal.2012, author = {Alexopoulos, Spiros and Rau, Christoph and Hoffschmidt, Bernhard and Breitbach, Gerd and Latzke, Markus}, title = {Modelling and validation of a transient heat recovery steam generator of the solar tower power plant Juelich}, series = {Eurosun 2012 : Solar energy for a brighter future : conference proceedings : Rijeka, 18.-22.09.2012}, booktitle = {Eurosun 2012 : Solar energy for a brighter future : conference proceedings : Rijeka, 18.-22.09.2012}, address = {Rijeka}, pages = {ID 97}, year = {2012}, language = {en} } @inproceedings{AnthrakidisHerrmannSchornetal.2015, author = {Anthrakidis, Anette and Herrmann, Ulf and Schorn, Christian and Schwarzer, Klemens and Wedding, Philipp and Weis, Fabian}, title = {Development and Testing of a Novel Method for the Determination of the Efficiency of Concentrating Solar Thermal Collectors}, series = {Conference Proceedings Solar World Congress 2015, Daegu, Korea, 08 - 12 November 2015}, booktitle = {Conference Proceedings Solar World Congress 2015, Daegu, Korea, 08 - 12 November 2015}, pages = {9 Seiten}, year = {2015}, language = {en} } @inproceedings{AnthrakidisRusackSchwarzer2010, author = {Anthrakidis, Anette and Rusack, Markus and Schwarzer, Klemens}, title = {Low effort measurement method of PTC-efficiency}, series = {SolarPACES 2010 : the CSP conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, booktitle = {SolarPACES 2010 : the CSP conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, publisher = {Soc. OSC}, address = {Saint Maur}, pages = {48 -- 49}, year = {2010}, language = {en} } @inproceedings{AringhoffGeyerHerrmannetal.2002, author = {Aringhoff, R. and Geyer, Michael and Herrmann, Ulf and Kistner, Rainer and Nava, P. and Osuna, R.}, title = {AndaSol : 50MW Solar Plants with 9 Hour Storage for Southern Spain}, series = {Proceedings of the 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies : September 4 - 6, 2002, Zurich, Switzerland / Paul Scherrer Institut, PSI; ETH, Eidgen{\"o}ssische Technische Hochschule Z{\"u}rich}, booktitle = {Proceedings of the 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies : September 4 - 6, 2002, Zurich, Switzerland / Paul Scherrer Institut, PSI; ETH, Eidgen{\"o}ssische Technische Hochschule Z{\"u}rich}, editor = {Steinfeld, Aldo}, publisher = {Paul Scherrer Inst.}, address = {Villingen}, isbn = {3-9521409-3-7}, pages = {37 -- 42}, year = {2002}, language = {en} } @book{BansalKleemannMeliss1990, author = {Bansal, Narenda K. and Kleemann, Manfred and Meliß, Michael}, title = {Renewable energy sources and conversion technology}, publisher = {Tata McGraw-Hill}, address = {New Delhi [u.a.]}, isbn = {0-07-460023-0}, pages = {XI, 454 S. Ill., graph. Darst.}, year = {1990}, language = {en} } @inproceedings{BaumannTeixeiraBouraGoettscheetal.2010, author = {Baumann, T. and Teixeira Boura, Cristiano Jos{\´e} and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and O'Connell, B. and Schmitz, S. and Zunft, S.}, title = {Air/Sand heat exchanger design and materials for solar thermal power plant applications}, series = {SolarPACES 2010 : the CSP Conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, booktitle = {SolarPACES 2010 : the CSP Conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, publisher = {Soc. OSC}, address = {Saint Maur}, pages = {146 -- 147}, year = {2010}, language = {en} } @inproceedings{BaumannTeixeiraBouraEcksteinetal.2012, author = {Baumann, Torsten and Teixeira Boura, Cristiano Jos{\´e} and Eckstein, Julian and Dabrowski, Jan and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, Stefan and Zunft, Stefan}, title = {Properties of bulk materials for high-temperature air-sand heat exchangers}, series = {30th ISES Biennial Solar World Congress 2011 : Kassel, Germany, 28 August - 2 September 2011. Vol. 2}, booktitle = {30th ISES Biennial Solar World Congress 2011 : Kassel, Germany, 28 August - 2 September 2011. Vol. 2}, publisher = {Curran}, address = {Red Hook, NY}, organization = {International Solar Energy Society}, isbn = {978-1-61839-364-7}, pages = {1270 -- 1278}, year = {2012}, language = {en} } @inproceedings{BaumannTeixeiraBouraGoettscheetal.2011, author = {Baumann, Torsten and Teixeira Boura, Cristiano Jos{\´e} and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, Stefan and Zunft, Stefan}, title = {Air-sand heat exchanger: materials and flow properties}, series = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, booktitle = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, address = {Granada}, pages = {1 CD-ROM}, year = {2011}, language = {en} } @inproceedings{BeckmoellerWoltersBreitbachetal.1995, author = {Beckm{\"o}ller, S. and Wolters, J. and Breitbach, Gerd and Penkalla, H. J. and Schubert, F.}, title = {Microstructural dependent constitutive equation for inelastic analysis of internally cooled IN 738 LC turbine blades}, series = {Materials for advanced power engineering 1994 : proceedings of a conference held in Liege, Belgium, 3 - 6 Oct. 1994}, booktitle = {Materials for advanced power engineering 1994 : proceedings of a conference held in Liege, Belgium, 3 - 6 Oct. 1994}, publisher = {Kluwer}, address = {Dordrecht}, isbn = {0792330749}, pages = {829 -- 839}, year = {1995}, language = {en} } @inproceedings{BlankeDringVonteinetal.2018, author = {Blanke, Tobias and Dring, Bernd and Vontein, Marius and Kuhnhenne, Markus}, title = {Climate Change Mitigation Potentials of Vertical Building Integrated Photovoltaic}, series = {8th International Workshop on Integration of Solar Power into Power Systems : 16-17 October 2018, Stockholm, Sweden}, booktitle = {8th International Workshop on Integration of Solar Power into Power Systems : 16-17 October 2018, Stockholm, Sweden}, pages = {1 -- 7}, year = {2018}, language = {en} } @inproceedings{BlankeSchmidtGoettscheetal.2022, author = {Blanke, Tobias and Schmidt, Katharina S. and G{\"o}ttsche, Joachim and D{\"o}ring, Bernd and Frisch, J{\´e}r{\^o}me and van Treeck, Christoph}, title = {Time series aggregation for energy system design: review and extension of modelling seasonal storages}, series = {Energy Informatics}, volume = {5}, booktitle = {Energy Informatics}, number = {1, Article number: 17}, editor = {Weidlich, Anke and Neumann, Dirk and Gust, Gunther and Staudt, Philipp and Sch{\"a}fer, Mirko}, publisher = {Springer Nature}, issn = {2520-8942}, doi = {10.1186/s42162-022-00208-5}, pages = {1 -- 14}, year = {2022}, abstract = {Using optimization to design a renewable energy system has become a computationally demanding task as the high temporal fluctuations of demand and supply arise within the considered time series. The aggregation of typical operation periods has become a popular method to reduce effort. These operation periods are modelled independently and cannot interact in most cases. Consequently, seasonal storage is not reproducible. This inability can lead to a significant error, especially for energy systems with a high share of fluctuating renewable energy. The previous paper, "Time series aggregation for energy system design: Modeling seasonal storage", has developed a seasonal storage model to address this issue. Simultaneously, the paper "Optimal design of multi-energy systems with seasonal storage" has developed a different approach. This paper aims to review these models and extend the first model. The extension is a mathematical reformulation to decrease the number of variables and constraints. Furthermore, it aims to reduce the calculation time while achieving the same results.}, language = {en} } @inproceedings{BreitbachAlexopoulosHoffschmidt2007, author = {Breitbach, Gerd and Alexopoulos, Spiros and Hoffschmidt, Bernhard}, title = {Fluid flow in porous ceramic multichannel crossflower filter modules}, publisher = {COMSOL Inc.}, address = {Burlington, Mass.}, pages = {5 S.}, year = {2007}, language = {en} } @inproceedings{BreitbachAlexopoulosMayetal.2019, author = {Breitbach, Gerd and Alexopoulos, Spiros and May, Martin and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Analysis of volumetric solar radiation absorbers made of wire meshes}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, issn = {0094243X}, doi = {10.1063/1.5117521}, pages = {030009-1 -- 030009-6}, year = {2019}, language = {en} } @inproceedings{BuckWurmhoeringerLehleetal.2010, author = {Buck, R. and Wurmh{\"o}ringer, K. and Lehle, R. and Pfahl, A. and G{\"o}ttsche, Joachim and Meyr, T.}, title = {Development of a 30m2 heliostat with hydraulic drive}, series = {SolarPACES 2010 : the CSP Conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, booktitle = {SolarPACES 2010 : the CSP Conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, publisher = {Soc. OSC}, address = {Saint Maur}, pages = {74 -- 75}, year = {2010}, language = {en} } @inproceedings{CaminosSchmitzAttietal.2022, author = {Caminos, Ricardo Alexander Chico and Schmitz, Pascal and Atti, Vikrama and Mahdi, Zahra and Teixeira Boura, Cristiano Jos{\´e} and Sattler, Johannes Christoph and Herrmann, Ulf and Hilger, Patrick and Dieckmann, Simon}, title = {Development of a micro heliostat and optical qualification assessment with a 3D laser scanning method}, series = {SOLARPACES 2020}, booktitle = {SOLARPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086262}, pages = {8 Seiten}, year = {2022}, abstract = {The Solar-Institut J{\"u}lich (SIJ) and the companies Hilger GmbH and Heliokon GmbH from Germany have developed a small-scale cost-effective heliostat, called "micro heliostat". Micro heliostats can be deployed in small-scale concentrated solar power (CSP) plants to concentrate the sun's radiation for electricity generation, space or domestic water heating or industrial process heat. In contrast to conventional heliostats, the special feature of a micro heliostat is that it consists of dozens of parallel-moving, interconnected, rotatable mirror facets. The mirror facets array is fixed inside a box-shaped module and is protected from weathering and wind forces by a transparent glass cover. The choice of the building materials for the box, tracking mechanism and mirrors is largely dependent on the selected production process and the intended application of the micro heliostat. Special attention was paid to the material of the tracking mechanism as this has a direct influence on the accuracy of the micro heliostat. The choice of materials for the mirror support structure and the tracking mechanism is made in favor of plastic molded parts. A qualification assessment method has been developed by the SIJ in which a 3D laser scanner is used in combination with a coordinate measuring machine (CMM). For the validation of this assessment method, a single mirror facet was scanned and the slope deviation was computed.}, language = {en} } @article{DammSauerbornFendetal.2017, author = {Damm, Marc Andr{\´e} and Sauerborn, Markus and Fend, Thomas and Herrmann, Ulf}, title = {Optimisation of a urea selective catalytic reduction system with a coated ceramic mixing element}, series = {Journal of ceramic science and technology}, volume = {8}, journal = {Journal of ceramic science and technology}, number = {1}, publisher = {G{\"o}ller}, address = {Baden-Baden}, isbn = {2190-9385 (Print)}, issn = {2190-9385 (Online)}, doi = {10.4416/JCST2016-00056}, pages = {19 -- 24}, year = {2017}, language = {en} } @article{DerschGeyerHerrmannetal.2004, author = {Dersch, J{\"u}rgen and Geyer, Michael and Herrmann, Ulf and Jones, Scott A. and Kelly, Bruce and Kistner, Rainer and Ortmanns, Winfried and Pitz-Paal, Robert and Price, Henry}, title = {Trough integration into power plants—a study on the performance and economy of integrated solar combined cycle systems}, series = {Energy : the international journal}, volume = {29}, journal = {Energy : the international journal}, number = {5-6 (Special Issue SolarPaces)}, issn = {0360-5442}, doi = {10.1016/S0360-5442(03)00199-3}, pages = {947 -- 959}, year = {2004}, language = {en} } @inproceedings{DerschGeyerHerrmannetal.2002, author = {Dersch, J{\"u}rgen and Geyer, Michael and Herrmann, Ulf and Jones, Scott A. and Kelly, Bruce and Kistner, Rainer and Ortmanns, Winfried and Pitz-Paal, Robert and Price, Henry}, title = {Trough integration into power plants : a study on the performance and economy of integrated solar combined cycle systems}, series = {Proceedings of the 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies : September 4 - 6, 2002, Zurich, Switzerland / Paul Scherrer Institut, PSI; ETH, Eidgen{\"o}ssische Technische Hochschule Z{\"u}rich}, booktitle = {Proceedings of the 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies : September 4 - 6, 2002, Zurich, Switzerland / Paul Scherrer Institut, PSI; ETH, Eidgen{\"o}ssische Technische Hochschule Z{\"u}rich}, editor = {Steinfeld, Aldo}, publisher = {Paul Scherrer Inst.}, address = {Villingen}, isbn = {3-9521409-3-7}, pages = {661 -- 671}, year = {2002}, language = {en} } @inproceedings{DerschGeyerHerrmannetal.2002, author = {Dersch, J{\"u}rgen and Geyer, Michael and Herrmann, Ulf and Jones, Scott A. and Kelly, Bruce and Kistner, Rainer and Ortmanns, Winfried and Pitz-Paal, Robert and Price, Henry}, title = {Solar Trough Integration Into Combined Cycle Systems}, series = {Solar engineering 2002 : proceedings of the International Solar Energy Conference ; presented at the 2002 International Solar Energy Conference, a part of Solar 2002 - Sunrise on the Reliable Energy Economy, June 15 - 20, 2002, Reno, Nevada}, booktitle = {Solar engineering 2002 : proceedings of the International Solar Energy Conference ; presented at the 2002 International Solar Energy Conference, a part of Solar 2002 - Sunrise on the Reliable Energy Economy, June 15 - 20, 2002, Reno, Nevada}, editor = {Pearson, J. Boise}, publisher = {ASME}, isbn = {0-7918-1689-3}, doi = {doi:10.1115/SED2002-1072}, pages = {351 -- 359}, year = {2002}, language = {en} } @inproceedings{DuranParedesMottaghyHerrmannetal.2020, author = {Duran Paredes, Ludwin and Mottaghy, Darius and Herrmann, Ulf and Groß, Rolf Fritz}, title = {Online ground temperature and soil moisture monitoring of a shallow geothermal system with non-conventional components}, series = {EGU General Assembly 2020}, booktitle = {EGU General Assembly 2020}, year = {2020}, abstract = {We present first results from a newly developed monitoring station for a closed loop geothermal heat pump test installation at our campus, consisting of helix coils and plate heat exchangers, as well as an ice-store system. There are more than 40 temperature sensors and several soil moisture content sensors distributed around the system, allowing a detailed monitoring under different operating conditions.In the view of the modern development of renewable energies along with the newly concepts known as Internet of Things and Industry 4.0 (high-tech strategy from the German government), we created a user-friendly web application, which will connect the things (sensors) with the open network (www). Besides other advantages, this allows a continuous remote monitoring of the data from the numerous sensors at an arbitrary sampling rate.Based on the recorded data, we will also present first results from numerical simulations, taking into account all relevant heat transport processes.The aim is to improve the understanding of these processes and their influence on the thermal behavior of shallow geothermal systems in the unsaturated zone. This will in turn facilitate the prediction of the performance of these systems and therefore yield an improvement in their dimensioning when designing a specific shallow geothermal installation.}, language = {en} } @inproceedings{ElMoussaouiKassmiAlexopoulosetal.2021, author = {El Moussaoui, Noureddine and Kassmi, Khalil and Alexopoulos, Spiros and Schwarzer, Klemens and Chayeb, Hamid and Bachiri, Najib}, title = {Simulation studies on a new innovative design of a hybrid solar distiller MSDH alimented with a thermal and photovoltaic energy}, series = {Materialstoday: Proceedings}, booktitle = {Materialstoday: Proceedings}, issn = {2214-7853}, doi = {10.1016/j.matpr.2021.03.115}, year = {2021}, language = {en} } @article{ElMoussaouiTalbiAtmaneetal.2020, author = {El Moussaoui, Noureddine and Talbi, Sofian and Atmane, Ilyas and Kassmi, Khalil and Schwarzer, Klemens and Chayeb, Hamid and Bachiri, Najib}, title = {Feasibility of a new design of a Parabolic Trough Solar Thermal Cooker (PSTC)}, series = {Solar Energy}, volume = {201}, journal = {Solar Energy}, number = {Vol. 201 (May 2020)}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0038-092X}, doi = {10.1016/j.solener.2020.03.079}, pages = {866 -- 871}, year = {2020}, abstract = {In this article, we describe the structure, the functioning, and the tests of parabolic trough solar thermal cooker (PSTC). This oven is designed to meet the needs of rural residents, including Urban, which requires stable cooking temperatures above 200 °C. The cooking by this cooker is based on the concentration of the sun's rays on a glass vacuum tube and heating of the oil circulate in a big tube, located inside the glass tube. Through two small tubes, associated with large tube, the heated oil, rise and heats the pot of cooking pot containing the food to be cooked (capacity of 5 kg). This cooker is designed in Germany and extensively tested in Morocco for use by the inhabitants who use wood from forests. During a sunny day, having a maximum solar radiation around 720 W/m2 and temperature ambient around 26 °C, maximum temperatures recorded of the small tube, the large tube and the center of the pot are respectively: 370 °C, 270 °C and 260 °C. The cooking process with food at high (fries, ..), we show that the cooking oil temperature rises to 200 °C, after 1 h of heating, the cooking is done at a temperature of 120 °C for 20 min. These temperatures are practically stable following variations and decreases in the intensity of irradiance during the day. The comparison of these results with those of the literature shows an improvement of 30-50 \% on the maximum value of the temperature with a heat storage that could reach 60 min of autonomy. All the results obtained show the good functioning of the PSTC and the feasibility of cooking food at high temperature (>200 °C).}, language = {en} } @inproceedings{FendHoffschmidtReutteretal.2006, author = {Fend, Thomas and Hoffschmidt, Bernhard and Reutter, Oliver and Sauerhering, J{\"o}rg and Pitz-Paal, Robert}, title = {Gas flow in hot porous materials: the solar air receiver and spin-off applications}, series = {Proceedings of the 4th Nanochannels, Microchannels and Minichannels - 2006 : presented at 4th Nanochannels, Microchannels and Minichannels, June 19 - 21, 2006, Limerick, Ireland}, booktitle = {Proceedings of the 4th Nanochannels, Microchannels and Minichannels - 2006 : presented at 4th Nanochannels, Microchannels and Minichannels, June 19 - 21, 2006, Limerick, Ireland}, publisher = {ASME}, address = {New York, NY}, organization = {International Conference on Nanochannels, Microchannels and Minichannels <4, 2006, Limerick>}, isbn = {0-7918-4760-8}, pages = {507 -- 514}, year = {2006}, language = {en} } @inproceedings{FrantzBinderBuschetal.2020, author = {Frantz, Cathy and Binder, Matthias and Busch, Konrad and Ebert, Miriam and Heinrich, Andreas and Kaczmarkiewicz, Nadine and Schl{\"o}gl-Knothe, B{\"a}rbel and Kunze, Tobias and Schuhbauer, Christian and Stetka, Markus and Schwager, Christian and Spiegel, Michael and Teixeira Boura, Cristiano Jos{\´e} and Bauer, Thomas and Bonk, Alexander and Eisen, Stefan and Funck, Bernhard}, title = {Basic Engineering of a High Performance Molten Salt Tower Receiver System}, series = {Solar Paces 2020}, booktitle = {Solar Paces 2020}, pages = {1 -- 10}, year = {2020}, language = {en} } @inproceedings{FrickeHoffschmidt2010, author = {Fricke, Barbara and Hoffschmidt, Bernhard}, title = {Ecobalance of a solar thermal tower power plant with volumetric receiver}, series = {SolarPACES 2010 : the CSP Conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, booktitle = {SolarPACES 2010 : the CSP Conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, publisher = {Soc. OSC}, address = {Saint Maur}, pages = {87 -- 88}, year = {2010}, language = {en} } @inproceedings{FrickeZiolkoAnthrakidisetal.2011, author = {Fricke, Barbara and Ziolko, C. and Anthrakidis, Anette and Alexopoulos, Spiros and Hoffschmidt, Bernhard and Dillig, M. and Giese, F.}, title = {InnoSol - life cycle analysis of solar power tower plants}, series = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, booktitle = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, address = {Granada}, pages = {1 CD-ROM}, year = {2011}, language = {en} } @inproceedings{FrickeZiolkoAnthrakidisetal.2012, author = {Fricke, Barbara and Ziolko, C. and Anthrakidis, Anette and Alexopoulos, Spiros and Hoffschmidt, Bernhard and Giese, F. and Dillig, M.}, title = {InnoSol - environmental aspects of the open volumetric receiver technology}, series = {30th ISES Biennial Solar World Congress 2011 : : Kassel, Germany, 28 August - 2 September 2011. Vol. 5}, booktitle = {30th ISES Biennial Solar World Congress 2011 : : Kassel, Germany, 28 August - 2 September 2011. Vol. 5}, publisher = {Curran}, address = {Red Hook, NY}, organization = {International Solar Energy Society}, pages = {3895 -- 3900}, year = {2012}, language = {en} } @inproceedings{GallAbelAhlbrinketal.2009, author = {Gall, J. and Abel, D. and Ahlbrink, N. and Andersson, J. and Diehl, M. and Pitz-Paal, R. and Schmitz, M. and Teixeira Boura, Cristiano Jos{\´e}}, title = {Optimized control of hot-gas cycle for solar thermal power plants}, series = {Proceedings of the 7th International Modelica Conference : Como, Italy, 20-22 September 2009 / Francesco Casella, ed.}, booktitle = {Proceedings of the 7th International Modelica Conference : Como, Italy, 20-22 September 2009 / Francesco Casella, ed.}, publisher = {The Modelica Association}, isbn = {978-91-7393-513-5}, pages = {490 -- 495}, year = {2009}, language = {en} } @inproceedings{GallAbelAhlbrinketal.2010, author = {Gall, J. and Abel, Dirk and Ahlbrink, N. and Pitz-Paal, R. and Andersson, J. and Diehl, M. and Teixeira Boura, Cristiano Jos{\´e} and Schmitz, M. and Hoffschmidt, Bernhard}, title = {Simulation and control of solar thermal power plants}, series = {International Conference on Renewable Energies and Power Quality : ICREPQ '10 : Granada 23rd - 25th March 2010}, booktitle = {International Conference on Renewable Energies and Power Quality : ICREPQ '10 : Granada 23rd - 25th March 2010}, pages = {1 -- 5}, year = {2010}, language = {en} } @inproceedings{GedleSchmitzGielenetal.2022, author = {Gedle, Yibekal and Schmitz, Mark and Gielen, Hans and Schmitz, Pascal and Herrmann, Ulf and Teixeira Boura, Cristiano Jos{\´e} and Mahdi, Zahra and Caminos, Ricardo Alexander Chico and Dersch, J{\"u}rgen}, title = {Analysis of an integrated CSP-PV hybrid power plant}, series = {SolarPACES 2020}, booktitle = {SolarPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086236}, pages = {9 Seiten}, year = {2022}, abstract = {In the past, CSP and PV have been seen as competing technologies. Despite massive reductions in the electricity generation costs of CSP plants, PV power generation is - at least during sunshine hours - significantly cheaper. If electricity is required not only during the daytime, but around the clock, CSP with its inherent thermal energy storage gets an advantage in terms of LEC. There are a few examples of projects in which CSP plants and PV plants have been co-located, meaning that they feed into the same grid connection point and ideally optimize their operation strategy to yield an overall benefit. In the past eight years, TSK Flagsol has developed a plant concept, which merges both solar technologies into one highly Integrated CSP-PV-Hybrid (ICPH) power plant. Here, unlike in simply co-located concepts, as analyzed e.g. in [1] - [4], excess PV power that would have to be dumped is used in electric molten salt heaters to increase the storage temperature, improving storage and conversion efficiency. The authors demonstrate the electricity cost sensitivity to subsystem sizing for various market scenarios, and compare the resulting optimized ICPH plants with co-located hybrid plants. Independent of the three feed-in tariffs that have been assumed, the ICPH plant shows an electricity cost advantage of almost 20\% while maintaining a high degree of flexibility in power dispatch as it is characteristic for CSP power plants. As all components of such an innovative concept are well proven, the system is ready for commercial market implementation. A first project is already contracted and in early engineering execution.}, language = {en} } @inproceedings{GorzalkaDahlkeGoettscheetal.2018, author = {Gorzalka, Philip and Dahlke, Dennis and G{\"o}ttsche, Joachim and Israel, Martin and Patel, Dhruvkumar and Prahl, Christoph and Schmiedt, Jacob Estevam and Frommholz, Dirk and Hoffschmidt, Bernhard and Linkiewicz, Magdalena}, title = {Building Tomograph-From Remote Sensing Data of Existing Buildings to Building Energy Simulation Input}, series = {EBC, Annex 71, Fifth expert meeting, October 17-19, 2018, Innsbruck, Austria}, booktitle = {EBC, Annex 71, Fifth expert meeting, October 17-19, 2018, Innsbruck, Austria}, pages = {17 Seiten}, year = {2018}, language = {en} } @article{GorzalkaSchmiedtSchorn2021, author = {Gorzalka, Philip and Schmiedt, Jacob Estevam and Schorn, Christian}, title = {Automated Generation of an Energy Simulation Model for an Existing Building from UAV Imagery}, series = {Buildings}, volume = {11}, journal = {Buildings}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2075-5309}, doi = {10.3390/buildings11090380}, pages = {15 Seiten}, year = {2021}, abstract = {An approach to automatically generate a dynamic energy simulation model in Modelica for a single existing building is presented. It aims at collecting data about the status quo in the preparation of energy retrofits with low effort and costs. The proposed method starts from a polygon model of the outer building envelope obtained from photogrammetrically generated point clouds. The open-source tools TEASER and AixLib are used for data enrichment and model generation. A case study was conducted on a single-family house. The resulting model can accurately reproduce the internal air temperatures during synthetical heating up and cooling down. Modelled and measured whole building heat transfer coefficients (HTC) agree within a 12\% range. A sensitivity analysis emphasises the importance of accurate window characterisations and justifies the use of a very simplified interior geometry. Uncertainties arising from the use of archetype U-values are estimated by comparing different typologies, with best- and worst-case estimates showing differences in pre-retrofit heat demand of about ±20\% to the average; however, as the assumptions made are permitted by some national standards, the method is already close to practical applicability and opens up a path to quickly estimate possible financial and energy savings after refurbishment.}, language = {en} } @incollection{GrossHeckenRenz1999, author = {Groß, Rolf Fritz and Hecken, M. and Renz, Ulrich}, title = {Hot gas filtration with ceramic filter candles: experimental and numerical investigations on fluid flow during element cleaning}, series = {High temperature gas cleaning. Vol. 2}, booktitle = {High temperature gas cleaning. Vol. 2}, editor = {Dittler, A. and Hemmer, G. and Kasper, G.}, publisher = {KIT Institut f{\"u}r Mechanische Verfahrenstechnik und Mechanik}, address = {Karlsruhe}, isbn = {3-9805220-1-6}, pages = {862 -- 873}, year = {1999}, abstract = {Ceramic hot gas filters are widely used in combined cycles based on pressurised fluidised beds. They fulfil most of the demands with respect to cleaning efficiency and long time durability, but their operation regarding the consumption of pulse gas and energy still has to be optimised. Experimental investigations were carried out to measure the flow field, the pressure and the gas temperature inside the filter candle during pulse jet cleaning. These results are compared with the results of a numerical procedure based on a solution of the two - dimensional conservation equations for momentum and energy. The observed difficulties handling different flow regimes like highly turbulent flow as well as Darcy flow simultaneously are discussed.}, language = {en} } @article{Goettsche1994, author = {G{\"o}ttsche, Joachim}, title = {Eldorado summer schools}, series = {Progress in solar energy education. 3 (1994)}, journal = {Progress in solar energy education. 3 (1994)}, isbn = {1018-5607}, pages = {31 -- 33}, year = {1994}, language = {en} } @article{GoettscheAlexopoulosDuemmleretal.2019, author = {G{\"o}ttsche, Joachim and Alexopoulos, Spiros and D{\"u}mmler, Andreas and Maddineni, S. K.}, title = {Multi-Mirror Array Calculations With Optical Error}, pages = {1 -- 6}, year = {2019}, abstract = {The optical performance of a 2-axis solar concentrator was simulated with the COMSOL Multiphysics® software. The concentrator consists of a mirror array, which was created using the application builder. The mirror facets are preconfigured to form a focal point. During tracking all mirrors are moved simultaneously in a coupled mode by 2 motors in two axes, in order to keep the system in focus with the moving sun. Optical errors on each reflecting surface were implemented in combination with the solar angular cone of ± 4.65 mrad. As a result, the intercept factor of solar radiation that is available to the receiver was calculated as a function of the transversal and longitudinal angles of incidence. In addition, the intensity distribution on the receiver plane was calculated as a function of the incidence angles.}, language = {en} } @article{GoettscheGabryschDelahayeetal.2002, author = {G{\"o}ttsche, Joachim and Gabrysch, K. and Delahaye, A. and Schwarzer, Klemens}, title = {Solar-Campus Juelich - Energy performance and indoor climate}, series = {AIVC 23rd conference - EPIC 2002 AIVC (in conjunction with 3rd European Conference on Energy Performance and Indoor Climate in Buildings) - 23-26 October 2002 - Lyon - France - vol 2}, journal = {AIVC 23rd conference - EPIC 2002 AIVC (in conjunction with 3rd European Conference on Energy Performance and Indoor Climate in Buildings) - 23-26 October 2002 - Lyon - France - vol 2}, pages = {381 -- 386}, year = {2002}, language = {en} } @article{GoettscheGabryschSchilleretal.2004, author = {G{\"o}ttsche, Joachim and Gabrysch, K. and Schiller, H. and Kauert, B. and Schwarzer, Klemens}, title = {Energetic Effects of demand - controlled ventilation retrofitting in a biochemical laboratory building}, series = {AIVC publications [Elektronische Ressource] / Air Infiltration and Ventilation Centre}, journal = {AIVC publications [Elektronische Ressource] / Air Infiltration and Ventilation Centre}, publisher = {INIVE EEIG}, address = {Brussels}, pages = {50}, year = {2004}, language = {en} } @article{GoettscheGoetzbergerDengleretal.1992, author = {G{\"o}ttsche, Joachim and Goetzberger, Adolf and Dengler, J. and Rommel, M. (u.a.)}, title = {A new transparently insulated, bifacially irradiated solar flat-plate collector / A. Goetzberger ; J. Dengler ; M. Rommel ; J. G{\"o}ttsche ; V. Wittwer}, series = {Solar energy. 49 (1992), H. 5}, journal = {Solar energy. 49 (1992), H. 5}, isbn = {0038-092X}, pages = {403 -- 411}, year = {1992}, language = {en} } @article{GoettscheHinschWittwer1993, author = {G{\"o}ttsche, Joachim and Hinsch, Andreas and Wittwer, Volker}, title = {Electrochromic mixed WO3-TiO2 thin films produced by sputtering and the sol-gel technique : a comparison / J. G{\"o}ttsche ; A. Hinsch ; V. Wittwer}, series = {Solar Energy Materials and Solar Cells. 31 (1993), H. 3}, journal = {Solar Energy Materials and Solar Cells. 31 (1993), H. 3}, isbn = {0927-0248}, pages = {415 -- 428}, year = {1993}, language = {en} } @article{GoettscheHoffschmidtAlexopoulosetal.2008, author = {G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Alexopoulos, Spiros and Funke, J. and Schwarzb{\"o}zl, P.}, title = {First Simulation Results for the Hybridization of Small Solar Power Tower Plants}, series = {EuroSun 2008 : 1st International Conference on Solar Heating, Cooling and Buildings, 2008-10-07 - 2008-10-10, Lissabon (Portugal). Vol. 1}, journal = {EuroSun 2008 : 1st International Conference on Solar Heating, Cooling and Buildings, 2008-10-07 - 2008-10-10, Lissabon (Portugal). Vol. 1}, publisher = {Sociedade Portuguesa De Energia Solar (SPES)}, address = {Lisbon}, isbn = {978-1-61782-228-5}, pages = {1299 -- 1306}, year = {2008}, language = {en} } @inproceedings{GoettscheHoffschmidtSchmitzetal.2008, author = {G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, S. and Sauerborn, Markus and Rebholz, C. and Iffland, D. and Badst{\"u}bner, R. and Buck, R. and Teufel, E.}, title = {Test of a mini-mirror array for solar concentrating systems}, series = {EuroSun 2008 : 1st International Conference on Solar Heating, Cooling and Buildings ; 7th - 10th October 2008, Lisbon, Portugal : key lectures / ISES, International Solar Energy Society. Vol. 1}, booktitle = {EuroSun 2008 : 1st International Conference on Solar Heating, Cooling and Buildings ; 7th - 10th October 2008, Lisbon, Portugal : key lectures / ISES, International Solar Energy Society. Vol. 1}, publisher = {Sociedade Portuguesa De Energia Solar (SPES)}, address = {Lissabon}, isbn = {978-1-61782-228-5}, pages = {1242 -- 1250}, year = {2008}, language = {en} } @article{GoettscheHoffschmidtSchmitzetal.2009, author = {G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, Stefan and Sauerborn, Markus}, title = {Solar Concentrating Systems Using Small Mirror Arrays / G{\"o}ttsche, Joachim ; Hoffschmidt, Bernhard ; Schmitz, Stefan ; Sauerborn, Markus ; Buck, Reiner ; Teufel, Edgar ; Badst{\"u}bner, Karin ; Ifland, David ; Rebholz, Christian}, series = {Proceedings of the 2nd International Conference on Energy Sustainability - 2008 : : presented ... August 10 - 14, 2008, Jacksonville, Florida, USA / sponsored by Advanced Energy Systems Division, ASME; Solar Energy Division, ASME}, journal = {Proceedings of the 2nd International Conference on Energy Sustainability - 2008 : : presented ... August 10 - 14, 2008, Jacksonville, Florida, USA / sponsored by Advanced Energy Systems Division, ASME; Solar Energy Division, ASME}, publisher = {ASME}, address = {New York, NY}, isbn = {9780791843208}, pages = {1 -- 5}, year = {2009}, language = {en} } @article{GoettscheHoffschmidtSchmitzetal.2010, author = {G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, Stefan and Sauerborn, Markus}, title = {Solar Concentrating Systems Using Small Mirror Arrays}, series = {Journal of solar energy engineering}, volume = {Vol. 132}, journal = {Journal of solar energy engineering}, number = {Iss. 1}, isbn = {0199-6231}, pages = {4 S.}, year = {2010}, language = {en} } @article{GoettscheHove1999, author = {G{\"o}ttsche, Joachim and Hove, T.}, title = {Mapping global, diffuse and beam solar radiation over Zimbabwe / T. Hove ; J. G{\"o}ttsche}, series = {Renewable energy. 18 (1999), H. 4}, journal = {Renewable energy. 18 (1999), H. 4}, isbn = {1879-0682}, pages = {535 -- 556}, year = {1999}, language = {en} } @article{GoettscheReillyWittwer1991, author = {G{\"o}ttsche, Joachim and Reilly, S. and Wittwer, Volker}, title = {Advanced window systems and building energy performance / S. Reilly ; J. G{\"o}ttsche ; V. Wittwer}, series = {Solar World Congress, 1991 : proceedings of the biennial congress of the International Solar Energy Society, Denver, Colorado, USA, 19-23 August 1991 / ed. by M. E. Arden ...}, journal = {Solar World Congress, 1991 : proceedings of the biennial congress of the International Solar Energy Society, Denver, Colorado, USA, 19-23 August 1991 / ed. by M. E. Arden ...}, publisher = {Pergamon Press}, address = {Oxford [u.a.]}, isbn = {0-08-041690-X}, pages = {3211 -- 3216}, year = {1991}, language = {en} } @article{GoettscheSchwarzerRoetheretal.2009, author = {G{\"o}ttsche, Joachim and Schwarzer, Klemens and R{\"o}ther, S. and Jellinghaus, Sabine}, title = {Efficient daylighting, heating and shading with rooflight heliostats}, series = {Conference Internationale Energie Solaire et Batiment}, journal = {Conference Internationale Energie Solaire et Batiment}, publisher = {EPFL}, address = {Lausanne}, pages = {243 -- 248}, year = {2009}, language = {en} } @inproceedings{GoettscheSchwarzerRoetheretal.2009, author = {G{\"o}ttsche, Joachim and Schwarzer, Klemens and R{\"o}ther, Sascha and Jellinghaus, Sabine and Helten, G. and Wittmann, R.}, title = {Efficient daylighting, heating and shading with rooflight heliostats}, series = {Renewables in a changing climate : from Nano to Urban Scale : CISBAT 2009 : 2-3 September 2009, EPFL, Lausanne, Switzerland : proceedings}, booktitle = {Renewables in a changing climate : from Nano to Urban Scale : CISBAT 2009 : 2-3 September 2009, EPFL, Lausanne, Switzerland : proceedings}, publisher = {Ecole Polytechnique F{\´e}d{\´e}rale de Lausanne}, address = {Lausanne}, pages = {243 -- 246}, year = {2009}, language = {en} } @inproceedings{HahneHerrmannRheinlaender1997, author = {Hahne, E. and Herrmann, Ulf and Rheinl{\"a}nder, J.}, title = {The Effect of Tilt on Flow Pattern of Water/Steam Flow Through Heated Tubes}, series = {Experimental heat transfer, fluid mechanics and thermodynamics 1997 : proceedings of the 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Brussels, June 2 - 6, 1997. - Vol. 2}, booktitle = {Experimental heat transfer, fluid mechanics and thermodynamics 1997 : proceedings of the 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Brussels, June 2 - 6, 1997. - Vol. 2}, editor = {Girot, Michel}, publisher = {Ed. ETS}, address = {Pisa}, isbn = {88-467-0014-7}, pages = {925 -- 934}, year = {1997}, language = {en} } @article{HenneckeSchwarzboezlHoffschmidtetal.2007, author = {Hennecke, Klaus and Schwarzb{\"o}zl, Peter and Hoffschmidt, Bernhard and G{\"o}ttsche, Joachim and Koll, G. and Beuter, M. and Hartz, T.}, title = {The solar power tower J{\"u}lich - a solar thermal power plant for test and demonstration of air receiver}, series = {Solar energy and human settlement : Elektronische Ressource : proceedings of ISES world congress 2007 ; (Vol. I - Vol. V) / [ISES Solar World Congress. ISES, International Solar Energy Society]. D. Yogi Goswami ; Yuwen Zhao}, journal = {Solar energy and human settlement : Elektronische Ressource : proceedings of ISES world congress 2007 ; (Vol. I - Vol. V) / [ISES Solar World Congress. ISES, International Solar Energy Society]. D. Yogi Goswami ; Yuwen Zhao}, publisher = {Tsinghua Univ. Press}, address = {Beijing}, isbn = {978-7-302-16146-2}, pages = {1749 -- 1753}, year = {2007}, language = {en} } @inproceedings{HerrmannGraeterNava2004, author = {Herrmann, Ulf and Graeter, F. and Nava, P.}, title = {Performance of the SKAL-ET Collector Loop at KJC Operating Company}, series = {12th International Symposium Solar Power and Chemical Energy Systems, October 6-8, 2004, Oaxaca Mexico ; SolarPACES International Symposium, 12}, booktitle = {12th International Symposium Solar Power and Chemical Energy Systems, October 6-8, 2004, Oaxaca Mexico ; SolarPACES International Symposium, 12}, editor = {Ramos, C.}, publisher = {Instituto de Investigaciones Electricas}, address = {[s.l.]}, isbn = {968-6114-18-1}, year = {2004}, language = {en} } @incollection{HerrmannKearneyRoegeretal.2017, author = {Herrmann, Ulf and Kearney, D. and R{\"o}ger, M. and Prahl, C.}, title = {System performance measurements}, series = {The Performance of Concentrated Solar Power (CSP) Systems : Modelling, Measurement and Assessment}, booktitle = {The Performance of Concentrated Solar Power (CSP) Systems : Modelling, Measurement and Assessment}, publisher = {Woodhead Publishing}, address = {Duxford}, isbn = {978-0-08-100448-7}, doi = {https://doi.org/10.1016/B978-0-08-100447-0.00005-5}, pages = {115 -- 165}, year = {2017}, abstract = {This chapter introduces performance and acceptance testing and describes state-of-the-art tools, methods, and instruments to assess the plant performance or realize plant acceptance testing. The status of the development of standards for performance assessment is given.}, language = {en} } @article{HerrmannKearney2002, author = {Herrmann, Ulf and Kearney, David W.}, title = {Survey of Thermal Energy Storage for Parabolic Trough Power Plants}, series = {Journal of Solar Energy Engineering}, volume = {124}, journal = {Journal of Solar Energy Engineering}, number = {2}, issn = {1528-8986 (Online)}, doi = {10.1115/1.1467601}, pages = {145 -- 152}, year = {2002}, language = {en} } @article{HerrmannKellyPrice2002, author = {Herrmann, Ulf and Kelly, Bruce and Price, Henry}, title = {Two Tank Molten Salt Storage for Parabolic Trough Solar Power Plants}, series = {Energy : the international journal}, volume = {29}, journal = {Energy : the international journal}, number = {5-6 (Special Issue SolarPaces)}, issn = {0360-5442}, doi = {10.1016/S0360-5442(03)00193-2}, pages = {883 -- 893}, year = {2002}, language = {en} } @inproceedings{HerrmannKellyPrice2002, author = {Herrmann, Ulf and Kelly, Bruce and Price, Henry}, title = {Two Tank Molten Salt Storage for Parabolic Trough Solar Power Plants}, series = {Proceedings of the 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies : September 4 - 6, 2002, Zurich, Switzerland / Paul Scherrer Institut, PSI; ETH, Eidgen{\"o}ssische Technische Hochschule Z{\"u}rich}, booktitle = {Proceedings of the 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies : September 4 - 6, 2002, Zurich, Switzerland / Paul Scherrer Institut, PSI; ETH, Eidgen{\"o}ssische Technische Hochschule Z{\"u}rich}, editor = {Steinfeld, Aldo}, publisher = {Paul Scherrer Inst.}, address = {Villingen}, isbn = {3-9521409-3-7}, pages = {517 -- 524}, year = {2002}, language = {en} } @article{HerrmannLippke1999, author = {Herrmann, Ulf and Lippke, F.}, title = {The influence of transients on the design of DSG solar fields}, series = {Journal de Physique IV : proceedings}, volume = {9}, journal = {Journal de Physique IV : proceedings}, number = {PR3}, isbn = {2-86883-402-7}, issn = {1764-7177 (Online)}, doi = {10.1051/jp4:1999377}, pages = {489 -- 494}, year = {1999}, language = {en} } @inproceedings{HerrmannRheinlaenderLippke1997, author = {Herrmann, Ulf and Rheinl{\"a}nder, J. and Lippke, F.}, title = {Solar Fields for Direct Steam Generation in Parabolic Trough Collectors}, series = {Components, tools, facilities and measurement techniques. - (Solar thermal concentrating technologies : proceedings of the 8th international symposium, October, 6 - 11, 1996, K{\"o}ln, Germany ; Vol. 2)}, booktitle = {Components, tools, facilities and measurement techniques. - (Solar thermal concentrating technologies : proceedings of the 8th international symposium, October, 6 - 11, 1996, K{\"o}ln, Germany ; Vol. 2)}, editor = {Becker, Manfred}, publisher = {M{\"u}ller}, address = {Heidelberg}, isbn = {3-7880-7616-X}, pages = {815 -- 834}, year = {1997}, language = {en} } @inproceedings{HerrmannVorbruggNava2009, author = {Herrmann, Ulf and Vorbrugg, O. and Nava, P.}, title = {Construction and Commissioning Process of the Andasol Solar Field}, series = {SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings}, booktitle = {SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings}, publisher = {Deutsches Zentrum f{\"u}r Luft- u. Raumfahrt}, address = {Stuttgart}, isbn = {978-3-00-028755-8}, pages = {1 CD-ROM}, year = {2009}, language = {en} } @inproceedings{HerrmannWorringerGraeteretal.2006, author = {Herrmann, Ulf and Worringer, S. and Graeter, F. and Nava, P.}, title = {Three Years of Operation Experience of the SKAL-ET Collector Loop at SEGS V}, series = {13th International Symposium Concentrated Solar Power and Chemical Energy Technologies, June 20 - 23, 2006, Seville, Spain}, booktitle = {13th International Symposium Concentrated Solar Power and Chemical Energy Technologies, June 20 - 23, 2006, Seville, Spain}, editor = {Romero, Manuel}, publisher = {SolarPACES [u.a.]}, address = {[s.l.]}, isbn = {84-7834-519-1}, pages = {1 CD-ROM}, year = {2006}, language = {en} } @inproceedings{HirschAbelBohnetal.2009, author = {Hirsch, Tobias and Abel, Dirk and Bohn, Dieter and Diehl, Moritz and Hoffschmidt, Bernhard and Pitz-Paal, Robert}, title = {The Virtual Institute for Central Receiver Power Plants - vICERP}, series = {SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings}, booktitle = {SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings}, publisher = {Deutsches Zentrum f. Luft- u. Raumfahrt}, address = {Stuttgart}, isbn = {9783000287558}, pages = {1 CD-ROM}, year = {2009}, language = {en} } @inproceedings{HirschAhlbrinkPitzPaaletal.2011, author = {Hirsch, Tobias and Ahlbrink, Nils and Pitz-Paal, Robert and Teixeira Boura, Cristiano Jos{\´e} and Hoffschmidt, Bernhard and Gall, Jan and Abel, Dirk and Nolte, Vera and Wirsum, Manfred and Andersson, Joel and Diehl, Moritz}, title = {Dynamic simulation of a solar tower system with open volumetric receiver - a review on the ViCERP project}, series = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, booktitle = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, address = {Granada}, pages = {1 CD-ROM}, year = {2011}, language = {en} } @inproceedings{Hoffschmidt2008, author = {Hoffschmidt, Bernhard}, title = {Solar tower power plants}, series = {DME Seminar Desalination and Renewable Energies : June 19 and 20 2008, Solar Institut J{\"u}lich / Deutsche Meerwasserentsalzung e.V.}, booktitle = {DME Seminar Desalination and Renewable Energies : June 19 and 20 2008, Solar Institut J{\"u}lich / Deutsche Meerwasserentsalzung e.V.}, publisher = {DME}, address = {Duisbrug}, isbn = {978-3-86861-017-8}, pages = {219 Bl. in getr. Z{\"a}hlung : zahlr. Ill. und graph. Darst., Kt.}, year = {2008}, language = {en} } @incollection{HoffschmidtAlexopoulosGoettscheetal.2012, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and G{\"o}ttsche, Joachim and Sauerborn, Markus}, title = {High concentration solar collectors}, series = {Comprehensive renewable energy / ed. Ali Sayigh. Vol. 3: Solar thermal systems: components and applications}, volume = {3}, booktitle = {Comprehensive renewable energy / ed. Ali Sayigh. Vol. 3: Solar thermal systems: components and applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-08-087873-7}, doi = {10.1016/B978-0-08-087872-0.00306-1}, pages = {165 -- 209}, year = {2012}, abstract = {Solar thermal concentrated power is an emerging technology that provides clean electricity for the growing energy market. To the solar thermal concentrated power plant systems belong the parabolic trough, the Fresnel collector, the solar dish, and the central receiver system. For high-concentration solar collector systems, optical and thermal analysis is essential. There exist a number of measurement techniques and systems for the optical and thermal characterization of the efficiency of solar thermal concentrated systems. For each system, structure, components, and specific characteristics types are described. The chapter presents additionally an outline for the calculation of system performance and operation and maintenance topics. One main focus is set to the models of components and their construction details as well as different types on the market. In the later part of this chapter, different criteria for the choice of technology are analyzed in detail.}, language = {en} } @incollection{HoffschmidtAlexopoulosGoettscheetal.2022, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and G{\"o}ttsche, Joachim and Sauerborn, Markus and Kaufhold, O.}, title = {High Concentration Solar Collectors}, series = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, booktitle = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-819734-9}, doi = {10.1016/B978-0-12-819727-1.00058-3}, pages = {198 -- 245}, year = {2022}, abstract = {Solar thermal concentrated power is an emerging technology that provides clean electricity for the growing energy market. To the solar thermal concentrated power plant systems belong the parabolic trough, the Fresnel collector, the solar dish, and the central receiver system. For high-concentration solar collector systems, optical and thermal analysis is essential. There exist a number of measurement techniques and systems for the optical and thermal characterization of the efficiency of solar thermal concentrated systems. For each system, structure, components, and specific characteristics types are described. The chapter presents additionally an outline for the calculation of system performance and operation and maintenance topics. One main focus is set to the models of components and their construction details as well as different types on the market. In the later part of this article, different criteria for the choice of technology are analyzed in detail.}, language = {en} } @incollection{HoffschmidtAlexopoulosRauetal.2012, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and Rau, Christoph and Sattler, Johannes, Christoph and Anthrakidis, Anette and Teixeira Boura, Cristiano Jos{\´e} and O'Connor, P. and Hilger, Patrick}, title = {Concentrating solar power}, series = {Comprehensive renewable energy / ed. Ali Sayigh. Vol. 3: Solar thermal systems: components and applications}, volume = {3}, booktitle = {Comprehensive renewable energy / ed. Ali Sayigh. Vol. 3: Solar thermal systems: components and applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-08-087872-0}, doi = {10.1016/B978-0-08-087872-0.00319-X}, pages = {595 -- 636}, year = {2012}, language = {en} } @incollection{HoffschmidtAlexopoulosRauetal.2021, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and Rau, Christoph and Sattler, Johannes, Christoph and Anthrakidis, Anette and Teixeira Boura, Cristiano Jos{\´e} and O'Connor, B. and Caminos, R.A. Chico and Rend{\´o}n, C. and Hilger, P.}, title = {Concentrating Solar Power}, series = {Earth systems and environmental sciences}, booktitle = {Earth systems and environmental sciences}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-409548-9}, doi = {10.1016/B978-0-12-819727-1.00089-3}, year = {2021}, abstract = {The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world.}, language = {en} } @incollection{HoffschmidtAlexopoulosRauetal.2022, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and Rau, Christoph and Sattler, Johannes, Christoph and Anthrakidis, Anette and Teixeira Boura, Cristiano Jos{\´e} and O'Connor, B. and Chico Caminos, R.A. and Rend{\´o}n, C. and Hilger, P.}, title = {Concentrating solar power}, series = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, booktitle = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-819734-9}, pages = {670 -- 724}, year = {2022}, abstract = {The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world.}, language = {en} } @incollection{HoffschmidtFaber2007, author = {Hoffschmidt, Bernhard and Faber, Christian}, title = {Lighthouse project for North-Rhine Westfalia - Solar thermal R \& D Power Planet in J{\"u}lich}, series = {Energy security, climate change and sustainable development / ed. Jyotirmay Mathur ...}, booktitle = {Energy security, climate change and sustainable development / ed. Jyotirmay Mathur ...}, publisher = {Anamaya Publ.}, address = {New Delhi}, isbn = {81-88342-81-5}, pages = {101 -- 116}, year = {2007}, language = {en} } @inproceedings{HoffschmidtSchwarzerSpaeteetal.2006, author = {Hoffschmidt, Bernhard and Schwarzer, Klemens and Sp{\"a}te, Frank and K{\"o}tter, Jens and Ebert, Miriam and Sierck, Olaf}, title = {Development of a small modular parabolic trough collector}, series = {13th International Symposium Concentrated Solar Power and Chemical Energy Technologies : SolarPaces : June 20 - 23, 2006, Seville, Spain}, booktitle = {13th International Symposium Concentrated Solar Power and Chemical Energy Technologies : SolarPaces : June 20 - 23, 2006, Seville, Spain}, publisher = {SolarPaces}, address = {[o.O.]}, organization = {International Symposium on Concentrating Solar Power and Chemical Energy Systems <13, 2006, Sevilla>}, isbn = {8478345191}, pages = {1 CD-ROM}, year = {2006}, language = {en} } @inproceedings{HoffschmidtTelleSauerbornetal.2011, author = {Hoffschmidt, Bernhard and Telle, R. and Sauerborn, Markus and Wagner, M.}, title = {Optical measurement system for high temperature absorbers}, series = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, booktitle = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, address = {Granada}, pages = {1 CD-ROM}, year = {2011}, language = {en} } @inproceedings{JanotteFecklerKoetteretal.2014, author = {Janotte, N. and Feckler, G. and K{\"o}tter, Jens and Decker, Stefan and Herrmann, Ulf and Schmitz, Mark and L{\"u}pfert, E.}, title = {Dynamic performance evaluation of the HelioTrough® collector demonstration loop : towards a new benchmark in parabolic trough qualification}, series = {SolarPACES International Conference 2013, Las Vegas, Nevada, USA, 17 - 20 September 2013 : [proceedings]. - Pt. 1. - (Energy procedia ; 49)}, booktitle = {SolarPACES International Conference 2013, Las Vegas, Nevada, USA, 17 - 20 September 2013 : [proceedings]. - Pt. 1. - (Energy procedia ; 49)}, publisher = {Curran}, address = {Red Hook, NY}, isbn = {978-1-63266-904-9}, issn = {1876-6102}, doi = {10.1016/j.egypro.2014.03.012}, pages = {109 -- 117}, year = {2014}, language = {en} } @article{KearneyHerrmannNavaetal.2003, author = {Kearney, D. and Herrmann, Ulf and Nava, P. and Kelly, B. and Mahoney, R. and Pacheco, J. and Cable, R. and Potrovitza, N. and Blake, D. and Price, H.}, title = {Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field}, series = {Journal of Solar Energy Engineering}, volume = {125}, journal = {Journal of Solar Energy Engineering}, number = {2}, issn = {1528-8986}, doi = {10.1115/1.1565087}, pages = {170 -- 176}, year = {2003}, language = {en} } @article{KearneyKellyHerrmannetal.2002, author = {Kearney, David W. and Kelly, Bruce and Herrmann, Ulf and Cable, R. and Pacheco, J. and Mahoney, R. and Price, Henry and Blake, D. and Nava, P. and Potrovitza, N.}, title = {Engineering Aspects of a Molten Salt Heat Transfer Fluid in a Trough Solar Field}, series = {Energy : the international journal}, volume = {29}, journal = {Energy : the international journal}, number = {5-6 (Special Issue SolarPaces)}, issn = {0360-5442}, doi = {10.1016/S0360-5442(03)00191-9}, pages = {861 -- 870}, year = {2002}, language = {en} } @inproceedings{KellyHerrmannHale2001, author = {Kelly, Bruce and Herrmann, Ulf and Hale, M.-J.}, title = {Optimization Studies for Integrated Solar Combined Cycle Systems}, series = {Solar engineering 2001 : proceedings of the International Solar Energy Conference ; presented at the 2001 International Solar Energy Conference, a part of Forum 2001 - Solar energy: the power to choose, April 21 - 25, 2001, Washington, D.C.}, booktitle = {Solar engineering 2001 : proceedings of the International Solar Energy Conference ; presented at the 2001 International Solar Energy Conference, a part of Forum 2001 - Solar energy: the power to choose, April 21 - 25, 2001, Washington, D.C.}, publisher = {ASME}, address = {New York, NY}, isbn = {0-7918-1670-2}, pages = {393 -- 398}, year = {2001}, language = {en} } @article{KluczkaEcksteinAlexopoulosetal.2014, author = {Kluczka, Sven and Eckstein, Julian and Alexopoulos, Spiros and Vaeßen, Christiane and Roeb, Martin}, title = {Process simulation for solar steam and dry reforming}, series = {Energy procedia : Proceedings of the SolarPACES 2013 International Conference}, volume = {49}, journal = {Energy procedia : Proceedings of the SolarPACES 2013 International Conference}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102 (E-Journal)}, doi = {10.1016/j.egypro.2014.03.092}, pages = {850 -- 859}, year = {2014}, abstract = {In co-operation with the German Aerospace Center, the Solar-Institut J{\"u}lich has been analyzing the different technologies that are available for methanol production from CO2 using solar energy. The aim of the project is to extract CO2 from industrial exhaust gases or directly from the atmosphere to recycle it by use of solar energy. Part of the study was the modeling and simulating of a methane reformer for the production of synthesis gas, which can be operated by solar or hybrid heat sources. The reformer has been simplified in such a way that the model is accurate and enables fast calculations. The developed pseudo-homogeneous one- dimensional model can be regarded as a kind of counter-current heat exchanger and is able to incorporate a steam reforming reaction as well as a dry reforming reaction.}, language = {en} } @inproceedings{KollSchwarzboezlHenneckeetal.2009, author = {Koll, Gerrit and Schwarzb{\"o}zl, Peter and Hennecke, Klaus and Hartz, Thomas and Schmitz, Mark and Hoffschmidt, Bernhard}, title = {The Solar Tower J{\"u}lich - a research and demonstration plant for central receiver systems}, series = {SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings}, booktitle = {SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings}, publisher = {Deutsches Zentrum f. Luft- u. Raumfahrt}, address = {Stuttgart}, isbn = {9783000287558}, pages = {1 CD-ROM}, year = {2009}, language = {en} } @inproceedings{KreyerMuellerEsch2020, author = {Kreyer, J{\"o}rg and M{\"u}ller, Marvin and Esch, Thomas}, title = {A Map-Based Model for the Determination of Fuel Consumption for Internal Combustion Engines as a Function of Flight Altitude}, series = {Deutscher Luft- und Raumfahrtkongress 2019, „Luft- und Raumfahrt - technologische Br{\"u}cke in die Zukunft", Darmstadt, 30. September bis 2. Oktober 2019}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2019, „Luft- und Raumfahrt - technologische Br{\"u}cke in die Zukunft", Darmstadt, 30. September bis 2. Oktober 2019}, publisher = {Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt - Lilienthal-Oberth e.V}, address = {Bonn}, doi = {10.25967/490162}, pages = {13 Seiten}, year = {2020}, language = {en} } @incollection{KrokerHoffschmidtSchwarzeretal.2008, author = {Kroker, Jan and Hoffschmidt, Bernhard and Schwarzer, Klemens and Sp{\"a}te, Frank}, title = {PTC 1000 modular parabolic trough collector}, series = {Process heat collectors : state of the art within task 33/IV ; IEA SHC-Task 33 and SolarPACES-Task IV: Solar heat for industrial processes : F{\"o}rderkennzeichen BMBF 0329273A / Solar Heating and Cooling Executive Committee of the International Energy Agency (IEA) ; ed. Werner Weiss}, booktitle = {Process heat collectors : state of the art within task 33/IV ; IEA SHC-Task 33 and SolarPACES-Task IV: Solar heat for industrial processes : F{\"o}rderkennzeichen BMBF 0329273A / Solar Heating and Cooling Executive Committee of the International Energy Agency (IEA) ; ed. Werner Weiss}, publisher = {AEE INTEC}, address = {Gleisdorf}, pages = {45 -- 46}, year = {2008}, language = {en} } @article{KronhardtAlexopoulosReisseletal.2014, author = {Kronhardt, Valentina and Alexopoulos, Spiros and Reißel, Martin and Sattler, Johannes, Christoph and Hoffschmidt, Bernhard and H{\"a}nel, Matthias and Doerbeck, Till}, title = {High-temperature thermal storage system for solar tower power plants with open-volumetric air receiver simulation and energy balancing of a discretized model}, series = {Energy procedia}, volume = {49}, journal = {Energy procedia}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102 (E-Journal) ; 1876-6102 (Print)}, doi = {10.1016/j.egypro.2014.03.094}, pages = {870 -- 877}, year = {2014}, abstract = {This paper describes the modeling of a high-temperature storage system for an existing solar tower power plant with open volumetric receiver technology, which uses air as heat transfer medium (HTF). The storage system model has been developed in the simulation environment Matlab/Simulink®. The storage type under investigation is a packed bed thermal energy storage system which has the characteristics of a regenerator. Thermal energy can be stored and discharged as required via the HTF air. The air mass flow distribution is controlled by valves, and the mass flow by two blowers. The thermal storage operation strategy has a direct and significant impact on the energetic and economic efficiency of the solar tower power plants.}, language = {en} } @inproceedings{KruegerAnthrakidisFischeretal.2009, author = {Kr{\"u}ger, Dirk and Anthrakidis, Anette and Fischer, Stephan and Lokurlu, Ahmet and Walder, Markus and Croy, Reiner and Quaschning, Volker}, title = {Experiences with solar steam supply for an industrial steam network in the P3 Project}, series = {SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings}, booktitle = {SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings}, publisher = {Deutsches Zentrum f. Luft- u. Raumfahrt}, address = {Stuttgart}, isbn = {9783000287558}, pages = {1 CD-ROM}, year = {2009}, language = {en} } @inproceedings{LahrsKrisamHerrmann2023, author = {Lahrs, Lennart and Krisam, Pierre and Herrmann, Ulf}, title = {Envisioning a collaborative energy system planning platform for the energy transition at the district level}, series = {The 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems}, booktitle = {The 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems}, publisher = {Procedings of ECOS 2023}, doi = {10.52202/069564-0284}, pages = {3163 -- 3170}, year = {2023}, abstract = {Residential and commercial buildings account for more than one-third of global energy-related greenhouse gas emissions. Integrated multi-energy systems at the district level are a promising way to reduce greenhouse gas emissions by exploiting economies of scale and synergies between energy sources. Planning district energy systems comes with many challenges in an ever-changing environment. Computational modelling established itself as the state-of-the-art method for district energy system planning. Unfortunately, it is still cumbersome to combine standalone models to generate insights that surpass their original purpose. Ideally, planning processes could be solved by using modular tools that easily incorporate the variety of competing and complementing computational models. Our contribution is a vision for a collaborative development and application platform for multi-energy system planning tools at the district level. We present challenges of district energy system planning identified in the literature and evaluate whether this platform can help to overcome these challenges. Further, we propose a toolkit that represents the core technical elements of the platform. Lastly, we discuss community management and its relevance for the success of projects with collaboration and knowledge sharing at their core.}, language = {en} } @inproceedings{LatzkeAlexopoulosKronhardtetal.2015, author = {Latzke, Markus and Alexopoulos, Spiros and Kronhardt, Valentina and Rend{\´o}n, Carlos and Sattler, Johannes, Christoph}, title = {Comparison of Potential Sites in China for Erecting a Hybrid Solar Tower Power Plant with Air Receiver}, series = {Energy Procedia}, booktitle = {Energy Procedia}, issn = {1876-6102}, doi = {10.1016/j.egypro.2015.03.142}, pages = {1327 -- 1334}, year = {2015}, language = {en} } @inproceedings{LuepfertHerrmannPriceetal.2004, author = {L{\"u}pfert, E. and Herrmann, Ulf and Price, Henry and Zarza, E. and Kistener, R.}, title = {Towards Standard Performance Analysis for Parabolic Trough Collector Fields}, series = {12th International Symposium Solar Power and Chemical Energy Systems, October 6-8, 2004, Oaxaca Mexico ; SolarPACES International Symposium, 12}, booktitle = {12th International Symposium Solar Power and Chemical Energy Systems, October 6-8, 2004, Oaxaca Mexico ; SolarPACES International Symposium, 12}, editor = {Ramos, C.}, publisher = {Instituto de Investigaciones Electricas}, address = {[s.l.]}, isbn = {968-6114-18-1}, year = {2004}, language = {en} } @inproceedings{MahdiDerschSchmitzetal.2022, author = {Mahdi, Zahra and Dersch, J{\"u}rgen and Schmitz, Pascal and Dieckmann, Simon and Caminos, Ricardo Alexander Chico and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf and Schwager, Christian and Schmitz, Mark and Gielen, Hans and Gedle, Yibekal and B{\"u}scher, Rauno}, title = {Technical assessment of Brayton cycle heat pumps for the integration in hybrid PV-CSP power plants}, series = {SOLARPACES 2020}, booktitle = {SOLARPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086269}, pages = {11 Seiten}, year = {2022}, abstract = {The hybridization of Concentrated Solar Power (CSP) and Photovoltaics (PV) systems is a promising approach to reduce costs of solar power plants, while increasing dispatchability and flexibility of power generation. High temperature heat pumps (HT HP) can be utilized to boost the salt temperature in the thermal energy storage (TES) of a Parabolic Trough Collector (PTC) system from 385 °C up to 565 °C. A PV field can supply the power for the HT HP, thus effectively storing the PV power as thermal energy. Besides cost-efficiently storing energy from the PV field, the power block efficiency of the overall system is improved due to the higher steam parameters. This paper presents a technical assessment of Brayton cycle heat pumps to be integrated in hybrid PV-CSP power plants. As a first step, a theoretical analysis was carried out to find the most suitable working fluid. The analysis included the fluids Air, Argon (Ar), Nitrogen (N2) and Carbon dioxide (CO2). N2 has been chosen as the optimal working fluid for the system. After the selection of the ideal working medium, different concepts for the arrangement of a HT HP in a PV-CSP hybrid power plant were developed and simulated in EBSILON®Professional. The concepts were evaluated technically by comparing the number of components required, pressure losses and coefficient of performance (COP).}, language = {en} }