@article{MuschallikMolinnusBongaertsetal.2017, author = {Muschallik, Lukas and Molinnus, Denise and Bongaerts, Johannes and Pohl, Martina and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Siegert, Petra and Selmer, Thorsten}, title = {(R,R)-Butane-2,3-diol Dehydrogenase from Bacillus clausii DSM 8716T: Cloning and Expression of the bdhA-Gene, and Initial Characterization of Enzyme}, series = {Journal of Biotechnology}, volume = {258}, journal = {Journal of Biotechnology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-1656}, doi = {10.1016/j.jbiotec.2017.07.020}, pages = {41 -- 50}, year = {2017}, abstract = {The gene encoding a putative (R,R)-butane-2,3-diol dehydrogenase (bdhA) from Bacillus clausii DSM 8716T was isolated, sequenced and expressed in Escherichia coli. The amino acid sequence of the encoded protein is only distantly related to previously studied enzymes (identity 33-43\%) and exhibited some uncharted peculiarities. An N-terminally StrepII-tagged enzyme variant was purified and initially characterized. The isolated enzyme catalyzed the (R)-specific oxidation of (R,R)- and meso-butane-2,3-diol to (R)- and (S)-acetoin with specific activities of 12 U/mg and 23 U/mg, respectively. Likewise, racemic acetoin was reduced with a specific activity of up to 115 U/mg yielding a mixture of (R,R)- and meso-butane-2,3-diol, while the enzyme reduced butane-2,3-dione (Vmax 74 U/mg) solely to (R,R)-butane-2,3-diol via (R)-acetoin. For these reactions only activity with the co-substrates NADH/NAD+ was observed. The enzyme accepted a selection of vicinal diketones, α-hydroxy ketones and vicinal diols as alternative substrates. Although the physiological function of the enzyme in B. clausii remains elusive, the data presented herein clearly demonstrates that the encoded enzyme is a genuine (R,R)-butane-2,3-diol dehydrogenase with potential for applications in biocatalysis and sensor development.}, language = {en} } @misc{BanowskiWaldmannLaueWadleetal.2004, author = {Banowski, Bernhard and Waldmann-Laue, Marianne and Wadle, Armin and Siegert, Petra and S{\"a}ttler, Andreas}, title = {5-Lipoxigenase-Inhibitoren in Deodorantien und Antitranspirantien [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt}, address = {M{\"u}nchen / Den Hague}, pages = {1 -- 12}, year = {2004}, language = {de} } @article{HaegerBongaertsSiegert2022, author = {Haeger, Gerrit and Bongaerts, Johannes and Siegert, Petra}, title = {A convenient ninhydrin assay in 96-well format for amino acid-releasing enzymes using an air-stable reagent}, series = {Analytical Biochemistry}, journal = {Analytical Biochemistry}, number = {624}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1096-0309}, doi = {10.1016/j.ab.2022.114819}, pages = {Artikel 114819}, year = {2022}, abstract = {An improved and convenient ninhydrin assay for aminoacylase activity measurements was developed using the commercial EZ Nin™ reagent. Alternative reagents from literature were also evaluated and compared. The addition of DMSO to the reagent enhanced the solubility of Ruhemann's purple (RP). Furthermore, we found that the use of a basic, aqueous buffer enhances stability of RP. An acidic protocol for the quantification of lysine was developed by addition of glacial acetic acid. The assay allows for parallel processing in a 96-well format with measurements microtiter plates.}, language = {en} } @techreport{HaegerBongaertsSiegert2023, author = {Haeger, Gerrit and Bongaerts, Johannes and Siegert, Petra}, title = {Abschlussbericht Teil II: Eingehende Darstellung Neue biobasierte Lipopeptide aus nachhaltiger Produktion (LipoPep)}, pages = {17Seiten}, year = {2023}, language = {de} } @techreport{SiegertBongaertsWagneretal.2022, author = {Siegert, Petra and Bongaerts, Johannes and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Selmer, Thorsten}, title = {Abschlussbericht zum Projekt zur {\"U}berwachung biotechnologischer Prozesse mittels Diacetyl-/Acetoin-Biosensor und Evaluierung von Acetoin-Reduktasen zur Verwendung in Biotransformationen}, address = {Aachen}, organization = {FH Aachen}, pages = {16 Seiten}, year = {2022}, language = {de} } @article{PohlSiegertMeschetal.1998, author = {Pohl, Martina and Siegert, Petra and Mesch, K. and Bruhn, H. and Gr{\"o}tzinger, Joachim}, title = {Active site mutants of pyruvate decarboxylase from Zymomonas mobilis : a site-directed mutagenesis study of L112, I472, I476, E473 and N482}, series = {European journal of biochemistry}, volume = {Vol. 257}, journal = {European journal of biochemistry}, number = {Iss. 3}, issn = {1432-1033 (E-Journal); 1742-4658 (E-Journal); 0014-2956 (Print); 1742-464X (Print)}, pages = {538 -- 546}, year = {1998}, language = {en} } @misc{O'ConnellHovenSiegertetal.2007, author = {O'Connell, Timothy and Hoven, Nina and Siegert, Petra and Maurer, Karl-Heinz}, title = {Amadoriasen in Wasch- und Reinigungsmitteln [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 45}, year = {2007}, language = {de} } @article{BrahmaMusioIsmayilovaetal.2015, author = {Brahma, Aischarya and Musio, Biagia and Ismayilova, Uliviya and Nikbin, Nikzad and Kamptmann, Sonja B. and Siegert, Petra and Jeromin, G{\"u}nter Erich and Ley, Steven and Pohl, Martina}, title = {An orthogonal biocatalytic approach for the safe generation and use of HCN in a multi-step continuous preparation of chiral O-acetylcyanohydrins}, series = {Synlett}, journal = {Synlett}, number = {Publ. online 29.09.2015}, publisher = {Thieme}, address = {Stuttgart}, issn = {0936-5214 (Print) ; 1437-2096 (e-Journal)}, doi = {10.1055/s-0035-1560644}, year = {2015}, language = {de} } @article{IdingSiegertMeschetal.1998, author = {Iding, Hans and Siegert, Petra and Mesch, K. and Pohl, Martina}, title = {Application of α-keto acid decarboxylases in biotransformations}, series = {Biochimica et biophysica acta (BBA) - Protein structure and molecular enzymology}, volume = {Vol. 1385}, journal = {Biochimica et biophysica acta (BBA) - Protein structure and molecular enzymology}, number = {Iss. 2}, issn = {1879-2588 (E-Journal); 0167-4838 (Print)}, pages = {307 -- 322}, year = {1998}, language = {en} } @misc{BanowskiWadleSiegert2004, author = {Banowski, Bernhard and Wadle, Armin and Siegert, Petra}, title = {Arylsulfatase-Inhibitoren in Deodorantien und Antitranspirantien [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt}, address = {M{\"u}nchen / Den Hague}, pages = {1 -- 15}, year = {2004}, language = {de} } @misc{BanowskiWadleSiegert2003, author = {Banowski, Bernhard and Wadle, Armin and Siegert, Petra}, title = {Arylsulfatase-Inhibitoren in Deodorantien und Antitranspirantien [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt}, address = {M{\"u}nchen}, pages = {1 -- 20}, year = {2003}, language = {de} } @misc{BanowskiHoffmannWadleetal.2002, author = {Banowski, Bernhard and Hoffmann, Daniele and Wadle, Armin and Siegert, Petra and S{\"a}ttler, Andrea and Gerke, Thomas}, title = {Arylsulfatase-Inhibitoren in Deodorantien und Antitranspirantien [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Polish Patent Office / WIPO}, address = {M{\"u}nchen / Warsaw / Genf}, pages = {1 -- 22}, year = {2002}, language = {de} } @article{IdingDuennwaldGreineretal.2000, author = {Iding, Hans and D{\"u}nnwald, Thomas and Greiner, Lasse and Liese, Andreas and M{\"u}ller, Michael and Siegert, Petra and Gr{\"o}tzinger, Joachim and Demir, Ayhan S. and Pohl, Martina}, title = {Benzoylformate Decarboxylase from Pseudomonas putida as Stable Catalyst for the Synthesis of Chiral 2-Hydroxy Ketones}, series = {Chemistry - a European journal}, volume = {Vol. 6}, journal = {Chemistry - a European journal}, number = {Iss. 8}, issn = {1521-3765 (E-Journal); 0947-6539 (Print)}, pages = {1483 -- 1495}, year = {2000}, language = {en} } @misc{BankowskiHoffmannWadleetal.2003, author = {Bankowski, Bernhard and Hoffmann, Daniele and Wadle, Armin and Siegert, Petra and S{\"a}ttler, Andrea and Gerke, Thomas}, title = {Beta-Glucuronidase-Inhibitoren in Deodorantien und Antitranspirantien [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 24}, year = {2003}, language = {de} } @article{FalkenbergKohnBottetal.2023, author = {Falkenberg, Fabian and Kohn, Sophie and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {Biochemical characterisation of a novel broad pH spectrum subtilisin from Fictibacillus arsenicus DSM 15822ᵀ}, series = {FEBS Open Bio}, volume = {13}, journal = {FEBS Open Bio}, number = {11}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2211-5463}, doi = {10.1002/2211-5463.13701}, pages = {2035 -- 2046}, year = {2023}, abstract = {Subtilisins from microbial sources, especially from the Bacillaceae family, are of particular interest for biotechnological applications and serve the currently growing enzyme market as efficient and novel biocatalysts. Biotechnological applications include use in detergents, cosmetics, leather processing, wastewater treatment and pharmaceuticals. To identify a possible candidate for the enzyme market, here we cloned the gene of the subtilisin SPFA from Fictibacillus arsenicus DSM 15822ᵀ (obtained through a data mining-based search) and expressed it in Bacillus subtilis DB104. After production and purification, the protease showed a molecular mass of 27.57 kDa and a pI of 5.8. SPFA displayed hydrolytic activity at a temperature optimum of 80 °C and a very broad pH optimum between 8.5 and 11.5, with high activity up to pH 12.5. SPFA displayed no NaCl dependence but a high NaCl tolerance, with decreasing activity up to concentrations of 5 m NaCl. The stability enhanced with increasing NaCl concentration. Based on its substrate preference for 10 synthetic peptide 4-nitroanilide substrates with three or four amino acids and its phylogenetic classification, SPFA can be assigned to the subgroup of true subtilisins. Moreover, SPFA exhibited high tolerance to 5\% (w/v) SDS and 5\% H₂O₂ (v/v). The biochemical properties of SPFA, especially its tolerance of remarkably high pH, SDS and H₂O₂, suggest it has potential for biotechnological applications.}, language = {en} } @article{FalkenbergRahbaFischeretal.2022, author = {Falkenberg, Fabian and Rahba, Jade and Fischer, David and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {Biochemical characterization of a novel oxidatively stable, halotolerant, and high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101T}, series = {FEBS Open Bio}, volume = {12}, journal = {FEBS Open Bio}, number = {10}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2211-5463}, doi = {10.1002/2211-5463.13457}, pages = {1729 -- 1746}, year = {2022}, abstract = {Halophilic and halotolerant microorganisms represent a promising source of salt-tolerant enzymes suitable for various biotechnological applications where high salt concentrations would otherwise limit enzymatic activity. Considering the current growing enzyme market and the need for more efficient and new biocatalysts, the present study aimed at the characterization of a high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101T. The protease gene was cloned and expressed in Bacillus subtilis DB104. The recombinant protease SPAO with 269 amino acids belongs to the subfamily of high-alkaline subtilisins. The biochemical characteristics of purified SPAO were analyzed in comparison with subtilisin Carlsberg, Savinase, and BPN'. SPAO, a monomer with a molecular mass of 27.1 kDa, was active over a wide range of pH 6.0-12.0 and temperature 20-80 °C, optimally at pH 9.0-9.5 and 55 °C. The protease is highly oxidatively stable to hydrogen peroxide and retained 58\% of residual activity when incubated at 10 °C with 5\% (v/v) H2O2 for 1 h while stimulated at 1\% (v/v) H2O2. Furthermore, SPAO was very stable and active at NaCl concentrations up to 5.0 m. This study demonstrates the potential of SPAO for biotechnological applications in the future.}, language = {en} } @inproceedings{SiegertIdingBaumannetal.2000, author = {Siegert, Petra and Iding, Hans and Baumann, Martin and McLeish, Michael J. and Kenyon, George L. and Pohl, Martina}, title = {Broadening of the substrate spectra of two ThDP-dependent decarboxylases using site-directed-mutagenesis}, series = {Proceedings of the 4th International Congress on Biochemical Engineering : 17 and 18 February 2000, Stuttgart}, booktitle = {Proceedings of the 4th International Congress on Biochemical Engineering : 17 and 18 February 2000, Stuttgart}, organization = {International Congress on Biochemical Engineering <4, 2000, Stuttgart>}, isbn = {3-8167-5570-4}, pages = {38 -- 42}, year = {2000}, language = {en} } @article{RibitschKarlBirnerGruenbergeretal.2010, author = {Ribitsch, D. and Karl, W. and Birner-Gruenberger, R. and Gruber, K. and Eiteljoerg, I. and Remler, P. and Wieland, S. and Siegert, Petra and Maurer, Karl-Heinz and Schwab, H.}, title = {C-terminal truncation of a metagenome-derived detergent protease for effective expression in E. coli}, series = {Journal of biotechnology}, volume = {150}, journal = {Journal of biotechnology}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4863 (E-Journal); 0168-1656 (Print)}, doi = {10.1016/j.jbiotec.2010.09.947}, pages = {408 -- 416}, year = {2010}, abstract = {Recently, a new alkaline protease named HP70 showing highest homology to extracellular serine proteases of Stenotrophomonas maltophilia and Xanthomonas campestris was found in the course of a metagenome screening for detergent proteases (Niehaus et al., submitted for publication). Attempts to efficiently express the enzyme in common expression hosts had failed. This study reports on the realization of overexpression in Escherichia coli after structural modification of HP70. Modelling of HP70 resulted in a two-domain structure, comprising the catalytic domain and a C-terminal domain which includes about 100 amino acids. On the basis of the modelled structure the enzyme was truncated by deletion of most of the C-terminal domain yielding HP70-C477. This structural modification allowed effective expression of active enzyme using E. coli BL21-Gold as the host. Specific activity of HP70-C477 determined with suc-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide as the substrate was 30 ± 5 U/mg compared to 8 ± 1 U/mg of the native enzyme. HP70-C477 was most active at 40 °C and pH 7-11; these conditions are prerequisite for a potential application as detergent enzyme. Determination of kinetic parameters at 40 °C and pH = 9.5 resulted in KM = 0.23 ± 0.01 mM and kcat = 167.5 ± 3.6 s⁻¹. MS-analysis of peptide fragments obtained from incubation of HP70 and HP70-C477 with insulin B indicated that the C-terminal domain influences the cleavage preferences of the enzyme. Washing experiments confirmed the high potential of HP70-C477 as detergent protease.}, language = {en} } @article{JablonskiMuenstermannNorketal.2021, author = {Jablonski, Melanie and M{\"u}nstermann, Felix and Nork, Jasmina and Molinnus, Denise and Muschallik, Lukas and Bongaerts, Johannes and Wagner, Torsten and Keusgen, Michael and Siegert, Petra and Sch{\"o}ning, Michael Josef}, title = {Capacitive field-effect biosensor applied for the detection of acetoin in alcoholic beverages and fermentation broths}, series = {physica status solidi (a) applications and materials science}, volume = {218}, journal = {physica status solidi (a) applications and materials science}, number = {13}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202000765}, pages = {7 Seiten}, year = {2021}, abstract = {An acetoin biosensor based on a capacitive electrolyte-insulator-semiconductor (EIS) structure modified with the enzyme acetoin reductase, also known as butane-2,3-diol dehydrogenase (Bacillus clausii DSM 8716ᵀ), is applied for acetoin detection in beer, red wine, and fermentation broth samples for the first time. The EIS sensor consists of an Al/p-Si/SiO₂/Ta₂O₅ layer structure with immobilized acetoin reductase on top of the Ta₂O₅ transducer layer by means of crosslinking via glutaraldehyde. The unmodified and enzyme-modified sensors are electrochemically characterized by means of leakage current, capacitance-voltage, and constant capacitance methods, respectively.}, language = {en} } @incollection{WendorffEggertPohletal.2007, author = {Wendorff, Marion and Eggert, Thorsten and Pohl, Martina and Dresen, Carola and M{\"u}ller, Michael and Jaeger, Karl-Erich and Sprenger, Georg A. and Sch{\"u}rmann, Melanie and Sch{\"u}rmann, Martin and Johnen, Sandra and Sprenger, Gerda and Sahm, Hermann and Inoue, Tomoyuki and Sch{\"o}rken, Ulrich and Breittaupt, Holger and Fr{\"o}lich, Bettina and Heim, Petra and Iding, Hans and Juchem, Bettina and Siegert, Petra and Kula, Maria-Regina and Weckbecker, Andrea and Hummel, Werner and Fessner, Wolf-Dieter and Elling, Lothar and Wolberg, Michael and Bode, Silke and Feldmann, Ralf and Geilenkirchen, Petra and Schubert, Thomas and Walter, Lydia and D{\"u}nnwald, Thomas and Demir, Ayhan S. and Kolter-Jung, Doris and Nitsche, Adam and D{\"u}nkelmann, Pascal and Cosp, Annabel and Lingen, Bettina}, title = {Catalytic asymmetric synthesis : section 2.2}, series = {Asymmetric synthesis with chemical and biological methods / ed. by Dieter Enders ...}, booktitle = {Asymmetric synthesis with chemical and biological methods / ed. by Dieter Enders ...}, publisher = {Wiley-VCH}, address = {Weinheim}, isbn = {978-3-527-31473-7}, pages = {298 -- 413}, year = {2007}, language = {en} } @article{HaegerWirgesTanzmannetal.2023, author = {Haeger, Gerrit and Wirges, Jessika and Tanzmann, Nicole and Oyen, Sven and Jolmes, Tristan and Jaeger, Karl-Erich and Sch{\"o}rken, Ulrich and Bongaerts, Johannes and Siegert, Petra}, title = {Chaperone assisted recombinant expression of a mycobacterial aminoacylase in Vibrio natriegens and Escherichia coli capable of N-lauroyl-L-amino acid synthesis}, series = {Microbial Cell Factories}, journal = {Microbial Cell Factories}, number = {22}, publisher = {Springer Nature}, issn = {1475-2859}, doi = {10.1186/s12934-023-02079-1}, pages = {Article number: 77 (2023)}, year = {2023}, abstract = {Background Aminoacylases are highly promising enzymes for the green synthesis of acyl-amino acids, potentially replacing the environmentally harmful Schotten-Baumann reaction. Long-chain acyl-amino acids can serve as strong surfactants and emulsifiers, with application in cosmetic industries. Heterologous expression of these enzymes, however, is often hampered, limiting their use in industrial processes. Results We identified a novel mycobacterial aminoacylase gene from Mycolicibacterium smegmatis MKD 8, cloned and expressed it in Escherichia coli and Vibrio natriegens using the T7 overexpression system. The recombinant enzyme was prone to aggregate as inclusion bodies, and while V. natriegens Vmax™ could produce soluble aminoacylase upon induction with isopropyl β-d-1-thiogalactopyranoside (IPTG), E. coli BL21 (DE3) needed autoinduction with lactose to produce soluble recombinant protein. We successfully conducted a chaperone co-expression study in both organisms to further enhance aminoacylase production and found that overexpression of chaperones GroEL/S enhanced aminoacylase activity in the cell-free extract 1.8-fold in V. natriegens and E. coli. Eventually, E. coli ArcticExpress™ (DE3), which co-expresses cold-adapted chaperonins Cpn60/10 from Oleispira antarctica, cultivated at 12 °C, rendered the most suitable expression system for this aminoacylase and exhibited twice the aminoacylase activity in the cell-free extract compared to E. coli BL21 (DE3) with GroEL/S co-expression at 20 °C. The purified aminoacylase was characterized based on hydrolytic activities, being most stable and active at pH 7.0, with a maximum activity at 70 °C, and stability at 40 °C and pH 7.0 for 5 days. The aminoacylase strongly prefers short-chain acyl-amino acids with smaller, hydrophobic amino acid residues. Several long-chain amino acids were fairly accepted in hydrolysis as well, especially N-lauroyl-L-methionine. To initially evaluate the relevance of this aminoacylase for the synthesis of N-acyl-amino acids, we demonstrated that lauroyl-methionine can be synthesized from lauric acid and methionine in an aqueous system. Conclusion Our results suggest that the recombinant enzyme is well suited for synthesis reactions and will thus be further investigated.}, language = {en} } @article{DuennwaldDemirSiegertetal.2001, author = {D{\"u}nnwald, Thomas and Demir, Ayhan S. and Siegert, Petra and Pohl, Martina and M{\"u}ller, Michael}, title = {ChemInform Abstract: Enantioselective synthesis of (S)-2-Hydroxypropanone derivatives by Benzoylformate Decarboxylase Catalyzed C—C Bond Formation}, series = {Cheminform}, volume = {Vol. 32}, journal = {Cheminform}, number = {Iss. 4}, issn = {1522-2667 (E-Journal); 0931-7597 (Print)}, pages = {Publ. online}, year = {2001}, language = {en} } @article{WeldenSeverinsPoghossianetal.2022, author = {Welden, Melanie and Severins, Robin and Poghossian, Arshak and Wege, Christina and Bongaerts, Johannes and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of acetoin and diacetyl by a tobacco mosaic virus-assisted field-effect biosensor}, series = {Chemosensors}, volume = {10}, journal = {Chemosensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors10060218}, pages = {Artikel 218}, year = {2022}, abstract = {Acetoin and diacetyl have a major impact on the flavor of alcoholic beverages such as wine or beer. Therefore, their measurement is important during the fermentation process. Until now, gas chromatographic techniques have typically been applied; however, these require expensive laboratory equipment and trained staff, and do not allow for online monitoring. In this work, a capacitive electrolyte-insulator-semiconductor sensor modified with tobacco mosaic virus (TMV) particles as enzyme nanocarriers for the detection of acetoin and diacetyl is presented. The enzyme acetoin reductase from Alkalihalobacillus clausii DSM 8716ᵀ is immobilized via biotin-streptavidin affinity, binding to the surface of the TMV particles. The TMV-assisted biosensor is electrochemically characterized by means of leakage-current, capacitance-voltage, and constant capacitance measurements. In this paper, the novel biosensor is studied regarding its sensitivity and long-term stability in buffer solution. Moreover, the TMV-assisted capacitive field-effect sensor is applied for the detection of diacetyl for the first time. The measurement of acetoin and diacetyl with the same sensor setup is demonstrated. Finally, the successive detection of acetoin and diacetyl in buffer and in diluted beer is studied by tuning the sensitivity of the biosensor using the pH value of the measurement solution.}, language = {en} } @article{MolinnusBaeckerSiegertetal.2015, author = {Molinnus, Denise and B{\"a}cker, Matthias and Siegert, Petra and Willenberg, H. and Poghossian, Arshak and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Detection of Adrenaline Based on Substrate Recycling Amplification}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.708}, pages = {540 -- 543}, year = {2015}, abstract = {An amperometric enzyme biosensor has been applied for the detection of adrenaline. The adrenaline biosensor has been prepared by modification of an oxygen electrode with the enzyme laccase that operates at a broad pH range between pH 3.5 to pH 8. The enzyme molecules were immobilized via cross-linking with glutaraldehyde. The sensitivity of the developed adrenaline biosensor in different pH buffer solutions has been studied.}, language = {en} } @article{MolinnusHardtSiegertetal.2018, author = {Molinnus, Denise and Hardt, Gabriel and Siegert, Petra and Willenberg, Holger S. and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of Adrenaline in Blood Plasma as Biomarker for Adrenal Venous Sampling}, series = {Electroanalysis}, volume = {30}, journal = {Electroanalysis}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.201800026}, pages = {937 -- 942}, year = {2018}, abstract = {An amperometric bi-enzyme biosensor based on substrate recycling principle for the amplification of the sensor signal has been developed for the detection of adrenaline in blood. Adrenaline can be used as biomarker verifying successful adrenal venous sampling procedure. The adrenaline biosensor has been realized via modification of a galvanic oxygen sensor with a bi-enzyme membrane combining a genetically modified laccase and a pyrroloquinoline quinone-dependent glucose dehydrogenase. The measurement conditions such as pH value and temperature were optimized to enhance the sensor performance. A high sensitivity and a low detection limit of about 0.5-1 nM adrenaline have been achieved in phosphate buffer at pH 7.4, relevant for measurements in blood samples. The sensitivity of the biosensor to other catecholamines such as noradrenaline, dopamine and dobutamine has been studied. Finally, the sensor has been successfully applied for the detection of adrenaline in human blood plasma.}, language = {en} } @article{MolinnusMuschallikGonzalezetal.2018, author = {Molinnus, Denise and Muschallik, Lukas and Gonzalez, Laura Osorio and Bongaerts, Johannes and Wagner, Torsten and Selmer, Thorsten and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development and characterization of a field-effect biosensor for the detection of acetoin}, series = {Biosensors and Bioelectronics}, volume = {115}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.bios.2018.05.023}, pages = {1 -- 6}, year = {2018}, abstract = {A capacitive electrolyte-insulator-semiconductor (EIS) field-effect biosensor for acetoin detection has been presented for the first time. The EIS sensor consists of a layer structure of Al/p-Si/SiO₂/Ta₂O₅/enzyme acetoin reductase. The enzyme, also referred to as butane-2,3-diol dehydrogenase from B. clausii DSM 8716T, has been recently characterized. The enzyme catalyzes the (R)-specific reduction of racemic acetoin to (R,R)- and meso-butane-2,3-diol, respectively. Two different enzyme immobilization strategies (cross-linking by using glutaraldehyde and adsorption) have been studied. Typical biosensor parameters such as optimal pH working range, sensitivity, hysteresis, linear concentration range and long-term stability have been examined by means of constant-capacitance (ConCap) mode measurements. Furthermore, preliminary experiments have been successfully carried out for the detection of acetoin in diluted white wine samples.}, language = {en} } @article{DuenkelmannKolterJungNitscheetal.2002, author = {D{\"u}nkelmann, Pascal and Kolter-Jung, Doris and Nitsche, Adam and Demir, Ayhan S. and Siegert, Petra and Lingen, Bettina and Baumann, Martin and Pohl, Martina and M{\"u}ller, Michael}, title = {Development of a donor-acceptor concept for enzymatic cross-coupling reactions of adehydes : the first asymmetric cross-benzoin condensation}, series = {Journal of the American Chemical Society}, volume = {Vol. 124}, journal = {Journal of the American Chemical Society}, issn = {1520-5126 (E-Journal); 0002-7863 (Print)}, pages = {12084 -- 12085}, year = {2002}, language = {en} } @article{DuennwaldDemirSiegertetal.2000, author = {D{\"u}nnwald, Thomas and Demir, Ayhan S. and Siegert, Petra and Pohl, Martina and M{\"u}ller, Michael}, title = {Enantioselective Synthesis of (S)-2-Hydroxypropanone Derivatives by Benzoylformate Decarboxylase Catalyzed C-C Bond Formation}, series = {European journal of organic chemistry}, volume = {Vol. 2000}, journal = {European journal of organic chemistry}, number = {Iss. 11}, issn = {0365-5490 (E-Journal); 1099-0690 (E-Journal); 0075-4617 (Print); 0170-2041 (Print); 0947-3440 (Print); 1434-193X (Print); 1434-243X (Print)}, pages = {2161 -- 2170}, year = {2000}, language = {en} } @article{NiehausGaborWielandetal.2011, author = {Niehaus, F. and Gabor, E. and Wieland, S. and Siegert, Petra and Maurer, Karl-Heinz and Eck, J.}, title = {Enzymes for the laundry industries: tapping the vast metagenomic pool of alkaline proteases}, series = {Microbial biotechnology}, volume = {Vol. 4}, journal = {Microbial biotechnology}, number = {Iss. 6}, publisher = {Springer}, address = {Berlin}, issn = {1432-0614 (E-Journal); 0171-1741 (Print); 0175-7598 (Print); 0340-2118 (Print)}, pages = {767 -- 776}, year = {2011}, language = {en} } @article{SiegertMcLeishBaumannetal.2005, author = {Siegert, Petra and McLeish, Michael J. and Baumann, Martin and Iding, Hans and Kneen, Malea M. and Kenyon, George L. and Pohl, Martina}, title = {Exchanging the substrate specificities of pyruvate decarboxylase from Zymomonas mobilis and benzoylformate decarboxylase from Pseudomonas putida}, series = {Protein engineering, design, and selection : peds}, volume = {Vol. 18}, journal = {Protein engineering, design, and selection : peds}, number = {Iss. 7}, issn = {1460-213X (E-Journal); 1741-0134 (E-Journal); 0269-2139 (Print); 1741-0126 (Print)}, pages = {345 -- 357}, year = {2005}, language = {en} } @incollection{SiegertPohlKneenetal.2004, author = {Siegert, Petra and Pohl, Martina and Kneen, Malea M. and Pogozheva, Irina D. and Kenyon, George L. and McLeish, Michael J.}, title = {Exploring the substrate specificity of benzoylformate decarboxylase, pyruvate decarboxylase, and benzaldehyde lyase}, series = {Thiamine : catalytic mechanisms in normal and disease states / ed. by Frank Jordan ...}, booktitle = {Thiamine : catalytic mechanisms in normal and disease states / ed. by Frank Jordan ...}, publisher = {Dekker}, address = {New York, NY}, isbn = {0-8247-4062-9}, pages = {275 -- 290}, year = {2004}, language = {en} } @article{RibitschHeumannKarletal.2012, author = {Ribitsch, D. and Heumann, S. and Karl, W. and Gerlach, J. and Leber, R. and Birner-Gruenberger, R. and Gruber, K. and Eiteljoerg, I. and Remler, P. and Siegert, Petra and Lange, J. and Maurer, Karl-Heinz and Berg, G. and Guebitz, G. M. and Schwab, H.}, title = {Extracellular serine proteases from Stenotrophomonas maltophilia: Screening, isolation and heterologous expression in E. coli}, series = {Journal of biotechnology}, volume = {157}, journal = {Journal of biotechnology}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4863 (E-Journal); 0168-1656 (Print)}, doi = {10.1016/j.jbiotec.2011.09.025}, pages = {140 -- 147}, year = {2012}, abstract = {A large strain collection comprising antagonistic bacteria was screened for novel detergent proteases. Several strains displayed protease activity on agar plates containing skim milk but were inactive in liquid media. Encapsulation of cells in alginate beads induced protease production. Stenotrophomonas maltophilia emerged as best performer under washing conditions. For identification of wash-active proteases, four extracellular serine proteases called StmPr1, StmPr2, StmPr3 and StmPr4 were cloned. StmPr2 and StmPr4 were sufficiently overexpressed in E. coli. Expression of StmPr1 and StmPr3 resulted in unprocessed, insoluble protein. Truncation of most of the C-terminal domain which has been identified by enzyme modeling succeeded in expression of soluble, active StmPr1 but failed in case of StmPr3. From laundry application tests StmPr2 turned out to be a highly wash-active protease at 45 °C. Specific activity of StmPr2 determined with suc-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide as the substrate was 17 ± 2 U/mg. In addition we determined the kinetic parameters and cleavage preferences of protease StmPr2.}, language = {en} } @misc{MaurerO'ConnellSiegertetal.2012, author = {Maurer, Karl-Heinz and O'Connell, Timothy and Siegert, Petra and Weber, Thomas and Tondera, Susanne and Hellmuth, Hendrik}, title = {Fl{\"u}ssige Tensidzubereitung enthaltend Lipase und Phosphonat [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 22}, year = {2012}, language = {de} } @article{RibitschHeumannTrotschaetal.2011, author = {Ribitsch, D. and Heumann, S. and Trotscha, E. and Herrero Acero, E. and Greimel, K. and Leber, R. and Birger-Gruenberger, R. and Deller, S. and Eiteljoerg, I. and Remler, P. and Weber, Th. and Siegert, Petra and Maurer, Karl-Heinz and Donelli, I. and Freddi, G. and Schwab, H. and Guebitz, G. M.}, title = {Hydrolysis of polyethyleneterephthalate by p-nitrobenzylesterase from Bacillus subtilis}, series = {Biotechnology progress}, volume = {Vol. 27}, journal = {Biotechnology progress}, number = {Iss. 4}, publisher = {Wiley}, address = {Hoboken}, issn = {1520-6033 (E-Journal); 8756-7938 (Print)}, pages = {951 -- 960}, year = {2011}, language = {en} } @article{MartinezJakobTuetal.2013, author = {Martinez, Ronny and Jakob, Felix and Tu, Ran and Siegert, Petra and Maurer, Karl-Heinz and Schwaneberg, Ulrich}, title = {Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution}, series = {Biotechnology and bioengineering}, volume = {Vol. 110}, journal = {Biotechnology and bioengineering}, number = {Iss. 3}, publisher = {Wiley}, address = {Weinheim}, issn = {1097-0290 (E-Journal); 0006-3592 (Print); 0368-1467 (Print)}, pages = {711 -- 720}, year = {2013}, language = {en} } @misc{WielandSiegertSpitzetal.2011, author = {Wieland, Susanne and Siegert, Petra and Spitz, Astrid and Maurer, Karl-Heinz and O'Connell, Timothy and Pr{\"u}ser, Inken and Schiedel, Marc-Steffen and Eiting, Thomas and Sendor-M{\"u}ller, Dorota and Bastigkeit, Thorsten and Benda, Konstantin and M{\"u}ller, Sven}, title = {Lagerstabiles fl{\"u}ssiges Wasch- oder Reinigungsmittel enthaltend Proteasen [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 25}, year = {2011}, language = {de} } @misc{BesslerEversMaureretal.2009, author = {Bessler, Cornelius and Evers, Stefan and Maurer, Karl-Heinz and Merkel, Marion and Siegert, Petra and Weber, Angrit and Wieland, Susanne}, title = {Leistungsverbesserte Proteasen und Wasch- und Reinigungsmittel enthaltend diese Proteasen [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / WIPO}, address = {M{\"u}nchen / Genf}, pages = {1 -- 41}, year = {2009}, language = {de} } @misc{SiegertSchwanebergMartinezMoyaetal.2012, author = {Siegert, Petra and Schwaneberg, Ulrich and Martinez Moya, Ronny and Merkel, Marion and Spitz, Astrid and Wieland, Susanne and Hellmuth, Hendrik and Maurer, Karl-Heinz}, title = {Leistungsverbesserte Proteasevariante [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 29}, year = {2012}, language = {de} } @misc{BanowskiWadleSiegertetal.2004, author = {Banowski, Bernhard and Wadle, Armin and Siegert, Petra and S{\"a}ttler, Andrea}, title = {Lipase-Inhibitoren in Deodorantien und Antitranspirantien [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt}, address = {M{\"u}nchen / Den Hague}, pages = {1 -- 22}, year = {2004}, language = {de} } @misc{O'ConnellSiegertMaureretal.2010, author = {O'Connell, Timothy and Siegert, Petra and Maurer, Karl-Heinz and Schiedel, Marc-Steffen and Vockenroth, Inga Kerstin}, title = {Method for improving the cleaning action of a detergent or cleaning agent [Internationale Patentanmeldung]}, publisher = {WIPO}, address = {Genf}, pages = {1 -- 15}, year = {2010}, language = {en} } @misc{BergBesslerGerlachetal.2009, author = {Berg, Gabriele and Bessler, Cornelius and Gerlach, Jochen and G{\"u}bitz, Georg and Heumann, Sonja and Karl, Wolfgang and Maurer, Karl-Heinz and Remler, Peter and Ribitsch, Doris and Schwab, Helmut and Siegert, Petra and Wieland, Susanne}, title = {Mittel enthaltend Proteasen aus Stenotrophomonas maltophilia [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / USPTO / WIPO}, address = {M{\"u}nchen / Den Hague / Washington / Genf}, pages = {1 -- 47}, year = {2009}, language = {de} } @misc{SiegertWielandEngelskirchenetal.2008, author = {Siegert, Petra and Wieland, Susanne and Engelskirchen, Julia and Merkel, Marion and Maurer, Karl-Heinz and Bessler, Cornelius}, title = {Neue Alkalische Protease aus Bacillus gibsonii und Wasch- und Reinigungsmittel enthaltend diese neue Alkalische Protease [Offenlegungsschrift]}, publisher = {Deutsches Patentamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 51}, year = {2008}, language = {de} } @misc{MerkelWeberSiegertetal.2006, author = {Merkel, Marion and Weber, Angrit and Siegert, Petra and Wieland, Susanne and Maurer, Karl-Heinz and Bessler, Cornelius}, title = {Neue Alkalische Protease aus Bacillus gibsonii und Wasch- und Reinigungsmittel enthaltend diese neue Alkalische Protease [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / WIPO}, address = {M{\"u}nchen / Genf}, pages = {1 -- 46}, year = {2006}, language = {de} } @misc{SiegertMerkelKluinetal.2011, author = {Siegert, Petra and Merkel, Marion and Kluin, Cornelia and Maurer, Karl-Heinz and O'Connell, Timothy and Wieland, Susanne and Hellmuth, Hendrik}, title = {Neue Proteasen und diese enthaltende Mittel [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 21}, year = {2011}, language = {de} } @misc{SiegertMussmannO'Connelletal.2010, author = {Siegert, Petra and Mussmann, Nina and O'Connell, Timothy and Maurer, Karl-Heinz}, title = {Neue Proteasen und Mittel enthaltend diese Proteasen [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / WIPO}, address = {M{\"u}nchen / Genf}, pages = {1 -- 30}, year = {2010}, language = {de} } @misc{SiegertBaumstarkKluinetal.2010, author = {Siegert, Petra and Baumstark, Rebecca and Kluin, Cornelia and O'Connell, Timothy and Maurer, Karl-Heinz and Hellmuth, Hendrik}, title = {Neue Proteasen und Mittel enthaltend diese Proteasen [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt}, address = {M{\"u}nchen}, pages = {1 -- 30}, year = {2010}, language = {de} } @misc{SiegertSpitzMaurer2010, author = {Siegert, Petra and Spitz, Astrid and Maurer, Karl-Heinz}, title = {Neue Proteasen und Mittel enthaltend diese Proteasen [Offenlegungsschrift]}, publisher = {Deutsches Patentamt / WIPO}, address = {M{\"u}nchen / Genf}, pages = {1 -- 31}, year = {2010}, language = {de} } @article{FalkenbergVossBottetal.2023, author = {Falkenberg, Fabian and Voß, Leonie and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {New robust subtilisins from halotolerant and halophilic Bacillaceae}, series = {Applied Microbiology and Biotechnology}, volume = {107}, journal = {Applied Microbiology and Biotechnology}, publisher = {Springer Nature}, address = {Berlin}, issn = {1432-0614}, doi = {10.1007/s00253-023-12553-w}, pages = {3939 -- 3954}, year = {2023}, abstract = {The aim of the present study was the characterisation of three true subtilisins and one phylogenetically intermediate subtilisin from halotolerant and halophilic microorganisms. Considering the currently growing enzyme market for efficient and novel biocatalysts, data mining is a promising source for novel, as yet uncharacterised enzymes, especially from halophilic or halotolerant Bacillaceae, which offer great potential to meet industrial needs. Both halophilic bacteria Pontibacillus marinus DSM 16465ᵀ and Alkalibacillus haloalkaliphilus DSM 5271ᵀ and both halotolerant bacteria Metabacillus indicus DSM 16189 and Litchfieldia alkalitelluris DSM 16976ᵀ served as a source for the four new subtilisins SPPM, SPAH, SPMI and SPLA. The protease genes were cloned and expressed in Bacillus subtilis DB104. Purification to apparent homogeneity was achieved by ethanol precipitation, desalting and ion-exchange chromatography. Enzyme activity could be observed between pH 5.0-12.0 with an optimum for SPPM, SPMI and SPLA around pH 9.0 and for SPAH at pH 10.0. The optimal temperature for SPMI and SPLA was 70 °C and for SPPM and SPAH 55 °C and 50 °C, respectively. All proteases showed high stability towards 5\% (w/v) SDS and were active even at NaCl concentrations of 5 M. The four proteases demonstrate potential for future biotechnological applications.}, language = {en} } @article{HaegerProbstJaegeretal.2023, author = {Haeger, Gerrit and Probst, Johanna and Jaeger, Karl-Erich and Bongaerts, Johannes and Siegert, Petra}, title = {Novel aminoacylases from Streptomyces griseus DSM 40236 and their recombinant production in Streptomyces lividans}, series = {FEBS Open Bio}, volume = {13}, journal = {FEBS Open Bio}, number = {12}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2211-5463}, doi = {10.1002/2211-5463.13723}, pages = {2224 -- 2238}, year = {2023}, abstract = {Amino acid-based surfactants are valuable compounds for cosmetic formulations. The chemical synthesis of acyl-amino acids is conventionally performed by the Schotten-Baumann reaction using fatty acyl chlorides, but aminoacylases have also been investigated for use in biocatalytic synthesis with free fatty acids. Aminoacylases and their properties are diverse; they belong to different peptidase families and show differences in substrate specificity and biocatalytic potential. Bacterial aminoacylases capable of synthesis have been isolated from Burkholderia, Mycolicibacterium, and Streptomyces. Although several proteases and peptidases from S. griseus have been described, no aminoacylases from this species have been identified yet. In this study, we investigated two novel enzymes produced by S. griseus DSM 40236ᵀ . We identified and cloned the respective genes and recombinantly expressed an α-aminoacylase (EC 3.5.1.14), designated SgAA, and an ε-lysine acylase (EC 3.5.1.17), designated SgELA, in S. lividans TK23. The purified aminoacylase SgAA was biochemically characterized, focusing on its hydrolytic activity to determine temperature- and pH optima and stabilities. The aminoacylase could hydrolyze various acetyl-amino acids at the Nα -position with a broad specificity regarding the sidechain. Substrates with longer acyl chains, like lauroyl-amino acids, were hydrolyzed to a lesser extent. Purified aminoacylase SgELA specific for the hydrolysis of Nε -acetyl-L-lysine was unstable and lost its enzymatic activity upon storage for a longer period but could initially be characterized. The pH optimum of SgELA was pH 8.0. While synthesis of acyl-amino acids was not observed with SgELA, SgAA catalyzed the synthesis of lauroyl-methionine.}, language = {en} } @article{HaegerJolmesOyenetal.2024, author = {Haeger, Gerrit and Jolmes, Tristan and Oyen, Sven and Jaeger, Karl-Erich and Bongaerts, Johannes and Sch{\"o}rken, Ulrich and Siegert, Petra}, title = {Novel recombinant aminoacylase from Paraburkholderia monticola capable of N-acyl-amino acid synthesis}, series = {Applied Microbiology and Biotechnology}, journal = {Applied Microbiology and Biotechnology}, number = {108}, publisher = {Springer}, address = {Berlin}, issn = {1432-0614}, doi = {10.1007/s00253-023-12868-8}, pages = {14 Seiten}, year = {2024}, abstract = {N-Acyl-amino acids can act as mild biobased surfactants, which are used, e.g., in baby shampoos. However, their chemical synthesis needs acyl chlorides and does not meet sustainability criteria. Thus, the identification of biocatalysts to develop greener synthesis routes is desirable. We describe a novel aminoacylase from Paraburkholderia monticola DSM 100849 (PmAcy) which was identified, cloned, and evaluated for its N-acyl-amino acid synthesis potential. Soluble protein was obtained by expression in lactose autoinduction medium and co-expression of molecular chaperones GroEL/S. Strep-tag affinity purification enriched the enzyme 16-fold and yielded 15 mg pure enzyme from 100 mL of culture. Biochemical characterization revealed that PmAcy possesses beneficial traits for industrial application like high temperature and pH-stability. A heat activation of PmAcy was observed upon incubation at temperatures up to 80 °C. Hydrolytic activity of PmAcy was detected with several N-acyl-amino acids as substrates and exhibited the highest conversion rate of 773 U/mg with N-lauroyl-L-alanine at 75 °C. The enzyme preferred long-chain acyl-amino-acids and displayed hardly any activity with acetyl-amino acids. PmAcy was also capable of N-acyl-amino acid synthesis with good conversion rates. The best synthesis results were obtained with the cationic L-amino acids L-arginine and L-lysine as well as with L-leucine and L-phenylalanine. Exemplarily, L-phenylalanine was acylated with fatty acids of chain lengths from C8 to C18 with conversion rates of up to 75\%. N-lauroyl-L-phenylalanine was purified by precipitation, and the structure of the reaction product was verified by LC-MS and NMR.}, language = {en} } @article{FalkenbergBottBongaertsetal.2022, author = {Falkenberg, Fabian and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {Phylogenetic survey of the subtilase family and a data-mining-based search for new subtilisins from Bacillaceae}, series = {Frontiers in Microbiology}, volume = {2022}, journal = {Frontiers in Microbiology}, number = {13}, publisher = {Frontiers}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2022.1017978}, pages = {Artikel 13:1017978}, year = {2022}, abstract = {The subtilase family (S8), a member of the clan SB of serine proteases are ubiquitous in all kingdoms of life and fulfil different physiological functions. Subtilases are divided in several groups and especially subtilisins are of interest as they are used in various industrial sectors. Therefore, we searched for new subtilisin sequences of the family Bacillaceae using a data mining approach. The obtained 1,400 sequences were phylogenetically classified in the context of the subtilase family. This required an updated comprehensive overview of the different groups within this family. To fill this gap, we conducted a phylogenetic survey of the S8 family with characterised holotypes derived from the MEROPS database. The analysis revealed the presence of eight previously uncharacterised groups and 13 subgroups within the S8 family. The sequences that emerged from the data mining with the set filter parameters were mainly assigned to the subtilisin subgroups of true subtilisins, high-alkaline subtilisins, and phylogenetically intermediate subtilisins and represent an excellent source for new subtilisin candidates.}, language = {en} } @misc{SiegertMerkelHellmuthetal.2012, author = {Siegert, Petra and Merkel, Marion and Hellmuth, Hendrik and O'Connell, Timothy and Maurer, Karl-Heinz}, title = {Stabilisierte fl{\"u}ssige enzymhaltige Tensidzubereitung (durch den Einsatz einer das hydrolytische Enzym stabilisierende Komponente, die eine mehrfach substituierte Benzolcarbons{\"a}ure umfasst, die an mindestens zwei Kohlenstoffatomen des Benzolrestes eine Carboxylgruppe aufweist) [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 16}, year = {2012}, language = {de} } @misc{SiegertMerkelHellmuthetal.2012, author = {Siegert, Petra and Merkel, Marion and Hellmuth, Hendrik and O'Connell, Timothy and Maurer, Karl-Heinz}, title = {Stabilisierte fl{\"u}ssige enzymhaltige Tensidzubereitung (Einsatz einer das hydrolytische Enzym stabilisierende Komponente, die ein Monosaccharidglycerat umfasst) [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 17}, year = {2012}, language = {de} } @misc{SiegertMerkelHellmuthetal.2012, author = {Siegert, Petra and Merkel, Marion and Hellmuth, Hendrik and O'Connell, Timothy and Maurer, Karl-Heinz}, title = {Stabilisierte fl{\"u}ssige enzymhaltige Tensidzubereitung (Einsatz einer das hydrolytische Enzym stabilisierende Komponente, die eine Aminophthals{\"a}ure umfasst) [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 16}, year = {2012}, language = {de} } @misc{SiegertMerkelHellmuthetal.2012, author = {Siegert, Petra and Merkel, Marion and Hellmuth, Hendrik and O'Connell, Timothy and Maurer, Karl-Heinz}, title = {Stabilisierte fl{\"u}ssige enzymhaltige Tensidzubereitung (Einsatz einer das hydrolytische Enzym stabilisierende Komponente, die eine Oligoamino-biphenyl-oligocarbons{\"a}ure umfasst) [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 16}, year = {2012}, language = {de} } @misc{SiegertMerkelHellmuthetal.2012, author = {Siegert, Petra and Merkel, Marion and Hellmuth, Hendrik and O'Connell, Timothy and Maurer, Karl-Heinz}, title = {Stabilisierte fl{\"u}ssige enzymhaltige Tensidzubereitung (Einsatz einer das hydrolytische Enzym stabilisierende Komponente, die eine Phthaloylglutamins{\"a}ure und/oder eine Phthaloylasparagins{\"a}ure umfasst) [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 16}, year = {2012}, language = {de} } @misc{SiegertMerkelHellmuthetal.2012, author = {Siegert, Petra and Merkel, Marion and Hellmuth, Hendrik and O'Connell, Timothy and Maurer, Karl-Heinz}, title = {Stabilisierte fl{\"u}ssige enzymhaltige Tensidzubereitung (Einsatz einer das hydrolytische Enzym stabilisierenden Komponente, die eine Phenylalkyldicarbons{\"a}ure umfasst) [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 15}, year = {2012}, language = {de} } @inproceedings{WeldenSeverinsPoghossianetal.2022, author = {Welden, Melanie and Severins, Robin and Poghossian, Arshak and Wege, Christina and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Studying the immobilization of acetoin reductase with Tobacco mosaic virus particles on capacitive field-effect sensors}, series = {2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)}, booktitle = {2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)}, publisher = {IEEE}, isbn = {978-1-6654-5860-3 (Online)}, doi = {10.1109/ISOEN54820.2022.9789657}, pages = {4 Seiten}, year = {2022}, abstract = {A capacitive electrolyte-insulator-semiconductor (EISCAP) biosensor modified with Tobacco mosaic virus (TMV) particles for the detection of acetoin is presented. The enzyme acetoin reductase (AR) was immobilized on the surface of the EISCAP using TMV particles as nanoscaffolds. The study focused on the optimization of the TMV-assisted AR immobilization on the Ta 2 O 5 -gate EISCAP surface. The TMV-assisted acetoin EISCAPs were electrochemically characterized by means of leakage-current, capacitance-voltage, and constant-capacitance measurements. The TMV-modified transducer surface was studied via scanning electron microscopy.}, language = {en} } @misc{BesslerMaurerMerkeletal.2007, author = {Bessler, Cornelius and Maurer, Karl-Heinz and Merkel, Marion and Siegert, Petra and Wieland, Susanne}, title = {Subtilisin aus Bacillus pumilus und Wasch- und Reinigungsmittel enthaltend dieses neue Subtilisin [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / WIPO / CIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 47}, year = {2007}, language = {de} } @misc{BesslerMaurerMerkeletal.2009, author = {Bessler, Cornelius and Maurer, Karl-Heinz and Merkel, Marion and Siegert, Petra and Wieland, Susanne}, title = {Subtilisin from Bacillus Pumilus and detergent and cleaning agents containing said novel subtilisin [US Patentanmeldung / Internationale Patentanmeldung]}, publisher = {USPTO; WIPO}, address = {Washington; Genf}, pages = {1 -- 39}, year = {2009}, language = {en} } @article{JakobMartinezMandaweetal.2013, author = {Jakob, Felix and Martinez, Ronny and Mandawe, John and Hellmuth, Hendrik and Siegert, Petra and Maurer, Karl-Heinz and Schwaneberg, Ulrich}, title = {Surface charge engineering of a Bacillus gibsonii subtilisin protease}, series = {Applied microbiology and biotechnology}, volume = {Vol. 97}, journal = {Applied microbiology and biotechnology}, number = {Iss. 15}, publisher = {Springer}, address = {Berlin}, issn = {1432-0614 (E-Journal); 0171-1741 (Print); 0175-7598 (Print); 0340-2118 (Print)}, pages = {6793 -- 6802}, year = {2013}, language = {en} } @article{MuschallikMolinnusJablonskietal.2020, author = {Muschallik, Lukas and Molinnus, Denise and Jablonski, Melanie and Kipp, Carina Ronja and Bongaerts, Johannes and Pohl, Martina and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Selmer, Thorsten and Siegert, Petra}, title = {Synthesis of α-hydroxy ketones and vicinal (R, R)-diols by Bacillus clausii DSM 8716ᵀ butanediol dehydrogenase}, series = {RSC Advances}, volume = {10}, journal = {RSC Advances}, publisher = {Royal Society of Chemistry (RSC)}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/D0RA02066D}, pages = {12206 -- 12216}, year = {2020}, abstract = {α-hydroxy ketones (HK) and 1,2-diols are important building blocks for fine chemical synthesis. Here, we describe the R-selective 2,3-butanediol dehydrogenase from B. clausii DSM 8716ᵀ (BcBDH) that belongs to the metal-dependent medium chain dehydrogenases/reductases family (MDR) and catalyzes the selective asymmetric reduction of prochiral 1,2-diketones to the corresponding HK and, in some cases, the reduction of the same to the corresponding 1,2-diols. Aliphatic diketones, like 2,3-pentanedione, 2,3-hexanedione, 5-methyl-2,3-hexanedione, 3,4-hexanedione and 2,3-heptanedione are well transformed. In addition, surprisingly alkyl phenyl dicarbonyls, like 2-hydroxy-1-phenylpropan-1-one and phenylglyoxal are accepted, whereas their derivatives with two phenyl groups are not substrates. Supplementation of Mn²⁺ (1 mM) increases BcBDH's activity in biotransformations. Furthermore, the biocatalytic reduction of 5-methyl-2,3-hexanedione to mainly 5-methyl-3-hydroxy-2-hexanone with only small amounts of 5-methyl-2-hydroxy-3-hexanone within an enzyme membrane reactor is demonstrated.}, language = {en} } @article{MuschallikKippReckeretal.2020, author = {Muschallik, Lukas and Kipp, Carina Ronja and Recker, Inga and Bongaerts, Johannes and Pohl, Martina and Gelissen, Melanie and Sch{\"o}ning, Michael Josef and Selmer, Thorsten and Siegert, Petra}, title = {Synthesis of α-hydroxy ketones and vicinal diols with the Bacillus licheniformis DSM 13T butane-2, 3-diol dehydrogenase}, series = {Journal of Biotechnology}, volume = {202}, journal = {Journal of Biotechnology}, number = {Vol. 324}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {2590-1559}, doi = {10.1016/j.jbiotec.2020.09.016}, pages = {61 -- 70}, year = {2020}, abstract = {The enantioselective synthesis of α-hydroxy ketones and vicinal diols is an intriguing field because of the broad applicability of these molecules. Although, butandiol dehydrogenases are known to play a key role in the production of 2,3-butandiol, their potential as biocatalysts is still not well studied. Here, we investigate the biocatalytic properties of the meso-butanediol dehydrogenase from Bacillus licheniformis DSM 13T (BlBDH). The encoding gene was cloned with an N-terminal StrepII-tag and recombinantly overexpressed in E. coli. BlBDH is highly active towards several non-physiological diketones and α-hydroxyketones with varying aliphatic chain lengths or even containing phenyl moieties. By adjusting the reaction parameters in biotransformations the formation of either the α-hydroxyketone intermediate or the diol can be controlled.}, language = {en} } @article{MolinnusSorichBartzetal.2016, author = {Molinnus, Denise and Sorich, Maren and Bartz, Alexander and Siegert, Petra and Willenberg, Holger S. and Lisdat, Fred and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Towards an adrenaline biosensor based on substrate recycling amplification in combination with an enzyme logic gate}, series = {Sensors and Actuators B: Chemical}, volume = {237}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.06.064}, pages = {190 -- 195}, year = {2016}, abstract = {An amperometric biosensor using a substrate recycling principle was realized for the detection of low adrenaline concentrations (1 nM) by measurements in phosphate buffer and Ringer's solution at pH 6.5 and pH 7.4, respectively. In proof-of-concept experiments, a Boolean logic-gate principle has been applied to develop a digital adrenaline biosensor based on an enzyme AND logic gate. The obtained results demonstrate that the developed digital biosensor is capable for a rapid qualitative determination of the presence/absence of adrenaline in a YES/NO statement. Such digital biosensor could be used in clinical diagnostics for the control of a correct insertion of a catheter in the adrenal veins during adrenal venous-sampling procedure.}, language = {en} } @misc{SiegertEversMarionetal.2011, author = {Siegert, Petra and Evers, Stefan and Marion, Merkel and Mussmann, Nina and Hellmuth, Hendrik and O'Connell, Timothy and Maurer, Karl-Heinz and Schwaneberg, Ulrich and Martinez, Ronny and Jakob, Felix}, title = {Verfahren zur Anpassung eines hydrolytischen Enzyms an eine das hydrolytische Enzym stabilisierende Komponente [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 27}, year = {2011}, language = {de} } @misc{SchmitzSpitzMerkeletal.2004, author = {Schmitz, Susanne and Spitz, Astrid and Merkel, Marion and Siegert, Petra}, title = {Verfahren zur Bestimmung des enzymatischen Status humaner Haut in vitro [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / IP Australia / WIPO}, address = {M{\"u}nchen / Den Hague / Canberra / Genf}, pages = {1 -- 7}, year = {2004}, language = {de} } @misc{SchulzezurWiescheOttoKleenetal.2005, author = {Schulze zur Wiesche, Erik and Otto, Ralf and Kleen, Astrid and Hollenberg, Detlef and S{\"a}ttler, Andrea and Siegert, Petra and Boßmann, Britta}, title = {Verfahren zur dauerhaften Ausr{\"u}stung keratinischer Fasern mit Pflegewirkstoffen durch Carboxylesterhydrolasen [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt}, address = {M{\"u}nchen / Den Hague}, pages = {1 -- 13}, year = {2005}, language = {de} } @misc{BanowskiWadleSiegert2005, author = {Banowski, Bernhard and Wadle, Armin and Siegert, Petra}, title = {Use of hydroxydiphenyl ether derivatives as arylsulfatase-inhibitors in deodorants and antiperspirants [Europ{\"a}ische Patentanmeldung / US Patentanmeldung / Australische Patentanmeldung / Internationale Patentanmeldung]}, publisher = {Europ{\"a}isches Patentamt / USPTO / IP Australia / WIPO}, address = {Den Hague / Washington / Canberra/ Genf}, pages = {1 -- 40}, year = {2005}, language = {de} } @misc{KluinMaurerBanowskietal.2005, author = {Kluin, Cornelia and Maurer, Karl-Heinz and Banowski, Bernhard and Bessler, Cornelius and Siegert, Petra}, title = {Verwendung von Siderophoren gegen Geruchskeime [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt}, address = {M{\"u}nchen}, pages = {1 -- 32}, year = {2005}, language = {de} } @misc{SiegertBankowski2003, author = {Siegert, Petra and Bankowski, Bernhard}, title = {Verwendung von Steroidsulfatase-Inhibitoren zur Verminderung von Haarausfall ; Kosmetische und pharmazeutische Zusammensetzungen enthaltend Steroidsulfatase-Inhibitoren und deren Verwendung zur Verminderung von Haarausfall [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt}, address = {M{\"u}nchen / Den Hague}, pages = {1 -- 38}, year = {2003}, language = {de} } @misc{O'ConnellSiegertEversetal.2010, author = {O'Connell, Timothy and Siegert, Petra and Evers, Stefan and Bongaerts, Johannes and Weber, Thomas and Maurer, Karl-Heinz and Bessler, Cornelius}, title = {Wasch- oder Reinigungsmittel mit gesteigerter Waschkraft [Offenlegungsschrift]}, publisher = {Deutsches Patentamt}, address = {M{\"u}nchen}, pages = {1 -- 34}, year = {2010}, language = {de} } @misc{SiegertSpitzMaurer2010, author = {Siegert, Petra and Spitz, Astrid and Maurer, Karl-Heinz}, title = {Wasch- und Reinigungsmittel enthaltend Proteasen aus Bacillus pumilus [Offenlegungsschrift]}, publisher = {Deutsches Patentamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 20}, year = {2010}, language = {de} } @misc{SiegertMerkelKluinetal.2009, author = {Siegert, Petra and Merkel, Marion and Kluin, Cornelia and O'Connell, Timothy and Maurer, Karl-Heinz}, title = {Wasch- und Reinigungsmittel enthaltend Proteasen aus Xanthomonas [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / WIPO}, address = {M{\"u}nchen / Genf}, pages = {1 -- 15}, year = {2009}, language = {de} }