@inproceedings{StapenhorstGessnerWoerd2017, author = {Stapenhorst, Carolin and Geßner, Stephan and Woerd, Jan Dirk van der}, title = {ArchitecTours - a close look on structures around us}, series = {Proceedings of IASS Annual Symposia}, booktitle = {Proceedings of IASS Annual Symposia}, editor = {B{\"o}gle, Annette and Grohmann, Manfred}, publisher = {IASS}, address = {Madrid}, issn = {2518-6582}, pages = {9 Seiten}, year = {2017}, abstract = {Architects and civil engineers work together regularly during their professional days and are irreplaceable for each other. This co-operation is sometimes made more difficult by the differences in their disciplinary languages and approaches. Structures are evaluated by architects on the basis of criteria such as spatial impact and usability, while civil engineers analyze them more closely by their bearing and deformation properties, as well as by constructive aspects. This diversity of assessment criteria and approaches is often continued in both academic disciplines in the view on structures. Within the framework of the Exploratory Teaching Space (ETS), a funding program to improve teaching at RWTH Aachen University and to promote new teaching concepts, a project was carried out jointly by the Junior Professorship of Tool-Culture at the Faculty of Architecture and the Institute of Structural Concrete at the Faculty of Civil Engineering. The aim of the project is to present buildings in such a way that the differences in perception between architects and civil engineers are reduced and the common understanding is promoted. The project develops a database, which contains a collection of striking buildings from Aachen and the surrounding area. The buildings are categorized according to terms that come from both disciplinary areas. The collection can be freely explored or crossed through learning trails. The medium of film plays a special role in presenting the buildings. The buildings are assigned to different categories of load bearing structures as linear, planar and spatial structures, and further to different types of material, functional programs and spatial characteristics. Since the buildings are located in the direct vicinity of Aachen, they can be visited by the students. This makes them more sensitive to their environment. Intrinsic motivation, as well as implicit learning is encouraged. The paper will provide a detailed report of the project, its implementation, the feedback of the students and the plans for further development.}, language = {en} } @inproceedings{PieperSchulz2014, author = {Pieper, Martin and Schulz, Silvia}, title = {Teaching Simulation Methods with COMSOL Multiphysics}, organization = {COMSOL Conference <2014, Cambridge>}, pages = {7}, year = {2014}, abstract = {This paper describes two courses on simulation methods for graduate students: "Simulation Methods" and "Simulation and Optimization in Virtual Engineering" The courses were planned to teach young engineers how to work with simulation software as well as to understand the necessary mathematical background. As simulation software COMSOL is used. The main philosophy was to combine theory and praxis in a way that motivates the students. In addition "soft skills" should be improved. This was achieved by project work as final examination. As underlying didactical principle the ideas of Bloom's revised taxonomy were followed. The paper basically focusses on educational aspects, e.g. how to structure the course, plan the exercises, organize the project work and include practical COMSOL examples.}, language = {en} } @inproceedings{DeyElsenFerreinetal.2021, author = {Dey, Thomas and Elsen, Ingo and Ferrein, Alexander and Frauenrath, Tobias and Reke, Michael and Schiffer, Stefan}, title = {CO2 Meter: a do-it-yourself carbon dioxide measuring device for the classroom}, series = {PETRA '21: Proceedings of the 14th Pervasive Technologies Related to Assistive Environments Conference}, booktitle = {PETRA '21: Proceedings of the 14th Pervasive Technologies Related to Assistive Environments Conference}, editor = {Makedon, Fillia}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {9781450387927}, doi = {10.1145/3453892.3462697}, pages = {292 -- 299}, year = {2021}, abstract = {In this paper we report on CO2 Meter, a do-it-yourself carbon dioxide measuring device for the classroom. Part of the current measures for dealing with the SARS-CoV-2 pandemic is proper ventilation in indoor settings. This is especially important in schools with students coming back to the classroom even with high incidents rates. Static ventilation patterns do not consider the individual situation for a particular class. Influencing factors like the type of activity, the physical structure or the room occupancy are not incorporated. Also, existing devices are rather expensive and often provide only limited information and only locally without any networking. This leaves the potential of analysing the situation across different settings untapped. Carbon dioxide level can be used as an indicator of air quality, in general, and of aerosol load in particular. Since, according to the latest findings, SARS-CoV-2 can be transmitted primarily in the form of aerosols, carbon dioxide may be used as a proxy for the risk of a virus infection. Hence, schools could improve the indoor air quality and potentially reduce the infection risk if they actually had measuring devices available in the classroom. Our device supports schools in ventilation and it allows for collecting data over the Internet to enable a detailed data analysis and model generation. First deployments in schools at different levels were received very positively. A pilot installation with a larger data collection and analysis is underway.}, language = {en} }