@article{JildehKirchnerBaltesetal.2019, author = {Jildeh, Zaid B. and Kirchner, Patrick and Baltes, Klaus and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Development of an in-line evaporation unit for the production of gas mixtures containing hydrogen peroxide - numerical modeling and experimental results}, series = {International Journal of Heat and Mass Transfer}, volume = {143}, journal = {International Journal of Heat and Mass Transfer}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0017-9310}, doi = {10.1016/j.ijheatmasstransfer.2019.118519}, pages = {Article number 118519}, year = {2019}, abstract = {Hydrogen peroxide (H2O2) is a typical surface sterilization agent for packaging materials used in the pharmaceutical, food and beverage industries. We use the finite-elements method to analyze the conceptual design of an in-line thermal evaporation unit to produce a heated gas mixture of air and evaporated H2O2 solution. For the numerical model, the required phase-transition variables of pure H2O2 solution and of the aerosol mixture are acquired from vapor-liquid equilibrium (VLE) diagrams derived from vapor-pressure formulations. This work combines homogeneous single-phase turbulent flow with heat-transfer physics to describe the operation of the evaporation unit. We introduce the apparent heat-capacity concept to approximate the non-isothermal phase-transition process of the H2O2-containing aerosol. Empirical and analytical functions are defined to represent the temperature- and pressure-dependent material properties of the aqueous H2O2 solution, the aerosol and the gas mixture. To validate the numerical model, the simulation results are compared to experimental data on the heating power required to produce the gas mixture. This shows good agreement with the deviations below 10\%. Experimental observations on the formation of deposits due to the evaporation of stabilized H2O2 solution fits the prediction made from simulation results.}, language = {en} } @article{SchwarzGebhardtSchleseretal.2019, author = {Schwarz, Alexander and Gebhardt, Andreas and Schleser, Markus and Popoola, Patricia}, title = {New Welding Joint Geometries Manufactured by Powder Bed Fusion from 316L}, series = {Materials Performance and Characterization 8}, journal = {Materials Performance and Characterization 8}, number = {in press}, issn = {2379-1365}, doi = {10.1520/MPC20180096}, year = {2019}, language = {en} } @article{BucurLazarescuPopetal.2019, author = {Bucur, Alexandru and Lazarescu, Lucian and Pop, Grigore Marian and Achimas, Gheorghe and Gebhardt, Andreas}, title = {Tribological performance of biodegradable lubricants under different surface roughness of tools}, series = {Academic Journal of Manufacturing Engineering}, volume = {17}, journal = {Academic Journal of Manufacturing Engineering}, number = {1}, issn = {1583-7904}, pages = {172 -- 178}, year = {2019}, language = {en} } @article{ThomaRavi2019, author = {Thoma, Andreas and Ravi, Sridhar}, title = {Significance of parallel computing on the performance of Digital Image Correlation algorithms in MATLAB}, pages = {1 -- 17}, year = {2019}, abstract = {Digital Image Correlation (DIC) is a powerful tool used to evaluate displacements and deformations in a non-intrusive manner. By comparing two images, one of the undeformed reference state of a specimen and another of the deformed target state, the relative displacement between those two states is determined. DIC is well known and often used for post-processing analysis of in-plane displacements and deformation of specimen. Increasing the analysis speed to enable real-time DIC analysis will be beneficial and extend the field of use of this technique. Here we tested several combinations of the most common DIC methods in combination with different parallelization approaches in MATLAB and evaluated their performance to determine whether real-time analysis is possible with these methods. To reflect improvements in computing technology different hardware settings were also analysed. We found that implementation problems can reduce the efficiency of a theoretically superior algorithm such that it becomes practically slower than a suboptimal algorithm. The Newton-Raphson algorithm in combination with a modified Particle Swarm algorithm in parallel image computation was found to be most effective. This is contrary to theory, suggesting that the inverse-compositional Gauss-Newton algorithm is superior. As expected, the Brute Force Search algorithm is the least effective method. We also found that the correct choice of parallelization tasks is crucial to achieve improvements in computing speed. A poorly chosen parallelisation approach with high parallel overhead leads to inferior performance. Finally, irrespective of the computing mode the correct choice of combinations of integerpixel and sub-pixel search algorithms is decisive for an efficient analysis. Using currently available hardware realtime analysis at high framerates remains an aspiration.}, language = {en} } @article{BartellaKamalScholletal.2019, author = {Bartella, Alexander K. and Kamal, Mohammad and Scholl, Ingrid and Schiffer, Stefan and Steegmann, Julius and Ketelsen, Dominik and H{\"o}lzle, Frank W. and Lethaus, Bernd}, title = {Virtual reality in preoperative imaging in maxillofacial surgery: implementation of "the next level"?}, series = {British Journal of Oral and Maxillofacial Surgery}, volume = {57}, journal = {British Journal of Oral and Maxillofacial Surgery}, number = {7}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0266-4356}, doi = {10.1016/j.bjoms.2019.02.014}, pages = {644 -- 648}, year = {2019}, language = {en} } @article{MatchaLjubasGueldemet2018, author = {Matcha, Heike and Ljubas, Ante and Gueldemet, Harun}, title = {Printing a Coffee Bar: An investigation into mid-scale 3D printing}, series = {Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018}, journal = {Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018}, editor = {Kepczynska-Walczak, A.}, pages = {59 -- 68}, year = {2018}, abstract = {We present and discuss an exploration of the possibilities and properties of 3D printing with a printing space of 1 cubic meter, and how those can be integrated into architectural education through an experimental design and research course with students of architecture.We expand on issues presented at the eCAADe conference 2017 in Rome [Ref 6] by increasing the complexity and size of our prints, printing not a model to scale, but a full scale funtional prototype of a usable architectural object: A coffee bar.}, language = {en} } @article{CapriMorsianiSantoroetal.2019, author = {Capri, Miriam and Morsiani, Cristina and Santoro, Aurelia and Moriggi, Manuela and Conte, Maria and Martucci, Morena and Bellavista, Elena and Fabbri, Cristina and Giampieri, Enrico and Albracht, Kirsten and Fl{\"u}ck, Martin and Ruoss, Severin and Brocca, Lorenza and Canepari, Monica and Longa, Emanuela and Giulio, Irene Di and Bottinelli, Roberto and Cerretelli, Paolo and Salvioli, Stefano and Gelfi, Cecilia and Franceschi, Claudio and Narici, Marco and Rittweger, J{\"o}rn}, title = {Recovery from 6-month spaceflight at the International Space Station: muscle-related stress into a proinflammatory setting}, series = {The FASEB journal : official publication of the Federation of American Societies for Experimental Biology}, volume = {33}, journal = {The FASEB journal : official publication of the Federation of American Societies for Experimental Biology}, number = {4}, doi = {10.1096/fj.201801625R}, pages = {5168 -- 5180}, year = {2019}, language = {en} } @article{QuittmannAbelAlbrachtetal.2019, author = {Quittmann, Oliver J. and Abel, Thomas and Albracht, Kirsten and Str{\"u}der, Heiko K.}, title = {Reliability of muscular activation patterns and their alterations during incremental handcycling in able-bodied participants}, series = {Sports Biomechanics}, journal = {Sports Biomechanics}, number = {Article in press}, publisher = {Taylor \& Francis}, address = {London}, issn = {1752-6116}, doi = {10.1080/14763141.2019.1593496}, year = {2019}, language = {en} } @article{SchmidtForkmannSchultzetal.2019, author = {Schmidt, Katharina and Forkmann, Katarina and Schultz, Heidrun and Gratz, Marcel and Bitz, Andreas and Wiech, Katja and Bingel, Ulrike}, title = {Enhanced Neural Reinstatement for Evoked Facial Pain Compared With Evoked Hand Pain}, series = {The Journal of Pain}, journal = {The Journal of Pain}, number = {In Press, Corrected Proof}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1526-5900}, doi = {10.1016/j.jpain.2019.03.003}, year = {2019}, language = {en} } @article{SchiffelsSelmer2019, author = {Schiffels, Johannes and Selmer, Thorsten}, title = {Combinatorial assembly of ferredoxin-linked modules in Escherichia coli yields a testing platform for Rnf-complexes}, series = {Biotechnology and Bioengineering}, journal = {Biotechnology and Bioengineering}, number = {accepted article}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/bit.27079}, pages = {1 -- 36}, year = {2019}, language = {en} } @article{KoppSchmeetsGosauetal.2019, author = {Kopp, Alexander and Schmeets, Ralf and Gosau, Martin and Friedrich, Reinhard E. and Fuest, Sandra and Behbahani, Mehdi and Barbeck, Mike and Rutkowski, Rico and Burg, Simon and Kluwe, Lan and Henningsen, Anders}, title = {Production and Characterization of Porous Fibroin Scaffolds for Regenerative Medical Application}, series = {In Vivo}, volume = {33}, journal = {In Vivo}, number = {3}, issn = {1791-7549}, doi = {10.21873/invivo.11536}, pages = {757 -- 762}, year = {2019}, language = {en} } @article{KodomskoiKotliarSchroederetal.2019, author = {Kodomskoi, Leonid and Kotliar, Konstantin and Schr{\"o}der, Andreas and Weiss, Michael and Hille, Konrad}, title = {Suture-Probe Canaloplasty as an Alternative to Canaloplasty using the iTrack™ Microcatheter}, series = {Journal of Glaucoma}, journal = {Journal of Glaucoma}, number = {Epub ahead of print}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1057-0829}, doi = {10.1097/IJG.0000000000001321}, year = {2019}, language = {en} } @article{GerhardsSanderZivkovicetal.2020, author = {Gerhards, Michael and Sander, Volker and Zivkovic, Miroslav and Belloum, Adam and Bubak, Marian}, title = {New approach to allocation planning of many-task workflows on clouds}, series = {Concurrency and Computation: Practice and Experience}, volume = {32}, journal = {Concurrency and Computation: Practice and Experience}, number = {2 Article e5404}, publisher = {Wiley}, address = {Chichester}, issn = {1532-0634}, doi = {10.1002/cpe.5404}, pages = {1 -- 16}, year = {2020}, abstract = {Experience has shown that a priori created static resource allocation plans are vulnerable to runtime deviations and hence often become uneconomic or highly exceed a predefined soft deadline. The assumption of constant task execution times during allocation planning is even more unlikely in a cloud environment where virtualized resources vary in performance. Revising the initially created resource allocation plan at runtime allows the scheduler to react on deviations between planning and execution. Such an adaptive rescheduling of a many-task application workflow is only feasible, when the planning time can be handled efficiently at runtime. In this paper, we present the static low-complexity resource allocation planning algorithm (LCP) applicable to efficiently schedule many-task scientific application workflows on cloud resources of different capabilities. The benefits of the presented algorithm are benchmarked against alternative approaches. The benchmark results show that LCP is not only able to compete against higher complexity algorithms in terms of planned costs and planned makespan but also outperforms them significantly by magnitudes of 2 to 160 in terms of required planning time. Hence, LCP is superior in terms of practical usability where low planning time is essential such as in our targeted online rescheduling scenario.}, language = {en} } @article{NoureddineKraffLaddetal.2019, author = {Noureddine, Yacine and Kraff, Oliver and Ladd, Mark E. and Wrede, Karsten and Chen, Bixia and Quick, Harald H. and Schaefers, Georg and Bitz, Andreas}, title = {Radiofrequency induced heating around aneurysm clips using a generic birdcage head coil at 7 Tesla under consideration of the minimum distance to decouple multiple aneurysm clips}, series = {Magnetic Resonance in Medicine}, journal = {Magnetic Resonance in Medicine}, number = {Early view}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.27835}, pages = {1 -- 17}, year = {2019}, language = {en} } @article{DantismRoehlenSelmeretal.2019, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Selmer, Thorsten and Wagner, Torsten and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Quantitative differential monitoring of the metabolic activity of Corynebacterium glutamicum cultures utilizing a light-addressable potentiometric sensor system}, series = {Biosensors and Bioelectronics}, volume = {139}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.bios.2019.111332}, pages = {Artikel 111332}, year = {2019}, language = {en} } @article{MoretAlkemadeUpcraftetal.2020, author = {Moret, J.L.T.M. and Alkemade, J. and Upcraft, T.M. and Paulßen, Elisabeth and Wolterbeek, H.T. and Ommen, J.R. van and Denkova, A.G.}, title = {The application of atomic layer deposition in the production of sorbents for ⁹⁹Mo/⁹⁹ᵐTc generator}, series = {Applied Radiation and Isotopes}, volume = {164}, journal = {Applied Radiation and Isotopes}, number = {109266}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0969-8043}, doi = {10.1016/j.apradiso.2020.109266}, pages = {9}, year = {2020}, abstract = {New production routes for ⁹⁹Mo are steadily gaining importance. However, the obtained specific activity is much lower than currently produced by the fission of U-235. To be able to supply hospitals with ⁹⁹Mo/⁹⁹ᵐTc generators with the desired activity, the adsorption capacity of the column material should be increased. In this paper we have investigated whether the gas phase coating technique Atomic Layer Deposition (ALD), which can deposit ultra-thin layers on high surface area materials, can be used to attain materials with high adsorption capacity for ⁹⁹Mo. For this purpose, ALD was applied on a silica-core sorbent material to coat it with a thin layer of alumina. This sorbent material shows to have a maximum adsorption capacity of 120 mg/g and has a ⁹⁹ᵐTc elution efficiency of 55 ± 2\% based on 3 executive elutions.}, language = {en} } @article{WeberEnglhardArentetal.2019, author = {Weber, Tobias and Englhard, Markus and Arent, Jan-Christoph and Hausmann, Joachim}, title = {An experimental characterization of wrinkling generated during prepreg autoclave manufacturing using caul plates}, series = {Journal of Composite Materials}, volume = {53}, journal = {Journal of Composite Materials}, number = {26-27}, issn = {1530-793X}, doi = {10.1177/0021998319846556}, pages = {3757 -- 3773}, year = {2019}, language = {en} } @article{OttenWeberArent2018, author = {Otten, Dennis and Weber, Tobias and Arent, Jan-Christoph}, title = {Manufacturing Process Simulation - On Its Way to Industrial Application}, series = {International Journal of Aviation, Aeronautics, and Aerospace}, volume = {5}, journal = {International Journal of Aviation, Aeronautics, and Aerospace}, number = {2}, publisher = {Embry-Riddle Aeronautical University}, address = {Daytona Beach, Fla.}, issn = {2374-6793}, doi = {10.15394/ijaaa.2018.1217}, year = {2018}, abstract = {Manufacturing process simulation (MPS) has become more and more important for aviation and the automobile industry. A highly competitive market requires the use of high performance metals and composite materials in combination with reduced manufacturing cost and time as well as a minimization of the time to market for a new product. However, the use of such materials is expensive and requires sophisticated manufacturing processes. An experience based process and tooling design followed by a lengthy trial-and-error optimization is just not contemporary anymore. Instead, a tooling design process aided by simulation is used more often. This paper provides an overview of the capabilities of MPS in the fields of sheet metal forming and prepreg autoclave manufacturing of composite parts summarizing the resulting benefits for tooling design and manufacturing engineering. The simulation technology is explained briefly in order to show several simplification and optimization techniques for developing industrialized simulation approaches. Small case studies provide examples of an efficient application on an industrial scale.}, language = {en} } @article{WeberRuffStahl2017, author = {Weber, Tobias and Ruff-Stahl, Hans-Joachim K.}, title = {Advances in Composite Manufacturing of Helicopter Parts}, series = {International Journal of Aviation, Aeronautics, and Aerospace}, volume = {4}, journal = {International Journal of Aviation, Aeronautics, and Aerospace}, number = {1}, issn = {2374-6793}, doi = {10.15394/ijaaa.2017.1153}, year = {2017}, language = {en} } @article{WeberArentSteffenetal.2017, author = {Weber, Tobias and Arent, Jan-Christoph and Steffen, Lucas and Balvers, Johannes M. and Duhovic, Miro}, title = {Thermal optimization of composite autoclave molds using the shift factor approach for boundary condition estimation}, series = {Journal of Composite Materials}, volume = {51}, journal = {Journal of Composite Materials}, number = {12}, publisher = {Sage}, address = {London}, issn = {1530-793X}, doi = {10.1177/0021998317699868}, pages = {1753 -- 1767}, year = {2017}, language = {en} }