@inproceedings{MohanGrossMenzeletal.2021, author = {Mohan, Nijanthan and Groß, Rolf Fritz and Menzel, Karsten and Theis, Fabian}, title = {Opportunities and Challenges in the Implementation of Building Information Modeling for Prefabrication of Heating, Ventilation and Air Conditioning Systems in Small and Medium-Sized Contracting Companies in Germany - A Case Study}, series = {WIT Transactions on The Built Environment, Vol. 205}, booktitle = {WIT Transactions on The Built Environment, Vol. 205}, publisher = {WIT Press}, address = {Southampton}, issn = {1743-3509}, doi = {10.2495/BIM210101}, pages = {117 -- 126}, year = {2021}, abstract = {FEven though BIM (Building Information Modelling) is successfully implemented in most of the world, it is still in the early stages in Germany, since the stakeholders are sceptical of its reliability and efficiency. The purpose of this paper is to analyse the opportunities and obstacles to implementing BIM for prefabrication. Among all other advantages of BIM, prefabrication is chosen for this paper because it plays a vital role in creating an impact on the time and cost factors of a construction project. The project stakeholders and participants can explicitly observe the positive impact of prefabrication, which enables the breakthrough of the scepticism factor among the small-scale construction companies. The analysis consists of the development of a process workflow for implementing prefabrication in building construction followed by a practical approach, which was executed with two case studies. It was planned in such a way that, the first case study gives a first-hand experience for the workers at the site on the BIM model so that they can make much use of the created BIM model, which is a better representation compared to the traditional 2D plan. The main aim of the first case study is to create a belief in the implementation of BIM Models, which was succeeded by the execution of offshore prefabrication in the second case study. Based on the case studies, the time analysis was made and it is inferred that the implementation of BIM for prefabrication can reduce construction time, ensures minimal wastes, better accuracy, less problem-solving at the construction site. It was observed that this process requires more planning time, better communication between different disciplines, which was the major obstacle for successful implementation. This paper was carried out from the perspective of small and medium-sized mechanical contracting companies for the private building sector in Germany.}, language = {en} } @inproceedings{MilkovaButenwegDumovaJovanoska2021, author = {Milkova, Kristina and Butenweg, Christoph and Dumova-Jovanoska, Elena}, title = {Region-sensitive comprehensive procedure for determination of seismic fragility curves}, series = {1st Croatian Conference on Earthquake Engineering 1CroCEE 22-24 March 2021 Zagreb, Croatia}, booktitle = {1st Croatian Conference on Earthquake Engineering 1CroCEE 22-24 March 2021 Zagreb, Croatia}, publisher = {University of Zagreb}, address = {Zagreb}, doi = {10.5592/CO/1CroCEE.2021.158}, pages = {121 -- 128}, year = {2021}, abstract = {Seismic vulnerability estimation of existing structures is unquestionably interesting topic of high priority, particularly after earthquake events. Having in mind the vast number of old masonry buildings in North Macedonia serving as public institutions, it is evident that the structural assessment of these buildings is an issue of great importance. In this paper, a comprehensive methodology for the development of seismic fragility curves of existing masonry buildings is presented. A scenario - based method that incorporates the knowledge of the tectonic style of the considered region, the active fault characterization, the earth crust model and the historical seismicity (determined via the Neo Deterministic approach) is used for calculation of the necessary response spectra. The capacity of the investigated masonry buildings has been determined by using nonlinear static analysis. MINEA software (SDA Engineering) is used for verification of the structural safety of the structures Performance point, obtained from the intersection of the capacity of the building and the spectra used, is selected as a response parameter. The thresholds of the spectral displacement are obtained by splitting the capacity curve into five parts, utilizing empirical formulas which are represented as a function of yield displacement and ultimate displacement. As a result, four levels of damage limit states are determined. A maximum likelihood estimation procedure for the process of fragility curves determination is noted as a final step in the proposed procedure. As a result, region specific series of vulnerability curves for structures are defined.}, language = {en} } @inproceedings{MilijašŠakićMarinkovićetal.2021, author = {Milijaš, Aleksa and Šakić, Bogdan and Marinković, Marko and Butenweg, Christoph}, title = {Experimental investigation of behaviour of masonry infilled RC frames under out-of-plane loading}, series = {8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering}, booktitle = {8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering}, editor = {Papadrakakis, Manolis and Fragiadakis, Michalis}, publisher = {National Technical University of Athens}, address = {Athen}, isbn = {978-618-85072-5-8}, issn = {2623-3347}, doi = {10.7712/120121.8528.18914}, pages = {829 -- 846}, year = {2021}, abstract = {Masonry infills are commonly used as exterior or interior walls in reinforced concrete (RC) frame structures and they can be encountered all over the world, including earthquake prone regions. Since the middle of the 20th century the behaviour of these non-structural elements under seismic loading has been studied in numerous experimental campaigns. However, most of the studies were carried out by means of in-plane tests, while there is a lack of out-of-plane experimental investigations. In this paper, the out-of-plane tests carried out on full scale masonry infilled frames are described. The results of the out-of-plane tests are presented in terms of force-displacement curves and measured out-of-plane displacements. Finally, the reliability of existing analytical approaches developed to estimate the out-of-plane strength of masonry infills is examined on presented experimental results.}, language = {en} } @inproceedings{MertensPuetzBrauneretal.2021, author = {Mertens, Alexander and P{\"u}tz, Sebastian and Brauner, Philipp and Brillowski, Florian Sascha and Buczak, Nadine and Dammers, Hannah and van Dyck, Marc and Kong, Iris and K{\"o}nigs, Peter and Kortomeikel, Frauke Carole and Rodemann, Niklas and Schaar, Anne Kathrin and Steuer-Dankert, Linda and Wlecke, Shari and Gries, Thomas and Leicht-Scholten, Carmen and Nagel, Saskia K. and Piller, Frank Thomas and Schuh, G{\"u}nther and Ziefle, Martina and Nitsch, Verena}, title = {Human digital shadow: Data-based modeling of users and usage in the internet of production}, series = {14th International Conference on Human System Interaction : 8-10 July 2021. Gdańsk, Poland}, booktitle = {14th International Conference on Human System Interaction : 8-10 July 2021. Gdańsk, Poland}, publisher = {IEEE}, doi = {10.1109/HSI52170.2021.9538729}, pages = {1 -- 8}, year = {2021}, abstract = {Digital Shadows as the aggregation, linkage and abstraction of data relating to physical objects are a central vision for the future of production. However, the majority of current research takes a technocentric approach, in which the human actors in production play a minor role. Here, the authors present an alternative anthropocentric perspective that highlights the potential and main challenges of extending the concept of Digital Shadows to humans. Following future research methodology, three prospections that illustrate use cases for Human Digital Shadows across organizational and hierarchical levels are developed: human-robot collaboration for manual work, decision support and work organization, as well as human resource management. Potentials and challenges are identified using separate SWOT analyses for the three prospections and common themes are emphasized in a concluding discussion.}, language = {en} } @inproceedings{MerkensHebel2021, author = {Merkens, Torsten and Hebel, Christoph}, title = {Sharing mobility concepts - flexible, sustainable, smart}, series = {Proceedings of the 1st UNITED - Southeast Asia Automotive Interest Group (SAIG)}, booktitle = {Proceedings of the 1st UNITED - Southeast Asia Automotive Interest Group (SAIG)}, isbn = {978-3-902103-94-9}, pages = {43 -- 44}, year = {2021}, language = {en} } @inproceedings{MandekarJentschLutzetal.2021, author = {Mandekar, Swati and Jentsch, Lina and Lutz, Kai and Behbahani, Mehdi and Melnykowycz, Mark}, title = {Earable design analysis for sleep EEG measurements}, series = {UbiComp '21}, booktitle = {UbiComp '21}, doi = {10.1145/3460418.3479328}, pages = {171 -- 175}, year = {2021}, abstract = {Conventional EEG devices cannot be used in everyday life and hence, past decade research has been focused on Ear-EEG for mobile, at-home monitoring for various applications ranging from emotion detection to sleep monitoring. As the area available for electrode contact in the ear is limited, the electrode size and location play a vital role for an Ear-EEG system. In this investigation, we present a quantitative study of ear-electrodes with two electrode sizes at different locations in a wet and dry configuration. Electrode impedance scales inversely with size and ranges from 450 kΩ to 1.29 MΩ for dry and from 22 kΩ to 42 kΩ for wet contact at 10 Hz. For any size, the location in the ear canal with the lowest impedance is ELE (Left Ear Superior), presumably due to increased contact pressure caused by the outer-ear anatomy. The results can be used to optimize signal pickup and SNR for specific applications. We demonstrate this by recording sleep spindles during sleep onset with high quality (5.27 μVrms).}, language = {en} } @inproceedings{KronigerHorikawaFunkeetal.2021, author = {Kroniger, Daniel and Horikawa, Atsushi and Funke, Harald and Pf{\"a}ffle, Franziska and Kishimoto, Tsuyoshi and Okada, Koichi}, title = {Experimental and numerical investigation on the effect of pressure on micromix hydrogen combustion}, series = {ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition // Volume 3A: Combustion, Fuels, and Emissions}, booktitle = {ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition // Volume 3A: Combustion, Fuels, and Emissions}, doi = {10.1115/GT2021-58926}, pages = {11 Seiten}, year = {2021}, abstract = {The micromix (MMX) combustion concept is a DLN gas turbine combustion technology designed for high hydrogen content fuels. Multiple non-premixed miniaturized flames based on jet in cross-flow (JICF) are inherently safe against flashback and ensure a stable operation in various operative conditions. The objective of this paper is to investigate the influence of pressure on the micromix flame with focus on the flame initiation point and the NOx emissions. A numerical model based on a steady RANS approach and the Complex Chemistry model with relevant reactions of the GRI 3.0 mechanism is used to predict the reactive flow and NOx emissions at various pressure conditions. Regarding the turbulence-chemical interaction, the Laminar Flame Concept (LFC) and the Eddy Dissipation Concept (EDC) are compared. The numerical results are validated against experimental results that have been acquired at a high pressure test facility for industrial can-type gas turbine combustors with regard to flame initiation and NOx emissions. The numerical approach is adequate to predict the flame initiation point and NOx emission trends. Interestingly, the flame shifts its initiation point during the pressure increase in upstream direction, whereby the flame attachment shifts from anchoring behind a downstream located bluff body towards anchoring directly at the hydrogen jet. The LFC predicts this change and the NOx emissions more accurately than the EDC. The resulting NOx correlation regarding the pressure is similar to a non-premixed type combustion configuration.}, language = {en} } @inproceedings{KronigerHorikawaFunkeetal.2021, author = {Kroniger, Daniel and Horikawa, Atsushi and Funke, Harald and Pf{\"a}ffle, Franziska}, title = {Numerical investigation of micromix hydrogen flames at different combustor pressure levels}, series = {Proceedings of the International Conference on Power Engineering 2021}, booktitle = {Proceedings of the International Conference on Power Engineering 2021}, pages = {4 Seiten}, year = {2021}, abstract = {This study investigates the influence of pressure on the temperature distribution of the micromix (MMX) hydrogen flame and the NOx emissions. A steady computational fluid dynamic (CFD) analysis is performed by simulating a reactive flow with a detailed chemical reaction model. The numerical analysis is validated based on experimental investigations. A quantitative correlation is parametrized based on the numerical results. We find, that the flame initiation point shifts with increasing pressure from anchoring behind a downstream located bluff body towards anchoring upstream at the hydrogen jet. The numerical NOx emissions trend regarding to a variation of pressure is in good agreement with the experimental results. The pressure has an impact on both, the residence time within the maximum temperature region and on the peak temperature itself. In conclusion, the numerical model proved to be adequate for future prototype design exploration studies targeting on improving the operating range.}, language = {en} } @inproceedings{KohlSchmidtsKloeseretal.2021, author = {Kohl, Philipp and Schmidts, Oliver and Kl{\"o}ser, Lars and Werth, Henri and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {STAMP 4 NLP - an agile framework for rapid quality-driven NLP applications development}, series = {Quality of Information and Communications Technology. QUATIC 2021}, booktitle = {Quality of Information and Communications Technology. QUATIC 2021}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-85346-4}, doi = {10.1007/978-3-030-85347-1_12}, pages = {156 -- 166}, year = {2021}, abstract = {The progress in natural language processing (NLP) research over the last years, offers novel business opportunities for companies, as automated user interaction or improved data analysis. Building sophisticated NLP applications requires dealing with modern machine learning (ML) technologies, which impedes enterprises from establishing successful NLP projects. Our experience in applied NLP research projects shows that the continuous integration of research prototypes in production-like environments with quality assurance builds trust in the software and shows convenience and usefulness regarding the business goal. We introduce STAMP 4 NLP as an iterative and incremental process model for developing NLP applications. With STAMP 4 NLP, we merge software engineering principles with best practices from data science. Instantiating our process model allows efficiently creating prototypes by utilizing templates, conventions, and implementations, enabling developers and data scientists to focus on the business goals. Due to our iterative-incremental approach, businesses can deploy an enhanced version of the prototype to their software environment after every iteration, maximizing potential business value and trust early and avoiding the cost of successful yet never deployed experiments.}, language = {en} } @inproceedings{KloeserKohlKraftetal.2021, author = {Kl{\"o}ser, Lars and Kohl, Philipp and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {Multi-attribute relation extraction (MARE): simplifying the application of relation extraction}, series = {Proceedings of the 2nd International Conference on Deep Learning Theory and Applications - DeLTA}, booktitle = {Proceedings of the 2nd International Conference on Deep Learning Theory and Applications - DeLTA}, isbn = {978-989-758-526-5}, doi = {10.5220/0010559201480156}, pages = {148 -- 156}, year = {2021}, abstract = {Natural language understanding's relation extraction makes innovative and encouraging novel business concepts possible and facilitates new digitilized decision-making processes. Current approaches allow the extraction of relations with a fixed number of entities as attributes. Extracting relations with an arbitrary amount of attributes requires complex systems and costly relation-trigger annotations to assist these systems. We introduce multi-attribute relation extraction (MARE) as an assumption-less problem formulation with two approaches, facilitating an explicit mapping from business use cases to the data annotations. Avoiding elaborated annotation constraints simplifies the application of relation extraction approaches. The evaluation compares our models to current state-of-the-art event extraction and binary relation extraction methods. Our approaches show improvement compared to these on the extraction of general multi-attribute relations.}, language = {en} } @inproceedings{KernImaniVashianiTimmermanns2021, author = {Kern, Alexander and Imani Vashiani, Anahita and Timmermanns, Tobias}, title = {Threat for human beings due to touch voltages and body currents caused by direct lightning strikes in case of non-isolated lightning protection systems using natural components}, series = {35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA)}, booktitle = {35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA)}, publisher = {IEEE}, isbn = {978-1-6654-2346-5}, doi = {10.1109/ICLPandSIPDA54065.2021.9627465}, pages = {8 Seiten}, year = {2021}, abstract = {For typical cases of non-isolated lightning protection systems (LPS) the impulse currents are investigated which may flow through a human body directly touching a structural part of the LPS. Based on a basic LPS model with conventional down-conductors especially the cases of external and internal steel columns and metal fa{\c{c}}ades are considered and compared. Numerical simulations of the line quantities voltages and currents in the time domain are performed with an equivalent circuit of the entire LPS. As a result it can be stated that by increasing the number of conventional down-conductors and external steel columns the threat for a human being can indeed be reduced, but not down to an acceptable limit. In case of internal steel columns used as natural down-conductors the threat can be reduced sufficiently, depending on the low-resistive connection of the steel columns to the lightning equipotential bonding or the earth termination system, resp. If a metal fa{\c{c}}ade is used the threat for human beings touching is usually very low, if the fa{\c{c}}ade is sufficiently interconnected and multiply connected to the lightning equipotential bonding or the earth termination system, resp.}, language = {en} } @inproceedings{HueningWacheMagiera2021, author = {H{\"u}ning, Felix and Wache, Franz-Josef and Magiera, David}, title = {Redundant bus systems using dual-mode radio}, series = {Proceedings of Sixth International Congress on Information and Communication Technology}, booktitle = {Proceedings of Sixth International Congress on Information and Communication Technology}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-16-2379-0}, doi = {10.1007/978-981-16-2380-6_73}, pages = {835 -- 842}, year = {2021}, abstract = {Communication via serial bus systems, like CAN, plays an important role for all kinds of embedded electronic and mechatronic systems. To cope up with the requirements for functional safety of safety-critical applications, there is a need to enhance the safety features of the communication systems. One measure to achieve a more robust communication is to add redundant data transmission path to the applications. In general, the communication of real-time embedded systems like automotive applications is tethered, and the redundant data transmission lines are also tethered, increasing the size of the wiring harness and the weight of the system. A radio link is preferred as a redundant transmission line as it uses a complementary transmission medium compared to the wired solution and in addition reduces wiring harness size and weight. Standard wireless links like Wi-Fi or Bluetooth cannot meet the requirements for real-time capability with regard to bus communication. Using the new dual-mode radio enables a redundant transmission line meeting all requirements with regard to real-time capability, robustness and transparency for the data bus. In addition, it provides a complementary transmission medium with regard to commonly used tethered links. A CAN bus system is used to demonstrate the redundant data transfer via tethered and wireless CAN.}, language = {en} } @inproceedings{HueningStuettgen2021, author = {H{\"u}ning, Felix and St{\"u}ttgen, Marcel}, title = {Work in Progress: Interdisciplinary projects in times of COVID-19 crisis - challenges, risks and chances}, series = {2021 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2021 IEEE Global Engineering Education Conference (EDUCON)}, doi = {10.1109/EDUCON46332.2021.9454006}, pages = {1175 -- 1179}, year = {2021}, language = {en} } @inproceedings{Huening2021, author = {H{\"u}ning, Felix}, title = {Sustainable changes beyond covid-19 for a second semester physics course for electrical engineering students}, series = {Blended Learning in Engineering Education: challenging, enlightening - and lasting?}, booktitle = {Blended Learning in Engineering Education: challenging, enlightening - and lasting?}, isbn = {978-2-87352-023-6}, pages = {1405 -- 1409}, year = {2021}, abstract = {The course Physics for Electrical Engineering is part of the curriculum of the bachelor program Electrical Engineering at University of Applied Science Aachen. Before covid-19 the course was conducted in a rather traditional way with all parts (lecture, exercise and lab) face-to-face. This teaching approach changed fundamentally within a week when the covid-19 limitations forced all courses to distance learning. All parts of the course were transformed to pure distance learning including synchronous and asynchronous parts for the lecture, live online-sessions for the exercises and self-paced labs at home. Using these methods, the course was able to impart the required knowledge and competencies. Taking the teacher's observations of the student's learning behaviour and engagement, the formal and informal feedback of the students and the results of the exams into account, the new methods are evaluated with respect to effectiveness, sustainability and suitability for competence transfer. Based on this analysis strong and weak points of the concept and countermeasures to solve the weak points were identified. The analysis further leads to a sustainable teaching approach combining synchronous and asynchronous parts with self-paced learning times that can be used in a very flexible manner for different learning scenarios, pure online, hybrid (mixture of online and presence times) and pure presence teaching.}, language = {en} } @inproceedings{HorikawaOkadaYamaguchietal.2021, author = {Horikawa, Atsushi and Okada, Kunio and Yamaguchi, Masato and Aoki, Shigeki and Wirsum, Manfred and Funke, Harald and Kusterer, Karsten}, title = {Combustor development and engine demonstration of micro-mix hydrogen combustion applied to M1A-17 gas turbine}, series = {ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition // Volume 3B: Combustion, Fuels, and Emissions}, booktitle = {ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition // Volume 3B: Combustion, Fuels, and Emissions}, doi = {10.1115/GT2021-59666}, pages = {13 Seiten}, year = {2021}, abstract = {Kawasaki Heavy Industries, LTD. (KHI) has research and development projects for a future hydrogen society. These projects comprise the complete hydrogen cycle, including the production of hydrogen gas, the refinement and liquefaction for transportation and storage, and finally the utilization in a gas turbine for electricity and heat supply. Within the development of the hydrogen gas turbine, the key technology is stable and low NOx hydrogen combustion, namely the Dry Low NOx (DLN) hydrogen combustion. KHI, Aachen University of Applied Science, and B\&B-AGEMA have investigated the possibility of low NOx micro-mix hydrogen combustion and its application to an industrial gas turbine combustor. From 2014 to 2018, KHI developed a DLN hydrogen combustor for a 2MW class industrial gas turbine with the micro-mix technology. Thereby, the ignition performance, the flame stability for equivalent rotational speed, and higher load conditions were investigated. NOx emission values were kept about half of the Air Pollution Control Law in Japan: 84ppm (O2-15\%). Hereby, the elementary combustor development was completed. From May 2020, KHI started the engine demonstration operation by using an M1A-17 gas turbine with a co-generation system located in the hydrogen-fueled power generation plant in Kobe City, Japan. During the first engine demonstration tests, adjustments of engine starting and load control with fuel staging were investigated. On 21st May, the electrical power output reached 1,635 kW, which corresponds to 100\% load (ambient temperature 20 °C), and thereby NOx emissions of 65 ppm (O2-15, 60 RH\%) were verified. Here, for the first time, a DLN hydrogen-fueled gas turbine successfully generated power and heat.}, language = {en} } @inproceedings{HoegenDonckerBragardetal.2021, author = {Hoegen, Anne von and Doncker, Rik W. De and Bragard, Michael and Hoegen, Svenja von}, title = {Problem-Based Learning in Automation Engineering: Performing a Remote Laboratory Session Serving Various Educational Attainments}, series = {2021 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2021 IEEE Global Engineering Education Conference (EDUCON)}, doi = {10.1109/EDUCON46332.2021.9453925}, pages = {1605 -- 1614}, year = {2021}, language = {en} } @inproceedings{HeuermannHarzheimMuehmel2021, author = {Heuermann, Holger and Harzheim, Thomas and M{\"u}hmel, Marc}, title = {A maritime harmonic radar search and rescue system using passive and active tags}, series = {2020 17th European Radar Conference (EuRAD)}, booktitle = {2020 17th European Radar Conference (EuRAD)}, publisher = {IEEE}, isbn = {978-2-87487-061-3}, doi = {10.1109/EuRAD48048.2021.00030}, pages = {73 -- 76}, year = {2021}, language = {en} } @inproceedings{HandschuhStollenwerkBorchert2021, author = {Handschuh, Nils and Stollenwerk, Dominik and Borchert, J{\"o}rg}, title = {Operation of thermal storage power plants under high renewable grid penetration}, series = {NEIS 2021: Conference on Sustainable Energy Supply and Energy Storage Systems}, booktitle = {NEIS 2021: Conference on Sustainable Energy Supply and Energy Storage Systems}, publisher = {VDE Verlag}, address = {Berlin}, isbn = {978-3-8007-5651-3}, pages = {261 -- 265}, year = {2021}, abstract = {The planned coal phase-out in Germany by 2038 will lead to the dismantling of power plants with a total capacity of approx. 30 GW. A possible further use of these assets is the conversion of the power plants to thermal storage power plants; the use of these power plants on the day-ahead market is considerably limited by their technical parameters. In this paper, the influence of the technical boundary conditions on the operating times of these storage facilities is presented. For this purpose, the storage power plants were described as an MILP problem and two price curves, one from 2015 with a relatively low renewable penetration (33 \%) and one from 2020 with a high renewable energy penetration (51 \%) are compared. The operating times were examined as a function of the technical parameters and the critical influencing factors were investigated. The thermal storage power plant operation duration and the energy shifted with the price curve of 2020 increases by more than 25 \% compared to 2015.}, language = {en} } @inproceedings{GrundmannBorellaCeriottietal.2021, author = {Grundmann, Jan Thimo and Borella, Laura and Ceriotti, Matteo and Chand, Suditi and Cordero, Federico and Dachwald, Bernd and Fexer, Sebastian and Grimm, Christian D. and Hendrikse, Jeffrey and Herč{\´i}k, David and Herique, Alain and Hillebrandt, Martin and Ho, Tra-Mi and Kesseler, Lars and Laabs, Martin and Lange, Caroline and Lange, Michael and Lichtenheldt, Roy and McInnes, Colin R. and Moore, Iain and Peloni, Alessandro and Plettenmeier, Dirk and Quantius, Dominik and Seefeldt, Patric and Venditti, Flaviane c. F. and Vergaaij, Merel and Viavattene, Giulia and Virkki, Anne K. and Zander, Martin}, title = {More bucks for the bang: new space solutions, impact tourism and one unique science \& engineering opportunity at T-6 months and counting}, series = {7th IAA Planetary Defense Conference}, booktitle = {7th IAA Planetary Defense Conference}, year = {2021}, abstract = {For now, the Planetary Defense Conference Exercise 2021's incoming fictitious(!), asteroid, 2021 PDC, seems headed for impact on October 20th, 2021, exactly 6 months after its discovery. Today (April 26th, 2021), the impact probability is 5\%, in a steep rise from 1 in 2500 upon discovery six days ago. We all know how these things end. Or do we? Unless somebody kicked off another headline-grabbing media scare or wants to keep civil defense very idle very soon, chances are that it will hit (note: this is an exercise!). Taking stock, it is barely 6 months to impact, a steadily rising likelihood that it will actually happen, and a huge uncertainty of possible impact energies: First estimates range from 1.2 MtTNT to 13 GtTNT, and this is not even the worst-worst case: a 700 m diameter massive NiFe asteroid (covered by a thin veneer of Ryugu-black rubble to match size and brightness), would come in at 70 GtTNT. In down to Earth terms, this could be all between smashing fireworks over some remote area of the globe and a 7.5 km crater downtown somewhere. Considering the deliberate and sedate ways of development of interplanetary missions it seems we can only stand and stare until we know well enough where to tell people to pack up all that can be moved at all and save themselves. But then, it could just as well be a smaller bright rock. The best estimate is 120 m diameter from optical observation alone, by 13\% standard albedo. NASA's upcoming DART mission to binary asteroid (65803) Didymos is designed to hit such a small target, its moonlet Dimorphos. The Deep Impact mission's impactor in 2005 successfully guided itself to the brightest spot on comet 9P/Tempel 1, a relatively small feature on the 6 km nucleus. And 'space' has changed: By the end of this decade, one satellite communication network plans to have launched over 11000 satellites at a pace of 60 per launch every other week. This level of series production is comparable in numbers to the most prolific commercial airliners. Launch vehicle production has not simply increased correspondingly - they can be reused, although in a trade for performance. Optical and radio astronomy as well as planetary radar have made great strides in the past decade, and so has the design and production capability for everyday 'high-tech' products. 60 years ago, spaceflight was invented from scratch within two years, and there are recent examples of fast-paced space projects as well as a drive towards 'responsive space'. It seems it is not quite yet time to abandon all hope. We present what could be done and what is too close to call once thinking is shoved out of the box by a clear and present danger, to show where a little more preparedness or routine would come in handy - or become decisive. And if we fail, let's stand and stare safely and well instrumented anywhere on Earth together in the greatest adventure of science.}, language = {en} } @inproceedings{FunkeBeckmannKeinzetal.2021, author = {Funke, Harald and Beckmann, Nils and Keinz, Jan and Horikawa, Atsushi}, title = {30 years of dry low NOx micromix combustor research for hydrogen-rich fuels: an overview of past and present activities}, series = {Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, September 21-25, 2020, Virtual, Online. Vol.: 4B: Combustion, Fuels, and Emissions}, booktitle = {Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, September 21-25, 2020, Virtual, Online. Vol.: 4B: Combustion, Fuels, and Emissions}, publisher = {American Society of Mechanical Engineers (ASME)}, isbn = {978-0-7918-8413-3}, doi = {10.1115/GT2020-16328}, pages = {14 Seiten}, year = {2021}, language = {en} } @inproceedings{FerreinMeessenLimpertetal.2021, author = {Ferrein, Alexander and Meeßen, Marcus and Limpert, Nicolas and Schiffer, Stefan}, title = {Compiling ROS Schooling Curricula via Contentual Taxonomies}, series = {Robotics in Education}, booktitle = {Robotics in Education}, editor = {Lepuschitz, Wilfried}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-67411-3}, doi = {10.1007/978-3-030-67411-3_5}, pages = {49 -- 60}, year = {2021}, language = {en} } @inproceedings{EnglhardWeberArent2021, author = {Englhard, Markus and Weber, Tobias and Arent, Jan-Christoph}, title = {Efficiency enhancement for CFRP-Prepregautoclave manufacturing by means of simulation-assisted loading optimization}, series = {Proceedings of SAMPE Europe Conference 2021}, booktitle = {Proceedings of SAMPE Europe Conference 2021}, pages = {8 Seiten}, year = {2021}, abstract = {A new method for improved autoclave loading within the restrictive framework of helicopter manufacturing is proposed. It is derived from experimental and numerical studies of the curing process and aims at optimizing tooling positions in the autoclave for fast and homogeneous heat-up. The mold positioning is based on two sets of information. The thermal properties of the molds, which can be determined via semi-empirical thermal simulation. The second information is a previously determined distribution of heat transfer coefficients inside the autoclave. Finally, an experimental proof of concept is performed to show a cycle time reduction of up to 31\% using the proposed methodology.}, language = {en} } @inproceedings{ElMoussaouiKassmiAlexopoulosetal.2021, author = {El Moussaoui, Noureddine and Kassmi, Khalil and Alexopoulos, Spiros and Schwarzer, Klemens and Chayeb, Hamid and Bachiri, Najib}, title = {Simulation studies on a new innovative design of a hybrid solar distiller MSDH alimented with a thermal and photovoltaic energy}, series = {Materialstoday: Proceedings}, booktitle = {Materialstoday: Proceedings}, issn = {2214-7853}, doi = {10.1016/j.matpr.2021.03.115}, year = {2021}, language = {en} } @inproceedings{DeyElsenFerreinetal.2021, author = {Dey, Thomas and Elsen, Ingo and Ferrein, Alexander and Frauenrath, Tobias and Reke, Michael and Schiffer, Stefan}, title = {CO2 Meter: a do-it-yourself carbon dioxide measuring device for the classroom}, series = {PETRA 2021: The 14th PErvasive Technologies Related to Assistive Environments Conference}, booktitle = {PETRA 2021: The 14th PErvasive Technologies Related to Assistive Environments Conference}, editor = {Makedon, Fillia}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {9781450387927}, doi = {10.1145/3453892.3462697}, pages = {292 -- 299}, year = {2021}, abstract = {In this paper we report on CO2 Meter, a do-it-yourself carbon dioxide measuring device for the classroom. Part of the current measures for dealing with the SARS-CoV-2 pandemic is proper ventilation in indoor settings. This is especially important in schools with students coming back to the classroom even with high incidents rates. Static ventilation patterns do not consider the individual situation for a particular class. Influencing factors like the type of activity, the physical structure or the room occupancy are not incorporated. Also, existing devices are rather expensive and often provide only limited information and only locally without any networking. This leaves the potential of analysing the situation across different settings untapped. Carbon dioxide level can be used as an indicator of air quality, in general, and of aerosol load in particular. Since, according to the latest findings, SARS-CoV-2 can be transmitted primarily in the form of aerosols, carbon dioxide may be used as a proxy for the risk of a virus infection. Hence, schools could improve the indoor air quality and potentially reduce the infection risk if they actually had measuring devices available in the classroom. Our device supports schools in ventilation and it allows for collecting data over the Internet to enable a detailed data analysis and model generation. First deployments in schools at different levels were received very positively. A pilot installation with a larger data collection and analysis is underway.}, language = {en} } @inproceedings{ChajanSchulteTiggesRekeetal.2021, author = {Chajan, Eduard and Schulte-Tigges, Joschua and Reke, Michael and Ferrein, Alexander and Matheis, Dominik and Walter, Thomas}, title = {GPU based model-predictive path control for self-driving vehicles}, series = {IEEE Intelligent Vehicles Symposium (IV)}, booktitle = {IEEE Intelligent Vehicles Symposium (IV)}, publisher = {IEEE}, isbn = {978-1-7281-5394-0}, doi = {10.1109/IV48863.2021.9575619}, pages = {1243 -- 1248}, year = {2021}, abstract = {One central challenge for self-driving cars is a proper path-planning. Once a trajectory has been found, the next challenge is to accurately and safely follow the precalculated path. The model-predictive controller (MPC) is a common approach for the lateral control of autonomous vehicles. The MPC uses a vehicle dynamics model to predict the future states of the vehicle for a given prediction horizon. However, in order to achieve real-time path control, the computational load is usually large, which leads to short prediction horizons. To deal with the computational load, the control algorithm can be parallelized on the graphics processing unit (GPU). In contrast to the widely used stochastic methods, in this paper we propose a deterministic approach based on grid search. Our approach focuses on systematically discovering the search area with different levels of granularity. To achieve this, we split the optimization algorithm into multiple iterations. The best sequence of each iteration is then used as an initial solution to the next iteration. The granularity increases, resulting in smooth and predictable steering angle sequences. We present a novel GPU-based algorithm and show its accuracy and realtime abilities with a number of real-world experiments.}, language = {en} } @inproceedings{ButenwegMarinkovićPaveseetal.2021, author = {Butenweg, Christoph and Marinković, Marko and Pavese, Alberto and Lanese, Igor and Hoffmeister, Benno and Pinkawa, Marius and Vulcu, Mihai-Cristian and Bursi, Oreste and Nardin, Chiara and Paolacci, Fabrizio and Quinci, Gianluca and Fragiadakis, Michalis and Weber, Felix and Huber, Peter and Renault, Philippe and G{\"u}ndel, Max and Dyke, Shirley and Ciucci, M. and Marino, A.}, title = {Seismic performance of multi-component systems in special risk industrial facilities}, series = {17. World Conference on Earthquake Engineering , Sendai , Japan , 17WCEE , 2021-09-27 - 2021-10-02}, booktitle = {17. World Conference on Earthquake Engineering , Sendai , Japan , 17WCEE , 2021-09-27 - 2021-10-02}, year = {2021}, abstract = {Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi- Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behavior of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behavior of the test structure and installations is investigated with and without base isolation. Furthermore, both firmly anchored and isolated components are taken into account to compare their dynamic behavior and interactions with each other. Artificial and synthetic ground motions are applied to study the seismic response at different PGA levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the numerical simulations to calibrate the tests on the prototype, the experimental setup of the investigated structure and installations, selected measurement data and finally describes preliminary experimental results.}, language = {en} } @inproceedings{ButenwegBursiNardinetal.2021, author = {Butenweg, Christoph and Bursi, Oreste S. and Nardin, Chiara and Lanese, Igor and Pavese, Alberto and Marinković, Marko and Paolacci, Fabrizio and Quinci, Gianluca}, title = {Experimental investigation on the seismic performance of a multi-component system for major-hazard industrial facilities}, series = {Pressure Vessels \& Piping Virtual Conference July 13-15, 2021}, booktitle = {Pressure Vessels \& Piping Virtual Conference July 13-15, 2021}, publisher = {American Society of Mechanical Engineers (ASME)}, address = {New York}, isbn = {9780791885352}, doi = {10.1115/PVP2021-61696}, pages = {8 Seiten}, year = {2021}, abstract = {Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behaviour of the test structure and of its relative several installations is investigated. Furthermore, both process components and primary structure interactions are considered and analyzed. Several PGA-scaled artificial ground motions are applied to study the seismic response at different levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the experimental setup of the investigated structure and installations, selected measurement data and describes the obtained damage. Furthermore, important findings for the definition of performance limits, the effectiveness of floor response spectra in industrial facilities will be presented and discussed.}, language = {en} } @inproceedings{Butenweg2021, author = {Butenweg, Christoph}, title = {Integrated approach for monitoring and management of buildings with digital building models and modern sensor technologies}, series = {Civil Engineering 2021 - Achievements and Visions: Proceedings of the International Conferenecs celebrating 175th Anniversary of the Faculty of Civil Engineering, University of Belgrade, October 25 - 26, 2021 Belgrade, Serbia}, booktitle = {Civil Engineering 2021 - Achievements and Visions: Proceedings of the International Conferenecs celebrating 175th Anniversary of the Faculty of Civil Engineering, University of Belgrade, October 25 - 26, 2021 Belgrade, Serbia}, editor = {Kuzmanović, Vladan and Ignjatović, Ivan}, publisher = {University of Belgrade}, address = {Belgrade}, year = {2021}, language = {en} } @inproceedings{BornheimGriegerBialonski2021, author = {Bornheim, Tobias and Grieger, Niklas and Bialonski, Stephan}, title = {FHAC at GermEval 2021: Identifying German toxic, engaging, and fact-claiming comments with ensemble learning}, series = {Proceedings of the GermEval 2021 Workshop on the Identification of Toxic, Engaging, and Fact-Claiming Comments : 17th Conference on Natural Language Processing KONVENS 2021}, booktitle = {Proceedings of the GermEval 2021 Workshop on the Identification of Toxic, Engaging, and Fact-Claiming Comments : 17th Conference on Natural Language Processing KONVENS 2021}, publisher = {Heinrich Heine University}, address = {D{\"u}sseldorf}, doi = {10.48415/2021/fhw5-x128}, pages = {105 -- 111}, year = {2021}, language = {en} } @inproceedings{BalaskasHoffmeisterButenwegetal.2021, author = {Balaskas, Georgios and Hoffmeister, Benno and Butenweg, Christoph and Pilz, Marco and Bauer, Anna}, title = {Earthquake early warning and response system based on intelligent seismic and monitoring sensors embedded in a communication platform and coupled with BIM models}, series = {8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering}, booktitle = {8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering}, editor = {Papadrakakis, Manolis and Fragiadakis, Michalis}, publisher = {National Technical University of Athens}, address = {Athen}, isbn = {978-618-85072-5-8}, issn = {2623-3347}, doi = {10.7712/120121.8539.18855}, pages = {987 -- 998}, year = {2021}, abstract = {This paper describes the concept of an innovative, interdisciplinary, user-oriented earthquake warning and rapid response system coupled with a structural health monitoring system (SHM), capable to detect structural damages in real time. The novel system is based on interconnected decentralized seismic and structural health monitoring sensors. It is developed and will be exemplarily applied on critical infrastructures in Lower Rhine Region, in particular on a road bridge and within a chemical industrial facility. A communication network is responsible to exchange information between sensors and forward warnings and status reports about infrastructures'health condition to the concerned recipients (e.g., facility operators, local authorities). Safety measures such as emergency shutdowns are activated to mitigate structural damages and damage propagation. Local monitoring systems of the infrastructures are integrated in BIM models. The visualization of sensor data and the graphic representation of the detected damages provide spatial content to sensors data and serve as a useful and effective tool for the decision-making processes after an earthquake in the region under consideration.}, language = {en} }