@article{MiyamotoBingWagneretal.2015, author = {Miyamoto, Ko-ichiro and Bing, Yu and Wagner, Torsten and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Visualization of Defects on a Cultured Cell Layer by Utilizing Chemical Imaging Sensor}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.806}, pages = {936 -- 939}, year = {2015}, abstract = {The chemical imaging sensor is a field-effect sensor which is able to visualize both the distribution of ions (in LAPS mode) and the distribution of impedance (in SPIM mode) inthe sample. In this study, a novel wound-healing assay is proposed, in which the chemical imaging sensor operated in SPIM mode is applied to monitor the defect of a cell layer brought into proximity of the sensing surface.A reduced impedance inside the defect, which was artificially formed ina cell layer, was successfully visualized in a photocurrent image.}, language = {en} } @article{WagnerMiyamotoWerneretal.2011, author = {Wagner, Torsten and Miyamoto, K. and Werner, Frederik and Sch{\"o}ning, Michael Josef and Yoshinobu, T.}, title = {Utilising Digital Micro-Mirror Device (DMD) as Scanning Light Source for Light-Addressable Potentiometric Sensors (LAPS)}, volume = {9}, number = {2}, publisher = {American Scientific Publishers}, address = {Stevenson Ranch, Calif.}, doi = {10.1166/sl.2011.1620}, pages = {812 -- 815}, year = {2011}, language = {en} } @article{BohrnStuetzFleischeretal.2013, author = {Bohrn, Ulrich and St{\"u}tz, Evamaria and Fleischer, Maximilian and Sch{\"o}ning, Michael Josef and Wagner, Patrick}, title = {Using a cell-based gas biosensor for investigation of adverse effects of acetone vapors in vitro}, series = {Biosensors and Bioelectronics. 40 (2013), H. 1}, journal = {Biosensors and Bioelectronics. 40 (2013), H. 1}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0956-5663}, pages = {393 -- 400}, year = {2013}, language = {en} } @article{SiqueiraMakiPaulovichetal.2010, author = {Siqueira, Jose R. and Maki, Rafael M. and Paulovich, Fernando V. and Werner, Frederik and Poghossian, Arshak and Oliveira, Maria C. F. de and Zucolotto, Valtencir and Oliveira, Osvaldo N. Jr. and Sch{\"o}ning, Michael Josef}, title = {Use of Information Visualization Methods Eliminating Cross Talk in Multiple Sensing Units Investigated for a Light-Addressable Potentiometric Sensor}, series = {Analytical Chemistry (2010)}, journal = {Analytical Chemistry (2010)}, isbn = {0003-2700}, pages = {61 -- 65}, year = {2010}, language = {en} } @article{NaetherRolkaPoghossianetal.2005, author = {N{\"a}ther, Niko and Rolka, David and Poghossian, Arshak and Koudelka-Hep, M. and Sch{\"o}ning, Michael Josef}, title = {Two microcell flow-injection analysis (FIA) platforms for capacitive silicon-based field-effect sensors}, series = {Electrochimica Acta. 51 (2005), H. 5}, journal = {Electrochimica Acta. 51 (2005), H. 5}, isbn = {0013-4686}, doi = {10.1016/j.electacta.2005.04.066}, pages = {924 -- 929}, year = {2005}, language = {en} } @article{GunGutkinLevetal.2011, author = {Gun, Jenny and Gutkin, Vitaly and Lev, Ovadia and Boyen, Hans-Gerd and Saitner, Marc and Wagner, Patrick and Olieslaeger, Marc D´ and Abouzar, Maryam H. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Tracing gold nanoparticle charge by electrolyte-insulator-semiconductor devices}, series = {Journal of Physical Chemistry C. 115 (2011), H. 11}, journal = {Journal of Physical Chemistry C. 115 (2011), H. 11}, publisher = {American Cemical Society}, address = {Washington, DC}, isbn = {1932-7455}, pages = {4439 -- 4445}, year = {2011}, language = {en} } @article{GlueckSchoeningLuethetal.1997, author = {Gl{\"u}ck, O. and Sch{\"o}ning, Michael Josef and L{\"u}th, H. and Emons, H. and Hanewinkel, C. and Schumacher, D. and Otto, A.}, title = {Trace metal determination with gold microelectrodes fabricated by silicon technology}, series = {Proceedings of the 11th European Conference on Solid-State Transducers / Eurosensors XI, September 21 - 24, 1997, Warsaw, Poland. [Organised by] Warsaw University of Technology. Vol 2.}, journal = {Proceedings of the 11th European Conference on Solid-State Transducers / Eurosensors XI, September 21 - 24, 1997, Warsaw, Poland. [Organised by] Warsaw University of Technology. Vol 2.}, publisher = {Sensor Lab Sp.}, address = {Warsaw}, isbn = {83-908335-0-6}, pages = {615 -- 618}, year = {1997}, language = {en} } @article{GlueckSchoeningLuethetal.1999, author = {Gl{\"u}ck, O. and Sch{\"o}ning, Michael Josef and L{\"u}th, H. and Otto, A. and Emons, H.}, title = {Trace metal determination by dc resistance changes of microstructured thin gold film electrodes}, series = {Electrochimica Acta. 44 (1999), H. 21-22}, journal = {Electrochimica Acta. 44 (1999), H. 21-22}, isbn = {0013-4686}, pages = {3761 -- 3768}, year = {1999}, language = {en} } @article{PoghossianPlatenSchoening2005, author = {Poghossian, Arshak and Platen, J. and Sch{\"o}ning, Michael Josef}, title = {Towards self-aligned nanostructures by means of layerexpansion technique}, series = {Electrochimica Acta. 51 (2005), H. 5}, journal = {Electrochimica Acta. 51 (2005), H. 5}, isbn = {0013-4686}, pages = {838 -- 843}, year = {2005}, language = {en} } @article{BreuerPilasGuthmannetal.2019, author = {Breuer, Lars and Pilas, Johanna and Guthmann, Eric and Sch{\"o}ning, Michael Josef and Thoelen, Ronald and Wagner, Torsten}, title = {Towards light-addressable flow control: responsive hydrogels with incorporated graphene oxide as laser-driven actuator structures within microfluidic channels}, series = {Sensor and Actuators B: Chemical}, volume = {288}, journal = {Sensor and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2019.02.086}, pages = {579 -- 585}, year = {2019}, language = {en} } @article{SchoeningAbouzarIngebrandtetal.2006, author = {Sch{\"o}ning, Michael Josef and Abouzar, Maryam H. and Ingebrandt, Sven and Platen, Johannes and Offenh{\"a}usser, Andreas and Poghossian, Arshak}, title = {Towards label-free detection of charged macromolecules using field-effect-based structures : Scaling down from capacitive EIS sensor over ISFET to nano-scale devices}, series = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, journal = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, number = {paper 0915-R05-04}, editor = {Comini, Elisabetta}, isbn = {9781558998711}, pages = {89 -- 94}, year = {2006}, language = {en} } @article{MolinnusSorichBartzetal.2016, author = {Molinnus, Denise and Sorich, Maren and Bartz, Alexander and Siegert, Petra and Willenberg, Holger S. and Lisdat, Fred and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Towards an adrenaline biosensor based on substrate recycling amplification in combination with an enzyme logic gate}, series = {Sensors and Actuators B: Chemical}, volume = {237}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.06.064}, pages = {190 -- 195}, year = {2016}, abstract = {An amperometric biosensor using a substrate recycling principle was realized for the detection of low adrenaline concentrations (1 nM) by measurements in phosphate buffer and Ringer's solution at pH 6.5 and pH 7.4, respectively. In proof-of-concept experiments, a Boolean logic-gate principle has been applied to develop a digital adrenaline biosensor based on an enzyme AND logic gate. The obtained results demonstrate that the developed digital biosensor is capable for a rapid qualitative determination of the presence/absence of adrenaline in a YES/NO statement. Such digital biosensor could be used in clinical diagnostics for the control of a correct insertion of a catheter in the adrenal veins during adrenal venous-sampling procedure.}, language = {en} } @article{PoghossianWernerBuniatyanetal.2017, author = {Poghossian, Arshak and Werner, Frederik and Buniatyan, V. V. and Wagner, Torsten and Miamoto, K. and Yoshinobu, T. and Sch{\"o}ning, Michael Josef}, title = {Towards addressability of light-addressable potentiometric sensors: Shunting effect of non-illuminated region and cross-talk}, series = {Sensor and Actuators B: Chemical}, journal = {Sensor and Actuators B: Chemical}, number = {244}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2017.01.047}, pages = {1071 -- 1079}, year = {2017}, abstract = {The LAPS (light-addressable potentiometric sensor) platform is one of the most attractive approaches for chemical and biological sensing with many applications ranging from pH and ion/analyte concentration measurements up to cell metabolism detection and chemical imaging. However, although it is generally accepted that LAPS measurements are spatially resolved, the light-addressability feature of LAPS devices has not been discussed in detail so far. In this work, an extended electrical equivalent-circuit model of the LAPS has been presented, which takes into account possible cross-talk effects due to the capacitive coupling of the non-illuminated region. A shunting effect of the non-illuminated area on the measured photocurrent and addressability of LAPS devices has been studied. It has been shown, that the measured photocurrent will be determined not only by the local interfacial potential in the illuminated region but also by possible interfacial potential changes in the non-illuminated region, yielding cross-talk effects. These findings were supported by the experimental investigations of a penicillin-sensitive multi-spot LAPS and a metal-insulator-semiconductor LAPS as model systems.}, language = {en} } @article{KirchnerOberlaenderSusoetal.2013, author = {Kirchner, Patrick and Oberl{\"a}nder, Jan and Suso, Henri-Pierre and Rysstad, Gunnar and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Towards a wireless sensor system for real-time H2O2 monitoring in aseptic food processes}, series = {Physica status solidi (a)}, volume = {210}, journal = {Physica status solidi (a)}, number = {5}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201200920}, pages = {877 -- 883}, year = {2013}, abstract = {A wireless sensor system based on the industrial ZigBee standard for low-rate wireless networking was developed that enables real-time monitoring of gaseous H2O2 during the package sterilization in aseptic food processes. The sensor system consists of a remote unit connected to a calorimetric gas sensor, which was already established in former works, and an external base unit connected to a laptop computer. The remote unit was built up by an XBee radio frequency (RF) module for data communication and a programmable system-on-chip controller to read out the sensor signal and process the sensor data, whereas the base unit is a second XBee RF module. For the rapid H2O2 detection on various locations inside the package that has to be sterilized, a novel read-out strategy of the calorimetric gas sensor was established, wherein the sensor response is measured within the short sterilization time and correlated with the present H2O2 concentration. In an exemplary measurement application in an aseptic filling machinery, the suitability of the new, wireless sensor system was demonstrated, wherein the influence of the gas velocity on the H2O2 distribution inside a package was determined and verified with microbiological tests.}, language = {en} } @article{ReisertGeisslerFloerkeetal.2011, author = {Reisert, Steffen and Geissler, Hanno and Fl{\"o}rke, Rudolf and N{\"a}ther, Niko and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Towards a multi-sensor system for the evaluation of aseptic processes employing hydrogen peroxide vapour (H2O2)}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1351 -- 1356}, year = {2011}, language = {en} } @article{MolinnusDrinicIkenetal.2021, author = {Molinnus, Denise and Drinic, Aleksander and Iken, Heiko and Kr{\"o}ger, Nadja and Zinser, Max and Smeets, Ralf and K{\"o}pf, Marius and Kopp, Alexander and Sch{\"o}ning, Michael Josef}, title = {Towards a flexible electrochemical biosensor fabricated from biocompatible Bombyx mori silk}, series = {Biosensors and Bioelectronics}, volume = {183}, journal = {Biosensors and Bioelectronics}, number = {Art. 113204}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2021.113204}, year = {2021}, language = {en} } @article{SchoeningArzdorfMulchandanietal.2003, author = {Sch{\"o}ning, Michael Josef and Arzdorf, M. and Mulchandani, P. and Chen, W. and Mulchandani, A.}, title = {Towards a capacitive enzyme sensor for direct determination of organophosphorus pesticides: Fundamentals studies and aspects of development}, series = {Sensors. 3 (2003), H. 6}, journal = {Sensors. 3 (2003), H. 6}, isbn = {1424-8220}, pages = {119 -- 127}, year = {2003}, language = {en} } @article{OberlaenderBrommWendeleretal.2015, author = {Oberl{\"a}nder, Jan and Bromm, Alexander and Wendeler, Luisa and Iken, Heiko and Palomar Duran, Marlena and Greeff, Anton and Kirchner, Patrick and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Towards a biosensor to monitor the sterilisation efficiency of aseptic filling machines}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431900}, pages = {1299 -- 1305}, year = {2015}, abstract = {Sterilisation processes are compulsory in medicine, pharmacy, and food industries to prevent infections of consumers and microbiological contaminations of products. Monitoring the sterilisation by conventional microbiological methods is time- and lab-consuming. To overcome this problem, in this work a novel biosensor has been proposed. The sensor enables a fast method to evaluate sterilisation processes. By means of thin-film technology the sensor's transducer structures in form of IDEs (interdigitated electrodes) have been fabricated on a silicon substrate. Physical characterisation of the developed sensor was done by AFM, SEM, and profilometry. Impedance analyses were conducted for the electrical characterisation. As microbiological layer spores of B. atrophaeus have been immobilised on the sensing structure; spores of this type are a well-known sterilisation test organism. Impedance measurements at a fixed frequency over time were performed to monitor the immobilisation process. A sterilisation process according to aseptic filling machines was applied to demonstrate the sensor functionality. After both, immobilisation and sterilisation, a change in impedance could successfully be detected.}, language = {en} } @article{ArreolaKeusgenSchoening2019, author = {Arreola, Julio and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Toward an immobilization method for spore-based biosensors in oxidative environment}, series = {Electrochimica Acta}, volume = {302}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.electacta.2019.01.148}, pages = {394 -- 401}, year = {2019}, language = {en} } @article{RoehlenPilasDahmenetal.2018, author = {R{\"o}hlen, Desiree and Pilas, Johanna and Dahmen, Markus and Keusgen, Michael and Selmer, Thorsten and Sch{\"o}ning, Michael Josef}, title = {Toward a Hybrid Biosensor System for Analysis of Organic and Volatile Fatty Acids in Fermentation Processes}, series = {Frontiers in Chemistry}, journal = {Frontiers in Chemistry}, number = {6}, publisher = {Frontiers}, address = {Lausanne}, doi = {10.3389/fchem.2018.00284}, pages = {Artikel 284}, year = {2018}, abstract = {Monitoring of organic acids (OA) and volatile fatty acids (VFA) is crucial for the control of anaerobic digestion. In case of unstable process conditions, an accumulation of these intermediates occurs. In the present work, two different enzyme-based biosensor arrays are combined and presented for facile electrochemical determination of several process-relevant analytes. Each biosensor utilizes a platinum sensor chip (14 × 14 mm²) with five individual working electrodes. The OA biosensor enables simultaneous measurement of ethanol, formate, d- and l-lactate, based on a bi-enzymatic detection principle. The second VFA biosensor provides an amperometric platform for quantification of acetate and propionate, mediated by oxidation of hydrogen peroxide. The cross-sensitivity of both biosensors toward potential interferents, typically present in fermentation samples, was investigated. The potential for practical application in complex media was successfully demonstrated in spiked sludge samples collected from three different biogas plants. Thereby, the results obtained by both of the biosensors were in good agreement to the applied reference measurements by photometry and gas chromatography, respectively. The proposed hybrid biosensor system was also used for long-term monitoring of a lab-scale biogas reactor (0.01 m³) for a period of 2 months. In combination with typically monitored parameters, such as gas quality, pH and FOS/TAC (volatile organic acids/total anorganic carbonate), the amperometric measurements of OA and VFA concentration could enhance the understanding of ongoing fermentation processes.}, language = {en} }