@inproceedings{GrundmannBorellaCeriottietal.2021, author = {Grundmann, Jan Thimo and Borella, Laura and Ceriotti, Matteo and Chand, Suditi and Cordero, Federico and Dachwald, Bernd and Fexer, Sebastian and Grimm, Christian D. and Hendrikse, Jeffrey and Herč{\´i}k, David and Herique, Alain and Hillebrandt, Martin and Ho, Tra-Mi and Kesseler, Lars and Laabs, Martin and Lange, Caroline and Lange, Michael and Lichtenheldt, Roy and McInnes, Colin R. and Moore, Iain and Peloni, Alessandro and Plettenmeier, Dirk and Quantius, Dominik and Seefeldt, Patric and Venditti, Flaviane c. F. and Vergaaij, Merel and Viavattene, Giulia and Virkki, Anne K. and Zander, Martin}, title = {More bucks for the bang: new space solutions, impact tourism and one unique science \& engineering opportunity at T-6 months and counting}, series = {7th IAA Planetary Defense Conference}, booktitle = {7th IAA Planetary Defense Conference}, year = {2021}, abstract = {For now, the Planetary Defense Conference Exercise 2021's incoming fictitious(!), asteroid, 2021 PDC, seems headed for impact on October 20th, 2021, exactly 6 months after its discovery. Today (April 26th, 2021), the impact probability is 5\%, in a steep rise from 1 in 2500 upon discovery six days ago. We all know how these things end. Or do we? Unless somebody kicked off another headline-grabbing media scare or wants to keep civil defense very idle very soon, chances are that it will hit (note: this is an exercise!). Taking stock, it is barely 6 months to impact, a steadily rising likelihood that it will actually happen, and a huge uncertainty of possible impact energies: First estimates range from 1.2 MtTNT to 13 GtTNT, and this is not even the worst-worst case: a 700 m diameter massive NiFe asteroid (covered by a thin veneer of Ryugu-black rubble to match size and brightness), would come in at 70 GtTNT. In down to Earth terms, this could be all between smashing fireworks over some remote area of the globe and a 7.5 km crater downtown somewhere. Considering the deliberate and sedate ways of development of interplanetary missions it seems we can only stand and stare until we know well enough where to tell people to pack up all that can be moved at all and save themselves. But then, it could just as well be a smaller bright rock. The best estimate is 120 m diameter from optical observation alone, by 13\% standard albedo. NASA's upcoming DART mission to binary asteroid (65803) Didymos is designed to hit such a small target, its moonlet Dimorphos. The Deep Impact mission's impactor in 2005 successfully guided itself to the brightest spot on comet 9P/Tempel 1, a relatively small feature on the 6 km nucleus. And 'space' has changed: By the end of this decade, one satellite communication network plans to have launched over 11000 satellites at a pace of 60 per launch every other week. This level of series production is comparable in numbers to the most prolific commercial airliners. Launch vehicle production has not simply increased correspondingly - they can be reused, although in a trade for performance. Optical and radio astronomy as well as planetary radar have made great strides in the past decade, and so has the design and production capability for everyday 'high-tech' products. 60 years ago, spaceflight was invented from scratch within two years, and there are recent examples of fast-paced space projects as well as a drive towards 'responsive space'. It seems it is not quite yet time to abandon all hope. We present what could be done and what is too close to call once thinking is shoved out of the box by a clear and present danger, to show where a little more preparedness or routine would come in handy - or become decisive. And if we fail, let's stand and stare safely and well instrumented anywhere on Earth together in the greatest adventure of science.}, language = {en} } @inproceedings{GrundmannBieleDachwaldetal.2016, author = {Grundmann, Jan Thimo and Biele, Jens and Dachwald, Bernd and Grimm, Christian and Lange, Caroline and Ulamec, Stephan}, title = {Small spacecraft for small solar system body science, planetary defence and applications}, series = {IEEE Aerospace Conference 2016}, booktitle = {IEEE Aerospace Conference 2016}, pages = {1 -- 20}, year = {2016}, abstract = {Following the recent successful landings and occasional re-awakenings of PHILAE, the lander carried aboard ROSETTA to comet 67P/Churyumov-Gerasimenko, and the launch of the Mobile Asteroid Surface Scout, MASCOT, aboard the HAYABUSA2 space probe to asteroid (162173) Ryugu we present an overview of the characteristics and peculiarities of small spacecraft missions to small solar system bodies (SSSB). Their main purpose is planetary science which is transitioning from a 'pure' science of observation of the distant to one also supporting in-situ applications relevant for life on Earth. Here we focus on missions at the interface of SSSB science and planetary defence applications. We provide a brief overview of small spacecraft SSSB missions and on this background present recent missions, projects and related studies at the German Aerospace Center, DLR, that contribute to the worldwide planetary defence community. These range from Earth orbit technology demonstrators to active science missions in interplanetary space. We provide a summary of experience from recently flown missions with DLR participation as well as a number of studies. These include PHILAE, the lander of ESA's ROSETTA comet rendezvous mission now on the surface of comet 67P/Churyumov-Gerasimenko, and the Mobile Asteroid Surface Scout, MASCOT, now in cruise to the ~1 km diameter C-type near-Earth asteroid (162173) Ryugu aboard the Japanese sample-return probe HAYABUSA2. We introduce the differences between the conventional methods employed in the design, integration and testing of large spacecraft and the new approaches developed by small spacecraft projects. We expect that the practical experience that can be gained from projects on extremely compressed timelines or with high-intensity operation phases on a newly explored small solar system body can contribute significantly to the study, preparation and realization of future planetary defence related missions. One is AIDA (Asteroid Impact \& Deflection Assessment), a joint effort of ESA, JHU/APL, NASA, OCA and DLR, combining JHU/APL's DART (Double Asteroid Redirection Test) and ESA's AIM (Asteroid Impact Monitor) spacecraft in a mission towards near-Earth binary asteroid system (65803) Didymos. DLR is currently applying MASCOT heritage and lessons learned to the design of MASCOT2, a lander for the AIM mission to support a bistatic low frequency radar experiment with PHILAE/ROSETTA CONSERT heritage to explore the inner structure of Didymoon which is the designated impact target for DART.}, language = {en} } @incollection{DachwaldBoehnhardtBrojetal.2014, author = {Dachwald, Bernd and Boehnhardt, Herrmann and Broj, Ulrich and Geppert, Ulrich R. M. E. and Grundmann, Jan Thimo and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Johnson, Les and K{\"u}hrt, Ekkehard and Mottola, Stefano and Macdonald, Malcolm and McInnes, Colin R. and Vasile, Massimiliano and Reinhard, Ruedeger}, title = {Gossamer roadmap technology reference study for a multiple NEO Rendezvous Mission}, series = {Advances in solar sailing}, booktitle = {Advances in solar sailing}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {978-3-642-34906-5 (Print) ; 978-3-642-34907-2 (E-Book)}, pages = {211 -- 226}, year = {2014}, abstract = {A technology reference study for a multiple near-Earth object (NEO) rendezvous mission with solar sailcraft is currently carried out by the authors of this paper. The investigated mission builds on previous concepts, but adopts a strong micro-spacecraft philosophy based on the DLR/ESA Gossamer technology. The main scientific objective of the mission is to explore the diversity of NEOs. After direct interplanetary insertion, the solar sailcraft should—within less than 10 years—rendezvous three NEOs that are not only scientifically interesting, but also from the point of human spaceight and planetary defense. In this paper, the objectives of the study are outlined and a preliminary potential mission profile is presented.}, language = {en} } @inproceedings{GrundmannBauerBieleetal.2015, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Biele, Jens and Cordero, Frederico and Dachwald, Bernd and Koncz, Alexander and Krause, Christian and Mikschl, Tobias and Montenegro, Sergio and Quantius, Dominik and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seefeldt, Patric and T{\´o}th, Norbert and Wejmo, Elisabet}, title = {From Sail to Soil - Getting Sailcraft Out of the Harbour on a Visit to One of Earth's Nearest Neighbours}, series = {4th IAA Planetary Denfense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, booktitle = {4th IAA Planetary Denfense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, pages = {20 S.}, year = {2015}, language = {en} } @inproceedings{GrundmannLangeDachwaldetal.2015, author = {Grundmann, Jan Thimo and Lange, Caroline and Dachwald, Bernd and Grimm, Christian and Koch, Aaron and Ulamec, Stephan}, title = {Small Spacecraft in Planetary Defence Related Applications-Capabilities, Constraints, Challenges}, series = {IEEE Aerospace Conference}, booktitle = {IEEE Aerospace Conference}, pages = {1 -- 18}, year = {2015}, abstract = {In this paper we present an overview of the characteristics and peculiarities of small spacecraft missions related to planetary defence applications. We provide a brief overview of small spacecraft missions to small solar system bodies. On this background we present recent missions and selected projects and related studies at the German Aerospace Center, DLR, that contribute to planetary defence related activities. These range from Earth orbit technology demonstrators to active science missions in interplanetary space. We provide a summary of experience from recently flown missions with DLR participation as well as a number of studies. These include PHILAE, the lander recently arrived on comet 67P/Churyumov-Gerasimenko aboard ESA's ROSETTA comet rendezvous mission, and the Mobile Asteroid Surface Scout, MASCOT, now underway to near-Earth asteroid (162173) 1999 JU3 aboard the Japanese sample-return probe HAYABUSA-2. We introduce the differences between the conventional methods employed in the design, integration and testing of large spacecraft and the new approaches developed by small spacecraft projects. We expect that the practical experience that can be gained from projects on extremely compressed timelines or with high-intensity operation phases on a newly explored small solar system body can contribute significantly to the study, preparation and realization of future planetary defence related missions. One is AIDA (Asteroid Impact \& Deflection Assessment), a joint effort of ESA,JHU/APL, NASA, OCA and DLR, combining JHU/APL's DART (Double Asteroid Redirection Test) and ESA's AIM (Asteroid Impact Monitor) spacecraft in a mission towards near-Eath binary asteroid (65803) Didymos.}, language = {en} } @inproceedings{GrundmannMessBieleetal.2017, author = {Grundmann, Jan Thimo and Meß, Jan-Gerd and Biele, Jens and Seefeldt, Patric and Dachwald, Bernd and Spietz, Peter and Grimm, Christian D. and Spr{\"o}witz, Tom and Lange, Caroline and Ulamec, Stephan}, title = {Small spacecraft in small solar system body applications}, series = {IEEE Aerospace Conference 2017, Big Sky, Montana, USA}, booktitle = {IEEE Aerospace Conference 2017, Big Sky, Montana, USA}, organization = {IEEE Aerospace Conference}, isbn = {978-1-5090-1613-6}, doi = {10.1109/AERO.2017.7943626}, pages = {1 -- 20}, year = {2017}, language = {en} } @article{GrundmannDachwaldGrimmetal.2015, author = {Grundmann, Jan Thimo and Dachwald, Bernd and Grimm, Christian D. and Kahle, Ralph and Koch, Aaron Dexter and Krause, Christian and Lange, Caroline and Quantius, Dominik and Ulamec, Stephan}, title = {Spacecraft for Hypervelocity Impact Research - An Overview of Capabilities, Constraints and the Challenges of Getting There}, series = {Procedia Engineering}, volume = {Vol. 103}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.04.021}, pages = {151 -- 158}, year = {2015}, language = {en} } @article{JansenBehbahaniLaumenetal.2010, author = {Jansen, S. V. and Behbahani, Mehdi and Laumen, M. and Kaufmann, T. and Hormes, M. and Behr, Marek and Schmitz-Rode, T. and Steinseifer, U.}, title = {Investigation of Steady Flow Through a Realistic Model of the Thoracic Human Aorta Using 3D Stereo PIV and CFD-Simulation}, series = {ASAIO Journal}, volume = {56}, journal = {ASAIO Journal}, number = {2}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, doi = {10.1097/01.mat.0000369377.65122.a3}, pages = {98}, year = {2010}, language = {en} } @article{BehbahaniProbstMaietal.2010, author = {Behbahani, Mehdi and Probst, M. and Mai, A. and Tran, L. and Vonderstein, K. and Keschenau, P. and Linde, T. and Steinseifer, U. and Behr, Marek and Mottaghy, K.}, title = {The influence of high shear on thrombosis and hemolysis in artificial organs}, series = {The International Journal of Artificial Organs}, volume = {33}, journal = {The International Journal of Artificial Organs}, number = {7}, publisher = {Sage}, address = {Thousand Oaks}, issn = {0391-3988}, pages = {426 -- 426}, year = {2010}, language = {en} } @article{BehbahaniBehrBischofetal.2007, author = {Behbahani, Mehdi and Behr, Marek and Bischof, F. and Wolf, G. E.}, title = {Kranken Herzen helfen - Ingenieure und Informatiker entwickeln gemeinsam eine Miniaturblutpumpe / Behbahani, M. ; Behr, M. ; Bischof, F. ; Wolf, G. E.}, series = {RWTH-Themen (2007)}, journal = {RWTH-Themen (2007)}, isbn = {0179-079X}, pages = {44 -- 46}, year = {2007}, language = {de} } @article{BehbahaniTranWalugaetal.2009, author = {Behbahani, Mehdi and Tran, L. and Waluga, C. and Behr, Marek and Oedekoven, B. and Mottaghy, K.}, title = {Model-based Numerical Analysis of Platelet Adhesion, Thrombus Growth and Aggregation for Assist Devices}, series = {The International Journal of Artificial Organs. 32 (2009), H. 7}, journal = {The International Journal of Artificial Organs. 32 (2009), H. 7}, isbn = {0391-3988}, pages = {398 -- 398}, year = {2009}, language = {en} } @article{BehbahaniBehrAroraetal.2006, author = {Behbahani, Mehdi and Behr, Marek and Arora, D. and Coronado, O. and Pasquali, M.}, title = {CFD Analysis of MicroMed Debakey Pump and Hemolysis Prediction / Behbahani, M. ; Behr, M. ; Arora, D. ; Coronado, O. ; Pasquali, M.}, series = {Artificial Organs. 30 (2006), H. 11}, journal = {Artificial Organs. 30 (2006), H. 11}, isbn = {1525-1594}, pages = {A45 -- A46}, year = {2006}, language = {en} } @article{BehbahaniBehrHormesetal.2009, author = {Behbahani, Mehdi and Behr, Marek and Hormes, M. and Steinseifer, U. and Arora, D. and Coronado, O. and Pasquali, M.}, title = {A Review of Computational Fluid Dynamics Analysis of Blood Pumps}, series = {European Journal of Applied Mathematics. 20 (2009), H. 4}, journal = {European Journal of Applied Mathematics. 20 (2009), H. 4}, publisher = {Cambridge Univ. Press}, address = {Cambridge}, pages = {363 -- 397}, year = {2009}, language = {en} } @article{BehbahaniTranJockenhoeveletal.2011, author = {Behbahani, Mehdi and Tran, L. and Jockenh{\"o}vel, S. and Behr, Marek and Mottaghy, K.}, title = {Numerical prediction of thrombocyte reactions for application to a vascular flow model}, series = {British Journal of Surgery}, volume = {98}, journal = {British Journal of Surgery}, number = {S5}, publisher = {Oxford University Press}, address = {Oxford}, isbn = {1365-2168}, pages = {S17}, year = {2011}, language = {en} } @article{UllrichGrottkeRossaintetal.2010, author = {Ullrich, Sebastian and Grottke, Oliver and Rossaint, Rolf and Staat, Manfred and Deserno, Thomas M. and Kuhlen, Torsten}, title = {Virtual Needle Simulation with Haptics for Regional Anaesthesia}, pages = {3 Seiten}, year = {2010}, language = {en} } @article{BehbahaniWalugaArltetal.2008, author = {Behbahani, Mehdi and Waluga, C. and Arlt, S. and Behr, Marek and Mottaghy, K.}, title = {Computational Analysis of Platelet Aggregation in a Taylor-Couette System}, series = {The International Journal of Artificial Organs. 31 (2008), H. 7}, journal = {The International Journal of Artificial Organs. 31 (2008), H. 7}, isbn = {0391-3988}, pages = {643}, year = {2008}, language = {en} } @inproceedings{SeefeldtBauerDachwaldetal.2015, author = {Seefeldt, Patric and Bauer, Waldemar and Dachwald, Bernd and Grundmann, Jan Thimo and Straubel, Marco and Sznajder, Maciej and T{\´o}th, Norbert and Zander, Martin E.}, title = {Large lightweight deployable structures for planetary defence: solar sail propulsion, solar concentrator payloads, large-scale photovoltaic power}, series = {4th IAA Planetary Defense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, booktitle = {4th IAA Planetary Defense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, pages = {24}, year = {2015}, language = {en} } @article{ProbstBehbahaniBorrmannetal.2010, author = {Probst, M. and Behbahani, Mehdi and Borrmann, E. and Elgeti, S. and Nicolai, M. and Behr, Marek}, title = {Hemodynamic Modeling for Numerical Analysis and Design of Medical Devices}, year = {2010}, language = {en} } @article{BehbahaniMaiBergmannetal.2010, author = {Behbahani, Mehdi and Mai, A. and Bergmann, B. and Waluga, C. and Behr, Marek and Tran, L. and Vonderstein, K. and Mottaghy, K.}, title = {Modeling and Numerical Simulation of Blood Damage}, year = {2010}, language = {en} } @article{BehbahaniWalugaStocketal.2009, author = {Behbahani, Mehdi and Waluga, C. and Stock, S. and Mai, A. and Bergmann, B. and Behr, Marek and Tran, L. and Vonderstein, K. and Scheidt, H. and Oedekoven, B. and Mottaghy, K.}, title = {Modelling and Numerical Analysis of Platelet Reactions and Surface Thrombus Growth}, year = {2009}, language = {en} } @article{KowalskiLinderZierkeetal.2016, author = {Kowalski, Julia and Linder, Peter and Zierke, Simon and von Wulfen, Benedikt and Clemens, Joachim and Konstantinidis, Konstantinos and Ameres, Gerald and Hoffmann, Ruth and Mikucki, Jill A. and Tulaczyk, Slawek M. and Funke, Oliver and Blandfort, Daniel and Espe, Clemens and Feldmann, Marco and Francke, Gero and Hiecker, S. and Plescher, Engelbert and Sch{\"o}ngarth, Sarah and Dachwald, Bernd and Digel, Ilya and Artmann, Gerhard and Eliseev, Dmitry and Heinen, Dirk and Scholz, Franziska and Wiebusch, Christopher H. and Macht, Sabine and Bestmann, Ulf and Reineking, Thomas and Zetzsche, Christoph and Schill, Kerstin and F{\"o}rstner, Roger and Niedermeier, Herbert and Szumski, Arkadiusz and Eissfeller, Bernd and Naumann, Uwe and Helbing, Klaus}, title = {Navigation technology for exploration of glacier ice with maneuverable melting probes}, series = {Cold Regions Science and Technology}, journal = {Cold Regions Science and Technology}, number = {123}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0165-232X}, doi = {10.1016/j.coldregions.2015.11.006}, pages = {53 -- 70}, year = {2016}, abstract = {The Saturnian moon Enceladus with its extensive water bodies underneath a thick ice sheet cover is a potential candidate for extraterrestrial life. Direct exploration of such extraterrestrial aquatic ecosystems requires advanced access and sampling technologies with a high level of autonomy. A new technological approach has been developed as part of the collaborative research project Enceladus Explorer (EnEx). The concept is based upon a minimally invasive melting probe called the IceMole. The force-regulated, heater-controlled IceMole is able to travel along a curved trajectory as well as upwards. Hence, it allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. The development of such a navigational system has been the focal part of the EnEx project. The original IceMole has been further developed to include relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection integrated through a high-level sensor fusion. This paper describes the EnEx technology and discusses implications for an actual extraterrestrial mission concept.}, language = {en} } @article{MansurovDigelBiisenbaevetal.2012, author = {Mansurov, Zulkhair A. and Digel, Ilya and Biisenbaev, M. and Savistkaya, I. and Kistaubaeva, Aida and Akimbekov, Nuraly S. and Zhubanova, Azhar Achmet}, title = {Bio-composite material on the basis of carbonized rice husk in biomedicine and environmental applications}, series = {Eurasian Chemico-Technological Journal}, volume = {14}, journal = {Eurasian Chemico-Technological Journal}, number = {2}, publisher = {Institute of Combustion Problems}, address = {Almaty}, issn = {2522-4867}, doi = {10.18321/ectj105}, pages = {115 -- 131}, year = {2012}, language = {en} } @article{AkimbekovDigelZhubanovaetal.2024, author = {Akimbekov, Nuraly and Digel, Ilya and Zhubanova, Azhar and Tastambek, Kuanysh T. and Tepecik, Atakan and Sherelkhan, Dinara}, title = {Biotechnological potentials of surfactants in coal utilization: a review}, series = {Environmental Science and Pollution Research}, volume = {31}, journal = {Environmental Science and Pollution Research}, publisher = {Springer}, address = {Berlin}, issn = {1614-7499}, doi = {10.1007/s11356-024-34892-5}, pages = {55099 -- 55118}, year = {2024}, abstract = {The quest for scientifically advanced and sustainable solutions is driven by growing environmental and economic issues associated with coal mining, processing, and utilization. Consequently, within the coal industry, there is a growing recognition of the potential of microbial applications in fostering innovative technologies. Microbial-based coal solubilization, coal beneficiation, and coal dust suppression are green alternatives to traditional thermochemical and leaching technologies and better meet the need for ecologically sound and economically viable choices. Surfactant-mediated approaches have emerged as powerful tools for modeling, simulation, and optimization of coal-microbial systems and continue to gain prominence in clean coal fuel production, particularly in microbiological co-processing, conversion, and beneficiation. Surfactants (surface-active agents) are amphiphilic compounds that can reduce surface tension and enhance the solubility of hydrophobic molecules. A wide range of surfactant properties can be achieved by either directly influencing microbial growth factors, stimulants, and substrates or indirectly serving as frothers, collectors, and modifiers in the processing and utilization of coal. This review highlights the significant biotechnological potential of surfactants by providing a thorough overview of their involvement in coal biodegradation, bioprocessing, and biobeneficiation, acknowledging their importance as crucial steps in coal consumption.}, language = {en} } @inproceedings{GrundmannBauerBieleetal.2018, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Biele, Jens and Boden, Ralf Christian and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Herč{\´i}k, David and Ho, Tra-Mi and Jahnke, Rico and Koch, Aaron D and Koncz, Alexander and Krause, Christian and Lange, Caroline and Lichtenheldt, Roy and Maiwald, Volker and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Pelivan, Ivanka and Peloni, Alessandro and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Tardivel, Simon and T{\´o}th, Norbert and Wejmo, Elisabet and Wolff, Friederike and Ziach, Christian}, title = {Small spacecraft based multiple near-earth asteroid rendezvous and landing with near-term solar sails and 'Now-Term 'technologies}, series = {69 th International Astronautical Congress (IAC)}, booktitle = {69 th International Astronautical Congress (IAC)}, pages = {1 -- 18}, year = {2018}, abstract = {Physical interaction with small solar system bodies (SSSB) is the next step in planetary science, planetary in-situ resource utilization (ISRU), and planetary defense (PD). It requires a broader understanding of the surface properties of the target objects, with particular interest focused on those near Earth. Knowledge of composition, multi-scale surface structure, thermal response, and interior structure is required to design, validate and operate missions addressing these three fields. The current level of understanding is occasionally simplified into the phrase, "If you've seen one asteroid, you've seen one asteroid", meaning that the in-situ characterization of SSSBs has yet to cross the threshold towards a robust and stable scheme of classification. This would enable generic features in spacecraft design, particularly for ISRU and science missions. Currently, it is necessary to characterize any potential target object sufficiently by a dedicated pre-cursor mission to design the mission which then interacts with the object in a complex fashion. To open up strategic approaches, much broader in-depth characterization of potential target objects would be highly desirable. In SSSB science missions, MASCOT-like nano-landers and instrument carriers which integrate at the instrument level to their mothership have met interest. By its size, MASCOT is compatible with small interplanetary missions. The DLR-ESTEC Gossamer Roadmap Science Working Groups' studies identified Multiple Near-Earth asteroid (NEA) Rendezvous (MNR) as one of the space science missions only feasible with solar sail propulsion. The Solar Polar Orbiter (SPO) study showed the ability to access any inclination, theDisplaced-L1 (DL1) mission operates close to Earth, where objects of interest to PD and for ISRU reside. Other studies outline the unique capability of solar sails to provide access to all SSSB, at least within the orbit of Jupiter, and significant progress has been made to explore the performance envelope of near-term solar sails for MNR. However, it is difficult for sailcraft to interact physically with a SSSB. We expand and extend the philosophy of the recently qualified DLR Gossamer solar sail deployment technology using efficient multiple sub-spacecraft integration to also include landers for one-way in-situ investigations and sample-return missions by synergetic integration and operation of sail and lander. The MASCOT design concept and its characteristic features have created an ideal counterpart for thisand has already been adapted to the needs of the AIM spacecraft, former part of the NASA-ESA AIDA missionDesigning the 69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018. IAC-18-F1.2.3 Page 2 of 17 combined spacecraft for piggy-back launch accommodation enables low-cost massively parallel access to the NEA population.}, language = {en} } @inproceedings{GrundmannBauerBorchersetal.2019, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Borchers, Kai and Dumont, Etienne and Grimm, Christian D. and Ho, Tra-Mi and Jahnke, Rico and Koch, Aaron D. and Lange, Caroline and Maiwald, Volker and Meß, Jan-Gerd and Mikulz, Eugen and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Sasaki, Kaname and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Toth, Norbert and Ceriotti, Matteo and McInnes, Colin and Peloni, Alessandro and Biele, Jens and Krause, Christian and Dachwald, Bernd and Hercik, David and Lichtenheldt, Roy and Wolff, Friederike and Koncz, Alexander and Pelivan, Ivanka and Schmitz, Nicole and Boden, Ralf Christian and Riemann, Johannes and Seboldt, Wolfgang and Wejmo, Elisabet and Ziach, Christian and Mikschl, Tobias and Montenegro, Sergio and Ruffer, Michael and Cordero, Federico and Tardivel, Simon}, title = {Solar sails for planetary defense \& high-energy missions}, series = {IEEE Aerospace Conference Proceedings}, booktitle = {IEEE Aerospace Conference Proceedings}, doi = {10.1109/AERO.2019.8741900}, pages = {1 -- 21}, year = {2019}, abstract = {20 years after the successful ground deployment test of a (20 m) 2 solar sail at DLR Cologne, and in the light of the upcoming U.S. NEAscout mission, we provide an overview of the progress made since in our mission and hardware design studies as well as the hardware built in the course of our solar sail technology development. We outline the most likely and most efficient routes to develop solar sails for useful missions in science and applications, based on our developed `now-term' and near-term hardware as well as the many practical and managerial lessons learned from the DLR-ESTEC Gossamer Roadmap. Mission types directly applicable to planetary defense include single and Multiple NEA Rendezvous ((M)NR) for precursor, monitoring and follow-up scenarios as well as sail-propelled head-on retrograde kinetic impactors (RKI) for mitigation. Other mission types such as the Displaced L1 (DL1) space weather advance warning and monitoring or Solar Polar Orbiter (SPO) types demonstrate the capability of near-term solar sails to achieve asteroid rendezvous in any kind of orbit, from Earth-coorbital to extremely inclined and even retrograde orbits. Some of these mission types such as SPO, (M)NR and RKI include separable payloads. For one-way access to the asteroid surface, nanolanders like MASCOT are an ideal match for solar sails in micro-spacecraft format, i.e. in launch configurations compatible with ESPA and ASAP secondary payload platforms. Larger landers similar to the JAXA-DLR study of a Jupiter Trojan asteroid lander for the OKEANOS mission can shuttle from the sail to the asteroids visited and enable multiple NEA sample-return missions. The high impact velocities and re-try capability achieved by the RKI mission type on a final orbit identical to the target asteroid's but retrograde to its motion enables small spacecraft size impactors to carry sufficient kinetic energy for deflection.}, language = {en} } @inproceedings{GrundmannBauerBieleetal.2018, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Biele, Jens and Boden, Ralf Christian and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian and Herč{\´i}k, David and Herique, Alain and Ho, Tra-Mi and Jahnke, Rico and Koch, Aaron and Kofman, Wlodek and Koncz, Alexander and Krause, Christian and Lange, Caroline and Lichtenheldt, Roy and Maiwald, Volker and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Pelivan, Ivanka and Peloni, Alessandro and Plettemeier, Dirk and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Tardivel, Simon and Toth, Norbert and Wejmo, Elisabet and Wolff, Friederike and Ziach, Christian}, title = {Efficient massively parallel prospection for ISRU by multiple near-earth asteroid rendezvous using near-term solar sails and'now-term'small spacecraft solutions}, series = {2nd Asteroid Science Intersections with In-Space Mine Engineering - ASIME 2018}, booktitle = {2nd Asteroid Science Intersections with In-Space Mine Engineering - ASIME 2018}, pages = {1 -- 33}, year = {2018}, abstract = {Physical interaction with small solar system bodies (SSSB) is key for in-situ resource utilization (ISRU). The design of mining missions requires good understanding of SSSB properties, including composition, surface and interior structure, and thermal environment. But as the saying goes "If you've seen one asteroid, you've seen one Asteroid": Although some patterns may begin to appear, a stable and reliable scheme of SSSB classification still has to be evolved. Identified commonalities would enable generic ISRU technology and spacecraft design approaches with a high degree of re-use. Strategic approaches require much broader in-depth characterization of the SSSB populations of interest to the ISRU community. The DLR-ESTEC GOSSAMER Roadmap Science Working Groups identified target-flexible Multiple Near-Earth asteroid (NEA) Rendezvous (MNR) as one of the missions only feasible with solar sail propulsion, showed the ability to access any inclination and a wide range of heliocentric distances as well as continuous operation close to Earth's orbit where low delta-v objects reside.}, language = {en} } @inproceedings{GrundmannBauerBodenetal.2019, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Boden, Ralf Christian and Ceriotti, Matteo and Chand, Suditi and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Heiligers, Jeannette and Herč{\´i}k, David and H{\´e}rique, Alain and Ho, Tra-Mi and Jahnke, Rico and Kofman, Wlodek and Lange, Caroline and Lichtenheldt, Roy and McInnes, Colin and Meß, Jan-Gerd and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Moore, Iain and Pelivan, Ivanka and Peloni, Alessandro and Plettemeier, Dirk and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Rogez, Yves and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and T{\´o}th, Norbert and Vergaaij, Merel and Viavattene, Giulia and Wejmo, Elisabet and Wiedemann, Carsten and Wolff, Friederike and Ziach, Christian}, title = {Flights are ten a sail - Re-use and commonality in the design and system engineering of small spacecraft solar sail missions with modular hardware for responsive and adaptive exploration}, series = {70th International Astronautical Congress (IAC)}, booktitle = {70th International Astronautical Congress (IAC)}, isbn = {9781713814856}, pages = {1 -- 7}, year = {2019}, language = {en} } @inproceedings{GrundmannBodenCeriottietal.2017, author = {Grundmann, Jan Thimo and Boden, Ralf Christian and Ceriotti, Matteo and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Lange, Caroline and Lichtenheldt, Roy and Pelivan, Ivanka and Peloni, Alessandro and Riemann, Johannes and Spr{\"o}witz, Tom and Tardivel, Simon}, title = {Soil to sail-asteroid landers on near-term sailcraft as an evolution of the GOSSAMER small spacecraft solar sail concept for in-situ characterization}, series = {5th IAA Planetary Defense Conference}, booktitle = {5th IAA Planetary Defense Conference}, pages = {30 Seiten}, year = {2017}, language = {en} } @article{GrundmannBauerBieleetal.2019, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Biele, Jens and Boden, Ralf Christian and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Hercik, David}, title = {Capabilities of Gossamer-1 derived small spacecraft solar sails carrying Mascot-derived nanolanders for in-situ surveying of NEAs}, series = {Acta Astronautica}, volume = {156}, journal = {Acta Astronautica}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0094-5765}, doi = {10.1016/j.actaastro.2018.03.019}, pages = {330 -- 362}, year = {2019}, language = {en} } @article{BaroudWuBohneretal.2003, author = {Baroud, Gamal and Wu, J.Z. and Bohner, Marc and Sponagel, Stefan and Steffen, Thomas}, title = {How to determine the permeability for cement infiltration into osteoporotic cancellous bone}, series = {Medical Engineering \& Physics. 25 (2003), H. 4}, journal = {Medical Engineering \& Physics. 25 (2003), H. 4}, issn = {1350-4533}, pages = {283 -- 288}, year = {2003}, abstract = {Cement augmentation is an emerging surgical procedure in which bone cement is used to infiltrate and reinforce osteoporotic vertebrae. Although this infiltration procedure has been widely applied, it is performed empirically and little is known about the flow characteristics of cement during the injection process. We present a theoretical and experimental approach to investigate the intertrabecular bone permeability during the infiltration procedure. The cement permeability was considered to be dependent on time, bone porosity, and cement viscosity in our analysis. In order to determine the time-dependent permeability, ten cancellous bone cores were harvested from osteoporotic vertebrae, infiltrated with acrylic cement at a constant flow rate, and the pressure drop across the cores during the infiltration was measured. The viscosity dependence of the permeability was determined based on published experimental data. The theoretical model for the permeability as a function of bone porosity and time was then fit to the testing data. Our findings suggest that the intertrabecular bone permeability depends strongly on time. For instance, the initial permeability (60.89 mm4/N.s) reduced to approximately 63\% of its original value within 18 seconds. This study is the first to analyze cement flow through osteoporotic bone. The theoretical and experimental models provided in this paper are generic. Thus, they can be used to systematically study and optimize the infiltration process for clinical practice.}, subject = {Osteoporose}, language = {en} } @article{SeynnesBojsenMollerAlbrachtetal.2015, author = {Seynnes, Olivier R. and Bojsen-M{\o}ller, Jens and Albracht, Kirsten and Arndt, Anton and Cronin, Neil J. and Finni, Taija and Magnusson, Stig Peter}, title = {Ultrasound-based testing of tendon mechanical properties: a critical evaluation}, series = {Journal of Applied Physiology}, volume = {118}, journal = {Journal of Applied Physiology}, number = {2}, issn = {8750-7587}, doi = {10.1152/japplphysiol.00849.2014}, pages = {133 -- 141}, year = {2015}, language = {en} } @misc{NamAroraBehbahanietal.2010, author = {Nam, J. and Arora, D. and Behbahani, Mehdi and Probst, M. and Benkowski, R. and Behr, Marek and Pasquali, M.}, title = {New computational method in hemolysis analysis for artificial heart pump}, series = {ASAIO Journal}, volume = {56}, journal = {ASAIO Journal}, number = {2}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, doi = {10.1097/01.mat.0000369377.65122.a3}, pages = {98}, year = {2010}, abstract = {The MicroMed DeBakey ventricular assist device is an axial flow pump designed for providing long-term support to end-stage heartfailure patients. Previously, we presented computational analysis of the blood pump flow. From the analysis, we were able to identify regions of high shear and recirculating flow that may cause blood damage, for example, deformation and fragmentation of the red blood cell (RBC). This mechanical hemolysis can be predicted using a tensor-based blood damage model that is based on the physical properties of the RBCs, for example, the relaxation time of the RBC membrane. However, an extensive and detailed analysis was complicated by the fact that the previous method predicts hemolysis along a finite number of pathlines traversed by the RBCs, possibly omitting parts of the flow domain. Furthermore, it is computationally expensive and is not easily parallelizable. Here, we propose a new method to estimate hemolysis. The method is based on treating the shape of droplet (tensor) as a field variable, like velocity in the Navier-Stokes system. The governing equation for the RBC shape is treated by least-squares finite element method and the volume conservation of the RBC is augmented by Lagrangian multiplier. Unlike the previous method, the proposed method can visualize areas of high RBC strain that is potentially dangerous for mechanical hemolysis. Also, the amount of plasma-free hemoglobin and, consequently, normalized index of hemolysis can be computed as a byproduct. The method is tested in a simple shear flow for validation and an artery graft flow is chosen to show its potential usefulness. Finally, the method is applied to the blood damage estimation for the pump.}, language = {en} } @article{RichterBraunsteinStaeudleetal.2021, author = {Richter, Charlotte and Braunstein, Bjoern and Staeudle, Benjamin and Attias, Julia and Suess, Alexander and Weber, Tobias and Mileva, Katya N. and Rittweger, Joern and Green, David A. and Albracht, Kirsten}, title = {Contractile behavior of the gastrocnemius medialis muscle during running in simulated hypogravity}, series = {npj Microgravity}, volume = {7}, journal = {npj Microgravity}, number = {Article number: 32}, publisher = {Springer Nature}, address = {New York}, issn = {2373-8065}, doi = {10.1038/s41526-021-00155-7}, pages = {7 Seiten}, year = {2021}, abstract = {Vigorous exercise countermeasures in microgravity can largely attenuate muscular degeneration, albeit the extent of applied loading is key for the extent of muscle wasting. Running on the International Space Station is usually performed with maximum loads of 70\% body weight (0.7 g). However, it has not been investigated how the reduced musculoskeletal loading affects muscle and series elastic element dynamics, and thereby force and power generation. Therefore, this study examined the effects of running on the vertical treadmill facility, a ground-based analog, at simulated 0.7 g on gastrocnemius medialis contractile behavior. The results reveal that fascicle-series elastic element behavior differs between simulated hypogravity and 1 g running. Whilst shorter peak series elastic element lengths at simulated 0.7 g appear to be the result of lower muscular and gravitational forces acting on it, increased fascicle lengths and decreased velocities could not be anticipated, but may inform the development of optimized running training in hypogravity. However, whether the alterations in contractile behavior precipitate musculoskeletal degeneration warrants further study.}, language = {en} } @inproceedings{RichterBraunsteinStaeudleetal.2018, author = {Richter, Charlotte and Braunstein, Bjoern and St{\"a}udle, Benjamin and Attias, Julia and Suess, Alexander and Weber, T. and Rittweger, Joern and Green, David A. and Albracht, Kirsten}, title = {In vivo fascicle length of the gastrocnemius muscle during walking in simulated martian gravity using two different body weight support devices}, series = {23rd Annual Congress of the European College of Sport Science, Dublin, Irland}, booktitle = {23rd Annual Congress of the European College of Sport Science, Dublin, Irland}, year = {2018}, language = {en} } @inproceedings{GoldmannBraunsteinHeinrichetal.2015, author = {Goldmann, Jan-Peter and Braunstein, Bjoern and Heinrich, Kai and Sanno, Maximilian and St{\"a}udle, Benjamin and Ritzdorf, Wolfgang and Br{\"u}ggemann, Gert-Peter and Albracht, Kirsten}, title = {Joint work of the take-off leg during elite high jump}, series = {Proceedings of the 33th International Conference on Biomechanics in Sports (ISBS)}, booktitle = {Proceedings of the 33th International Conference on Biomechanics in Sports (ISBS)}, pages = {3 S.}, year = {2015}, language = {en} } @article{KetelhutGoellBraunsteinetal.2018, author = {Ketelhut, Maike and G{\"o}ll, Fabian and Braunstein, Bj{\"o}rn and Albracht, Kirsten and Abel, Dirk}, title = {Comparison of different training algorithms for the leg extension training with an industrial robot}, series = {Current Directions in Biomedical Engineering}, volume = {4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, issn = {2364-5504}, doi = {10.1515/cdbme-2018-0005}, pages = {17 -- 20}, year = {2018}, abstract = {In the past, different training scenarios have been developed and implemented on robotic research platforms, but no systematic analysis and comparison have been done so far. This paper deals with the comparison of an isokinematic (motion with constant velocity) and an isotonic (motion against constant weight) training algorithm. Both algorithms are designed for a robotic research platform consisting of a 3D force plate and a high payload industrial robot, which allows leg extension training with arbitrary six-dimensional motion trajectories. In the isokinematic as well as the isotonic training algorithm, individual paths are defined i n C artesian s pace by sufficient s upport p oses. I n t he i sotonic t raining s cenario, the trajectory is adapted to the measured force as the robot should only move along the trajectory as long as the force applied by the user exceeds a minimum threshold. In the isotonic training scenario however, the robot's acceleration is a function of the force applied by the user. To validate these findings, a simulative experiment with a simple linear trajectory is performed. For this purpose, the same force path is applied in both training scenarios. The results illustrate that the algorithms differ in the force dependent trajectory adaption.}, language = {en} } @article{KetelhutBrueggeGoelletal.2020, author = {Ketelhut, Maike and Br{\"u}gge, G. M. and G{\"o}ll, Fabian and Braunstein, Bjoern and Albracht, Kirsten and Abel, Dirk}, title = {Adaptive iterative learning control of an industrial robot during neuromuscular training}, series = {IFAC PapersOnLine}, volume = {53}, journal = {IFAC PapersOnLine}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2405-8963}, doi = {10.1016/j.ifacol.2020.12.741}, pages = {16468 -- 16475}, year = {2020}, abstract = {To prevent the reduction of muscle mass and loss of strength coming along with the human aging process, regular training with e.g. a leg press is suitable. However, the risk of training-induced injuries requires the continuous monitoring and controlling of the forces applied to the musculoskeletal system as well as the velocity along the motion trajectory and the range of motion. In this paper, an adaptive norm-optimal iterative learning control algorithm to minimize the knee joint loadings during the leg extension training with an industrial robot is proposed. The response of the algorithm is tested in simulation for patients with varus, normal and valgus alignment of the knee and compared to the results of a higher-order iterative learning control algorithm, a robust iterative learning control and a recently proposed conventional norm-optimal iterative learning control algorithm. Although significant improvements in performance are made compared to the conventional norm-optimal iterative learning control algorithm with a small learning factor, for the developed approach as well as the robust iterative learning control algorithm small steady state errors occur.}, language = {en} } @inproceedings{KetelhutGoellBraunsteinetal.2019, author = {Ketelhut, Maike and G{\"o}ll, Fabian and Braunstein, Bjoern and Albracht, Kirsten and Abel, Dirk}, title = {Iterative learning control of an industrial robot for neuromuscular training}, series = {2019 IEEE Conference on Control Technology and Applications}, booktitle = {2019 IEEE Conference on Control Technology and Applications}, publisher = {IEEE}, address = {New York}, isbn = {978-1-7281-2767-5 (ePub)}, doi = {10.1109/CCTA.2019.8920659}, pages = {7 Seiten}, year = {2019}, abstract = {Effective training requires high muscle forces potentially leading to training-induced injuries. Thus, continuous monitoring and controlling of the loadings applied to the musculoskeletal system along the motion trajectory is required. In this paper, a norm-optimal iterative learning control algorithm for the robot-assisted training is developed. The algorithm aims at minimizing the external knee joint moment, which is commonly used to quantify the loading of the medial compartment. To estimate the external knee joint moment, a musculoskeletal lower extremity model is implemented in OpenSim and coupled with a model of an industrial robot and a force plate mounted at its end-effector. The algorithm is tested in simulation for patients with varus, normal and valgus alignment of the knee. The results show that the algorithm is able to minimize the external knee joint moment in all three cases and converges after less than seven iterations.}, language = {en} } @article{HerssensCowburnAlbrachtetal.2022, author = {Herssens, Nolan and Cowburn, James and Albracht, Kirsten and Braunstein, Bjoern and Cazzola, Dario and Colyer, Steffi and Minetti, Alberto E. and Pavei, Gaspare and Rittweger, J{\"o}rn and Weber, Tobias and Green, David A.}, title = {Movement in low gravity environments (MoLo) programme - the MoLo-L.O.O.P. study protocol}, series = {PLOS ONE / Public Library of Science}, volume = {17}, journal = {PLOS ONE / Public Library of Science}, number = {11}, editor = {Cattaneo, Luigi}, publisher = {Plos}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0278051}, pages = {e0278051}, year = {2022}, abstract = {Exposure to prolonged periods in microgravity is associated with deconditioning of the musculoskeletal system due to chronic changes in mechanical stimulation. Given astronauts will operate on the Lunar surface for extended periods of time, it is critical to quantify both external (e.g., ground reaction forces) and internal (e.g., joint reaction forces) loads of relevant movements performed during Lunar missions. Such knowledge is key to predict musculoskeletal deconditioning and determine appropriate exercise countermeasures associated with extended exposure to hypogravity.}, language = {en} } @inproceedings{BraunsteinGoldmannAlbrachtetal.2013, author = {Braunstein, Bjoern and Goldmann, Jan-Peter and Albracht, Kirsten and Sanno, Maximilian and Willwacher, Steffen and Heinrich, Kai and Herrmann, Volker and Br{\"u}ggemann, Gert-Peter}, title = {Joint specific contribution of mechanical power and work during acceleration and top speed in elite sprinters}, series = {31 International Conference on Biomechanics in Sports, Taipei, Taiwan, July 07 - July 22, 2013}, booktitle = {31 International Conference on Biomechanics in Sports, Taipei, Taiwan, July 07 - July 22, 2013}, issn = {1999-4168}, year = {2013}, language = {en} } @article{RichterBraunsteinStaeudleetal.2021, author = {Richter, Charlotte and Braunstein, Bjoern and St{\"a}udle, Benjamin and Attias, Julia and Suess, Alexander and Weber, Tobias and Mileva, Katja N. and Rittweger, Joern and Green, David A. and Albracht, Kirsten}, title = {Gastrocnemius medialis contractile behavior is preserved during 30\% body weight supported gait training}, series = {Frontiers in Sports and Active Living}, volume = {2021}, journal = {Frontiers in Sports and Active Living}, number = {2}, publisher = {Frontiers}, address = {Lausanne}, issn = {2624-9367}, doi = {10.3389/fspor.2020.614559}, pages = {Artikel 614559}, year = {2021}, abstract = {Rehabilitative body weight supported gait training aims at restoring walking function as a key element in activities of daily living. Studies demonstrated reductions in muscle and joint forces, while kinematic gait patterns appear to be preserved with up to 30\% weight support. However, the influence of body weight support on muscle architecture, with respect to fascicle and series elastic element behavior is unknown, despite this having potential clinical implications for gait retraining. Eight males (31.9 ± 4.7 years) walked at 75\% of the speed at which they typically transition to running, with 0\% and 30\% body weight support on a lower-body positive pressure treadmill. Gastrocnemius medialis fascicle lengths and pennation angles were measured via ultrasonography. Additionally, joint kinematics were analyzed to determine gastrocnemius medialis muscle-tendon unit lengths, consisting of the muscle's contractile and series elastic elements. Series elastic element length was assessed using a muscle-tendon unit model. Depending on whether data were normally distributed, a paired t-test or Wilcoxon signed rank test was performed to determine if body weight supported walking had any effects on joint kinematics and fascicle-series elastic element behavior. Walking with 30\% body weight support had no statistically significant effect on joint kinematics and peak series elastic element length. Furthermore, at the time when peak series elastic element length was achieved, and on average across the entire stance phase, muscle-tendon unit length, fascicle length, pennation angle, and fascicle velocity were unchanged with respect to body weight support. In accordance with unchanged gait kinematics, preservation of fascicle-series elastic element behavior was observed during walking with 30\% body weight support, which suggests transferability of gait patterns to subsequent unsupported walking.}, language = {en} } @article{KaramanidisAlbrachtBraunsteinetal.2011, author = {Karamanidis, Kiros and Albracht, Kirsten and Braunstein, Bjoern and Catala, Maria Moreno and Goldmann, Jan-Peter and Br{\"u}ggemann, Gert-Peter}, title = {Lower leg musculoskeletal geometry and sprint performance}, series = {Gait and Posture}, volume = {34}, journal = {Gait and Posture}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2011.03.009}, pages = {138 -- 141}, year = {2011}, abstract = {The purpose of this study was to investigate whether sprint performance is related to lower leg musculoskeletal geometry within a homogeneous group of highly trained 100-m sprinters. Using a cluster analysis, eighteen male sprinters were divided into two groups based on their personal best (fast: N = 11, 10.30 ± 0.07 s; slow: N = 7, 10.70 ± 0.08 s). Calf muscular fascicle arrangement and Achilles tendon moment arms (calculated by the gradient of tendon excursion versus ankle joint angle) were analyzed for each athlete using ultrasonography. Achilles tendon moment arm, foot and ankle skeletal geometry, fascicle arrangement as well as the ratio of fascicle length to Achilles tendon moment arm showed no significant (p > 0.05) correlation with sprint performance, nor were there any differences in the analyzed musculoskeletal parameters between the fast and slow sprinter group. Our findings provide evidence that differences in sprint ability in world-class athletes are not a result of differences in the geometrical design of the lower leg even when considering both skeletal and muscular components.}, language = {en} } @article{KetelhutKolditzGoelletal.2019, author = {Ketelhut, Maike and Kolditz, Melanie and G{\"o}ll, Fabian and Braunstein, Bjoern and Albracht, Kirsten and Abel, Dirk}, title = {Admittance control of an industrial robot during resistance training}, series = {IFAC-PapersOnLine}, volume = {52}, journal = {IFAC-PapersOnLine}, number = {19}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2405-8963}, doi = {10.1016/j.ifacol.2019.12.102}, pages = {223 -- 228}, year = {2019}, abstract = {Neuromuscular strength training of the leg extensor muscles plays an important role in the rehabilitation and prevention of age and wealth related diseases. In this paper, we focus on the design and implementation of a Cartesian admittance control scheme for isotonic training, i.e. leg extension and flexion against a predefined weight. For preliminary testing and validation of the designed algorithm an experimental research and development platform consisting of an industrial robot and a force plate mounted at its end-effector has been used. Linear, diagonal and arbitrary two-dimensional motion trajectories with different weights for the leg extension and flexion part are applied. The proposed algorithm is easily adaptable to trajectories consisting of arbitrary six-dimensional poses and allows the implementation of individualized trajectories.}, language = {en} } @inproceedings{DroszezSannoGoldmannetal.2016, author = {Droszez, Anna and Sanno, Maximilian and Goldmann, Jan-Peter and Albracht, Kirsten and Br{\"u}ggemann, Gert-Peter and Braunstein, Bjoern}, title = {Differences between take-off behavior during vertical jumps and two artistic elements}, series = {34th International Conference of Biomechanics in Sport, Tsukuba, Japan, July 18-22, 2016}, booktitle = {34th International Conference of Biomechanics in Sport, Tsukuba, Japan, July 18-22, 2016}, issn = {1999-4168}, pages = {577 -- 580}, year = {2016}, language = {en} } @article{HacklMayerWeberetal.2017, author = {Hackl, Michael and Mayer, Katharina and Weber, Mareike and Staat, Manfred and van Riet, Roger and Burkhart, Klaus Josef and M{\"u}ller, Lars-Peter and Wegmann, Kilian}, title = {Plate osteosynthesis of proximal ulna fractures : a biomechanical micromotion analysis}, series = {The journal of hand surgery}, volume = {42}, journal = {The journal of hand surgery}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0363-5023}, doi = {10.1016/j.jhsa.2017.05.014}, pages = {834.e1 -- 834.e7}, year = {2017}, language = {en} } @article{TemizArtmannCavdarYeniceriogluetal.2003, author = {Temiz Artmann, Ayseg{\"u}l and Cavdar, Caner and Yenicerioglu, Yavuz and Caliskan, Sezer and Celik, Ali and Aykut, Sifil and Onvural, Banu and Camsari, Taner}, title = {The effects of intravenous iron treatment on oxidant stress and erythrocyte deformability in haemodialysis patients. Cavdar, C.; Temiz, A.; Yenicerioglu, Y.; Caliskan, S.; Celik, A.; Sifil, A.; Onvural, B.; Camsari, T.}, series = {Scandinavian Journal of Urology and Nephrology. 37 (2003), H. 1}, journal = {Scandinavian Journal of Urology and Nephrology. 37 (2003), H. 1}, isbn = {0036-5599}, pages = {77 -- 82}, year = {2003}, language = {en} }