@article{JordanKruegerWillmesetal.2011, author = {Jordan, Sabine D. and Kr{\"u}ger, Markus and Willmes, Diana M. and Redemann, Nora and Wunderlich, F. Thomas and Br{\"o}nneke, Hella S. and Merkwirth, Carsten and Kashkar, Hamid and Olkkonen, Vesa M. and B{\"o}ttger, Thomas and Braun, Thomas and Seibler, Jost and Br{\"u}ning, Jens C.}, title = {Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism}, series = {Nature Cell Biology}, volume = {13}, journal = {Nature Cell Biology}, number = {4}, publisher = {Nature}, address = {New York}, issn = {1465-7392}, doi = {10.1038/ncb2211}, pages = {434 -- 446}, year = {2011}, abstract = {The contribution of altered post-transcriptional gene silencing to the development of insulin resistance and type 2 diabetes mellitus so far remains elusive. Here, we demonstrate that expression of microRNA (miR)-143 and 145 is upregulated in the liver of genetic and dietary mouse models of obesity. Induced transgenic overexpression of miR-143, but not miR-145, impairs insulin-stimulated AKT activation and glucose homeostasis. Conversely, mice deficient for the miR-143-145 cluster are protected from the development of obesity-associated insulin resistance. Quantitative-mass-spectrometry-based analysis of hepatic protein expression in miR-143-overexpressing mice revealed miR-143-dependent downregulation of oxysterol-binding-protein-related protein (ORP) 8. Reduced ORP8 expression in cultured liver cells impairs the ability of insulin to induce AKT activation, revealing an ORP8-dependent mechanism of AKT regulation. Our experiments provide direct evidence that dysregulated post-transcriptional gene silencing contributes to the development of obesity-induced insulin resistance, and characterize the miR-143-ORP8 pathway as a potential target for the treatment of obesity-associated diabetes.}, language = {en} }