@inproceedings{BlassUibel2006, author = {Blaß, Hans Joachim and Uibel, Thomas}, title = {Tragf{\"a}higkeit von stiftf{\"o}rmigen Verbindungsmitteln in Brettsperrholz}, series = {Forschungskolloquium, Holzbau Forschung und Praxis, Stuttgart 2006. Tagungsband}, booktitle = {Forschungskolloquium, Holzbau Forschung und Praxis, Stuttgart 2006. Tagungsband}, editor = {Kuhlmann, U.}, publisher = {Universit{\"a}t}, address = {Stuttgart}, pages = {167 -- 174}, year = {2006}, language = {de} } @inproceedings{KobGoemmelButenwegetal.2006, author = {Kob, Malte and G{\"o}mmel, Andreas and Butenweg, Christoph and Niendorf, Thoralf}, title = {Training of a combined model of larynx and vocal folds with data from MRI measurements}, series = {The 5th International Conference on Voice Physiology and Biomechanics: Variations across Cultures and Species, July 12-14, 2006, Tokyo, Japan. Proceedings}, booktitle = {The 5th International Conference on Voice Physiology and Biomechanics: Variations across Cultures and Species, July 12-14, 2006, Tokyo, Japan. Proceedings}, organization = {International Conference on Voice Physiology and Biomechanics <5, 2006, Tokyo>}, pages = {45 -- 46}, year = {2006}, language = {en} } @inproceedings{MertenConradKaemperetal.2006, author = {Merten, Sabine and Conrad, Thorsten and K{\"a}mper, Klaus-Peter and Picard, Antoni and Sch{\"u}tze, Andreas}, title = {Virtual Technology Labs - an efficient tool for the preparation of hands-on-MEMS-courses in training foundries}, year = {2006}, abstract = {Hands-on-training in high technology areas is usually limited due to the high cost for lab infrastructure and equipment. One specific example is the field of MEMS, where investment and upkeep of clean rooms with microtechnology equipment is either financed by production or R\&D projects greatly reducing the availability for education purposes. For efficient hands-on-courses a MEMS training foundry, currently used jointly by six higher education institutions, was established at FH Kaiserslautern. In a typical one week course, students manufacture a micromachined pressure sensor including all lithography, thin film and packaging steps. This compact and yet complete program is only possible because participants learn to use the different complex machines in advance via a Virtual Training Lab (VTL). In this paper we present the concept of the MEMS training foundry and the VTL preparation together with results from a scientific evaluation of the VTL over the last three years.}, subject = {Virtuelles Laboratorium}, language = {en} } @inproceedings{KoplinSiemonsOcenValentinetal.2006, author = {Koplin, Tobias J. and Siemons, Maike and Oc{\´e}n-Val{\´e}ntin, C{\´e}sar and Sanders, Daniel and Simon, Ulrich}, title = {Workflow for high throughput screening of gas sensing materials}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1407}, year = {2006}, abstract = {The workflow of a high throughput screening setup for the rapid identification of new and improved sensor materials is presented. The polyol method was applied to prepare nanoparticular metal oxides as base materials, which were functionalised by surface doping. Using multi-electrode substrates and high throughput impedance spectroscopy (HT-IS) a wide range of materials could be screened in a short time. Applying HT-IS in search of new selective gas sensing materials a NO2-tolerant NO sensing material with reduced sensitivities towards other test gases was identified based on iridium doped zinc oxide. Analogous behaviour was observed for iridium doped indium oxide.}, subject = {Biosensor}, language = {en} }