@article{PourshahidiAchtsnichtNambipareecheeetal.2021, author = {Pourshahidi, Ali Mohammad and Achtsnicht, Stefan and Nambipareechee, Mrinal Murali and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Multiplex detection of magnetic beads using offset field dependent frequency mixing magnetic detection}, series = {Sensors}, volume = {21}, journal = {Sensors}, number = {17}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s21175859}, pages = {16 Seiten}, year = {2021}, abstract = {Magnetic immunoassays employing Frequency Mixing Magnetic Detection (FMMD) have recently become increasingly popular for quantitative detection of various analytes. Simultaneous analysis of a sample for two or more targets is desirable in order to reduce the sample amount, save consumables, and save time. We show that different types of magnetic beads can be distinguished according to their frequency mixing response to a two-frequency magnetic excitation at different static magnetic offset fields. We recorded the offset field dependent FMMD response of two different particle types at frequencies ƒ₁ + n⋅ƒ₂, n = 1, 2, 3, 4 with ƒ₁ = 30.8 kHz and ƒ₂ = 63 Hz. Their signals were clearly distinguishable by the locations of the extremes and zeros of their responses. Binary mixtures of the two particle types were prepared with different mixing ratios. The mixture samples were analyzed by determining the best linear combination of the two pure constituents that best resembled the measured signals of the mixtures. Using a quadratic programming algorithm, the mixing ratios could be determined with an accuracy of greater than 14\%. If each particle type is functionalized with a different antibody, multiplex detection of two different analytes becomes feasible.}, language = {en} } @article{BaringhausGaigall2015, author = {Baringhaus, Ludwig and Gaigall, Daniel}, title = {On an independence test approach to the goodness-of-fit problem}, series = {Journal of Multivariate Analysis}, volume = {2015}, journal = {Journal of Multivariate Analysis}, number = {140}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0047-259X}, doi = {10.1016/j.jmva.2015.05.013}, pages = {193 -- 208}, year = {2015}, abstract = {Let X₁,…,Xₙ be independent and identically distributed random variables with distribution F. Assuming that there are measurable functions f:R²→R and g:R²→R characterizing a family F of distributions on the Borel sets of R in the way that the random variables f(X₁,X₂),g(X₁,X₂) are independent, if and only if F∈F, we propose to treat the testing problem H:F∈F,K:F∉F by applying a consistent nonparametric independence test to the bivariate sample variables (f(Xᵢ,Xⱼ),g(Xᵢ,Xⱼ)),1⩽i,j⩽n,i≠j. A parametric bootstrap procedure needed to get critical values is shown to work. The consistency of the test is discussed. The power performance of the procedure is compared with that of the classical tests of Kolmogorov-Smirnov and Cram{\´e}r-von Mises in the special cases where F is the family of gamma distributions or the family of inverse Gaussian distributions.}, language = {en} } @article{ButenwegBursiPaolaccietal.2021, author = {Butenweg, Christoph and Bursi, Oreste S. and Paolacci, Fabrizio and Marinković, Marko and Lanese, Igor and Nardin, Chiara and Quinci, Gianluca}, title = {Seismic performance of an industrial multi-storey frame structure with process equipment subjected to shake table testing}, series = {Engineering Structures}, volume = {243}, journal = {Engineering Structures}, number = {15}, editor = {Yang, J.}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0141-0296}, doi = {10.1016/j.engstruct.2021.112681}, year = {2021}, abstract = {Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of process equipment and multiple and simultaneous release of hazardous substances. Nonetheless, current standards for seismic design of industrial facilities are considered inadequate to guarantee proper safety conditions against exceptional events entailing loss of containment and related consequences. On these premises, the SPIF project -Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities- was proposed within the framework of the European H2020 SERA funding scheme. In detail, the objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial multi-storey frame structure equipped with complex process components by means of shaking table tests. Along this main vein and in a performance-based design perspective, the issues investigated in depth are the interaction between a primary moment resisting frame (MRF) steel structure and secondary process components that influence the performance of the whole system; and a proper check of floor spectra predictions. The evaluation of experimental data clearly shows a favourable performance of the MRF structure, some weaknesses of local details due to the interaction between floor crossbeams and process components and, finally, the overconservatism of current design standards w.r.t. floor spectra predictions.}, language = {en} } @article{ButenwegKubalskiElDeibetal.2021, author = {Butenweg, Christoph and Kubalski, Thomas and El-Deib, Khaled and Gellert, Christoph}, title = {Erdbebennachweis von Mauerwerksbauten nach DIN EN 1998-1/NA-2021}, series = {Bautechnik : Zeitschrift f{\"u}r den gesamten Ingenieurbau}, volume = {98}, journal = {Bautechnik : Zeitschrift f{\"u}r den gesamten Ingenieurbau}, number = {11}, editor = {Jesse, Dirk}, publisher = {Ernst \& Sohn}, address = {Berlin}, issn = {1437-0999}, doi = {10.1002/bate.202100064}, pages = {852 -- 863}, year = {2021}, abstract = {Mauerwerksbauten in Deutschland sind mit Einf{\"u}hrung des nationalen Anwendungsdokuments DIN EN 1998-1/NA auf Grundlage einer neuen probabilistischen Erdbebenkarte nachzuweisen. F{\"u}r erfolgreiche Erdbebennachweise {\"u}blicher Grundrissformen von Mauerwerksbauten stehen in dem zuk{\"u}nftigen Anwendungsdokument neue rechnerische Nachweism{\"o}glichkeiten zur Verf{\"u}gung, mit denen die Tragf{\"a}higkeitsreserven von Mauerwerksbauten in der Baupraxis mit einem {\"u}berschaubaren Aufwand besser in Ansatz gebracht werden k{\"o}nnen. Das Standardrechenverfahren ist weiterhin der kraftbasierte Nachweis, der nun mit h{\"o}heren Verhaltensbeiwerten im Vergleich zur DIN 4149 durchgef{\"u}hrt werden kann. Die h{\"o}heren Verhaltensbeiwerte basieren auf der besseren Ausnutzung der geb{\"a}udespezifischen Verformungsf{\"a}higkeit und Energiedissipation sowie der Lastumverteilung der Schubkr{\"a}fte im Grundriss mit Ansatz von Rahmentragwirkung durch Wand-Deckeninteraktionen. Alternativ dazu kann ein nichtlinearer Nachweis auf Grundlage von Pushover-Analysen zur Anwendung kommen. Vervollst{\"a}ndigt werden die Regelungen f{\"u}r Mauerwerksbauten durch neue Regelungen f{\"u}r nichttragende Innenw{\"a}nde und Außenmauerschalen. Der vorliegende Beitrag stellt die Grundlagen und Hintergr{\"u}nde der neuen rechnerischen Nachweise in DIN EN 1998-1/NA vor und demonstriert deren Anwendung an einem Beispiel aus der Praxis.}, language = {de} } @article{RossiWinandsButenweg2022, author = {Rossi, Leonardo and Winands, Mark H. M. and Butenweg, Christoph}, title = {Monte Carlo Tree Search as an intelligent search tool in structural design problems}, series = {Engineering with Computers : An International Journal for Simulation-Based Engineering}, volume = {38}, journal = {Engineering with Computers : An International Journal for Simulation-Based Engineering}, number = {4}, editor = {Zhang, Jessica}, publisher = {Springer Nature}, address = {Cham}, issn = {1435-5663}, doi = {10.1007/s00366-021-01338-2}, pages = {3219 -- 3236}, year = {2022}, abstract = {Monte Carlo Tree Search (MCTS) is a search technique that in the last decade emerged as a major breakthrough for Artificial Intelligence applications regarding board- and video-games. In 2016, AlphaGo, an MCTS-based software agent, outperformed the human world champion of the board game Go. This game was for long considered almost infeasible for machines, due to its immense search space and the need for a long-term strategy. Since this historical success, MCTS is considered as an effective new approach for many other scientific and technical problems. Interestingly, civil structural engineering, as a discipline, offers many tasks whose solution may benefit from intelligent search and in particular from adopting MCTS as a search tool. In this work, we show how MCTS can be adapted to search for suitable solutions of a structural engineering design problem. The problem consists of choosing the load-bearing elements in a reference reinforced concrete structure, so to achieve a set of specific dynamic characteristics. In the paper, we report the results obtained by applying both a plain and a hybrid version of single-agent MCTS. The hybrid approach consists of an integration of both MCTS and classic Genetic Algorithm (GA), the latter also serving as a term of comparison for the results. The study's outcomes may open new perspectives for the adoption of MCTS as a design tool for civil engineers.}, language = {en} } @article{ElDeibButenwegKlinkel2021, author = {El-Deib, Khaled and Butenweg, Christoph and Klinkel, Sven}, title = {Erdbebennachweis von Mauerwerksbauten mit realistischen Modellen und erh{\"o}hten Verhaltensbeiwerten}, series = {Mauerwerk}, volume = {2021}, journal = {Mauerwerk}, number = {3}, editor = {Jesse, Dirk}, publisher = {Wiley}, address = {Weinheim}, issn = {1437-1022}, doi = {10.1002/dama.202110014}, pages = {110 -- 119}, year = {2021}, abstract = {Die Anwendung des linearen Nachweiskonzepts auf Mauerwerksbauten f{\"u}hrt dazu, dass bereits heute Standsicherheitsnachweise f{\"u}r Geb{\"a}ude mit {\"u}blichen Grundrissen in Gebieten mit moderaten Erdbebeneinwirkungen nicht mehr gef{\"u}hrt werden k{\"o}nnen. Diese Problematik wird sich in Deutschland mit der Einf{\"u}hrung kontinuierlicher probabilistischer Erdbebenkarten weiter versch{\"a}rfen. Aufgrund der Erh{\"o}hung der seismischen Einwirkungen, die sich vielerorts ergibt, ist es erforderlich, die vorhandenen, bislang nicht ber{\"u}cksichtigten Tragf{\"a}higkeitsreserven in nachvollziehbaren Nachweiskonzepten in der Baupraxis verf{\"u}gbar zu machen. Der vorliegende Beitrag stellt ein Konzept f{\"u}r die geb{\"a}udespezifische Ermittlung von erh{\"o}hten Verhaltensbeiwerten vor. Die Verhaltensbeiwerte setzen sich aus drei Anteilen zusammen, mit denen die Lastumverteilung im Grundriss, die Verformungsf{\"a}higkeit und Energiedissipation sowie die {\"U}berfestigkeiten ber{\"u}cksichtigt werden. F{\"u}r die rechnerische Ermittlung dieser drei Anteile wird ein nichtlineares Nachweiskonzept auf Grundlage von Pushover-Analysen vorgeschlagen, in denen die Interaktionen von W{\"a}nden und Geschossdecken durch einen Einspanngrad beschrieben werden. F{\"u}r die Bestimmung der Einspanngrade wird ein nichtlinearer Modellierungsansatz eingef{\"u}hrt, mit dem die Interaktion von W{\"a}nden und Decken abgebildet werden kann. Die Anwendung des Konzepts mit erh{\"o}hten geb{\"a}udespezifischen Verhaltensbeiwerten wird am Beispiel eines Mehrfamilienhauses aus Kalksandsteinen demonstriert. Die Ergebnisse der linearen Nachweise mit erh{\"o}hten Verhaltensbeiwerten f{\"u}r dieses Geb{\"a}ude liegen deutlich n{\"a}her an den Ergebnissen nichtlinearer Nachweise und somit bleiben {\"u}bliche Grundrisse in Erdbebengebieten mit den traditionellen linearen Rechenans{\"a}tzen nachweisbar.}, language = {de} } @article{MarinkovićButenweg2022, author = {Marinković, Marko and Butenweg, Christoph}, title = {Experimental testing of decoupled masonry infills with steel anchors for out-of-plane support under combined in-plane and out-of-plane seismic loading}, series = {Construction and Building Materials}, volume = {318}, journal = {Construction and Building Materials}, number = {1}, editor = {Ford, Michael C.}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1879-0526}, doi = {10.1016/j.conbuildmat.2021.126041}, year = {2022}, abstract = {Because of simple construction process, high energy efficiency, significant fire resistance and excellent sound isolation, masonry infilled reinforced concrete (RC) frame structures are very popular in most of the countries in the world, as well as in seismic active areas. However, many RC frame structures with masonry infills were seriously damaged during earthquake events, as the traditional infills are generally constructed with direct contact to the RC frame which brings undesirable infill/frame interaction. This interaction leads to the activation of the equivalent diagonal strut in the infill panel, due to the RC frame deformation, and combined with seismically induced loads perpendicular to the infill panel often causes total collapses of the masonry infills and heavy damages to the RC frames. This fact was the motivation for developing different approaches for improving the behaviour of masonry infills, where infill isolation (decoupling) from the frame has been more intensively studied in the last decade. In-plane isolation of the infill wall reduces infill activation, but causes the need for additional measures to restrain out-of-plane movements. This can be provided by installing steel anchors, as proposed by some researchers. Within the framework of European research project INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in Reinforced Concrete Buildings) the system based on a use of elastomers for in-plane decoupling and steel anchors for out-of-plane restrain was tested. This constructive solution was tested and deeply investigated during the experimental campaign where traditional and decoupled masonry infilled RC frames with anchors were subjected to separate and combined in-plane ‬and out-of-plane loading. Based on a detailed evaluation and comparison of the test results, the performance and effectiveness of the developed system are illustrated.}, language = {en} } @article{Timme2022, author = {Timme, Michael}, title = {Beweislast beim gutgl{\"a}ubigen Erwerb eines Kraftfahrzeugs ohne Erhalt der Zulassungsbescheinigung Teil II — Zugleich eine Besprechung von BGH, Urt. v. 23.9.2022 - V ZR 148/21, MDR 2022, 1542}, series = {Monatsschrift f{\"u}r Deutsches Recht}, volume = {77}, journal = {Monatsschrift f{\"u}r Deutsches Recht}, number = {1}, publisher = {Verlag Dr. Otto Schmidt}, address = {K{\"o}ln}, issn = {0340-1812}, doi = {doi.org/10.9785/mdtr-2023-770102}, pages = {r5 -- r7}, year = {2022}, abstract = {Im Handel mit Kraftfahrzeugen geh{\"o}ren Aspekte des gutgl{\"a}ubigen Erwerbs zu den beinahe allt{\"a}glichen Standardproblemen. Der BGH f{\"u}gt in seiner Entscheidung v. 23.9.2022-VZR148/21, MDR 2022, 1541 diesem im Detail breit gef{\"a}cherten Themenfeld einen weiteren Mosaikstein hinzu: Der Erwerber erhielt das verkaufte Kfz ohne {\"U}bergabe einer Zulassungsbescheinigung Teil II, behauptet aber, diese Bescheinigung sei dem vom ihm eingeschalteten Vermittler bei Erwerb (als F{\"a}lschung) vorgelegt worden. Tats{\"a}chlich befand sich das Original durchg{\"a}ngig beim wahren Eigent{\"u}mer, der nunmehr Herausgabe des Fahrzeugs verlangt. Der BGH sch{\"u}tzt in dieser Gestaltung im Ergebnis den Erwerber. Die Entscheidung ist in mehrfacher Hinsicht bemerkenswert.}, language = {de} } @article{NiedermeierPennerUsherovichetal.2023, author = {Niedermeier, Jana and Penner, Crystal and Usherovich, Samuel and B{\´e}langer-Champagne, Camille and Paulßen, Elisabeth and Hoehr, Cornelia}, title = {Optical Fibers as Dosimeter Detectors for Mixed Proton/Neutron Fields - A Biological Dosimeter}, series = {electronics}, volume = {12}, journal = {electronics}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2079-9292}, doi = {10.3390/electronics12020324}, pages = {11 Seiten}, year = {2023}, abstract = {In recent years, proton therapy has gained importance as a cancer treatment modality due to its conformality with the tumor and the sparing of healthy tissue. However, in the interaction of the protons with the beam line elements and patient tissues, potentially harmful secondary neutrons are always generated. To ensure that this neutron dose is as low as possible, treatment plans could be created to also account for and minimize the neutron dose. To monitor such a treatment plan, a compact, easy to use, and inexpensive dosimeter must be developed that not only measures the physical dose, but which can also distinguish between proton and neutron contributions. To that end, plastic optical fibers with scintillation materials (Gd₂O₂S:Tb, Gd₂O₂S:Eu, and YVO₄:Eu) were irradiated with protons and neutrons. It was confirmed that sensors with different scintillation materials have different sensitivities to protons and neutrons. A combination of these three scintillators can be used to build a detector array to create a biological dosimeter.}, language = {en} } @article{PennerUsherovichNiedermeieretal.2022, author = {Penner, Crystal and Usherovich, Samuel and Niedermeier, Jana and B{\´e}langer-Champagne, Camille and Trinczek, Michael and Paulßen, Elisabeth and Hoehr, Cornelia}, title = {Organic Scintillator-Fibre Sensors for Proton Therapy Dosimetry: SCSF-3HF and EJ-260}, series = {electronics}, volume = {12}, journal = {electronics}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2079-9292}, doi = {10.3390/electronics12010011}, pages = {12 Seiten}, year = {2022}, abstract = {In proton therapy, the dose from secondary neutrons to the patient can contribute to side effects and the creation of secondary cancer. A simple and fast detection system to distinguish between dose from protons and neutrons both in pretreatment verification as well as potentially in vivo monitoring is needed to minimize dose from secondary neutrons. Two 3 mm long, 1 mm diameter organic scintillators were tested for candidacy to be used in a proton-neutron discrimination detector. The SCSF-3HF (1500) scintillating fibre (Kuraray Co. Chiyoda-ku, Tokyo, Japan) and EJ-260 plastic scintillator (Eljen Technology, Sweetwater, TX, USA) were irradiated at the TRIUMF Neutron Facility and the Proton Therapy Research Centre. In the proton beam, we compared the raw Bragg peak and spread-out Bragg peak response to the industry standard Markus chamber detector. Both scintillator sensors exhibited quenching at high LET in the Bragg peak, presenting a peak-to-entrance ratio of 2.59 for the EJ-260 and 2.63 for the SCSF-3HF fibre, compared to 3.70 for the Markus chamber. The SCSF-3HF sensor demonstrated 1.3 times the sensitivity to protons and 3 times the sensitivity to neutrons as compared to the EJ-260 sensor. Combined with our equations relating neutron and proton contributions to dose during proton irradiations, and the application of Birks' quenching correction, these fibres provide valid candidates for inexpensive and replicable proton-neutron discrimination detectors}, language = {en} } @article{RuebbelkeVoegeleGrajewskietal.2023, author = {R{\"u}bbelke, Dirk and V{\"o}gele, Stefan and Grajewski, Matthias and Zobel, Luzy}, title = {Cross border adjustment mechanism: Initial data for the assessment of hydrogen-based steel production}, series = {Data in Brief}, volume = {47}, journal = {Data in Brief}, number = {Article 108907}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-3409}, doi = {10.1016/j.dib.2023.108907}, pages = {1 -- 5}, year = {2023}, abstract = {Ambitious climate targets affect the competitiveness of industries in the international market. To prevent such industries from moving to other countries in the wake of increased climate protection efforts, cost adjustments may become necessary. Their design requires knowledge of country-specific production costs. Here, we present country-specific cost figures for different production routes of steel, paying particular attention to transportation costs. The data can be used in floor price models aiming to assess the competitiveness of different steel production routes in different countries (R{\"u}bbelke, 2022).}, language = {en} } @article{HaegerGrankinWagner2023, author = {Haeger, Gerrit and Grankin, Alina and Wagner, Michaela}, title = {Construction of an Aspergillus oryzae triple amylase deletion mutant as a chassis to evaluate industrially relevant amylases using multiplex CRISPR/Cas9 editing technology}, series = {Applied Research}, journal = {Applied Research}, number = {Early View}, publisher = {Wiley-VCH}, issn = {2702-4288}, doi = {10.1002/appl.202200106}, pages = {1 -- 15}, year = {2023}, abstract = {Aspergillus oryzae is an industrially relevant organism for the secretory production of heterologous enzymes, especially amylases. The activities of potential heterologous amylases, however, cannot be quantified directly from the supernatant due to the high background activity of native α-amylase. This activity is caused by the gene products of amyA, amyB, and amyC. In this study, an in vitro CRISPR/Cas9 system was established in A. oryzae to delete these genes simultaneously. First, pyrG of A. oryzae NSAR1 was mutated by exploiting NHEJ to generate a counter-selection marker. Next, all amylase genes were deleted simultaneously by co-transforming a repair template carrying pyrG of Aspergillus nidulans and flanking sequences of amylase gene loci. The rate of obtained triple knock-outs was 47\%. We showed that triple knockouts do not retain any amylase activity in the supernatant. The established in vitro CRISPR/Cas9 system was used to achieve sequence-specific knock-in of target genes. The system was intended to incorporate a single copy of the gene of interest into the desired host for the development of screening methods. Therefore, an integration cassette for the heterologous Fpi amylase was designed to specifically target the amyB locus. The site-specific integration rate of the plasmid was 78\%, with exceptional additional integrations. Integration frequency was assessed via qPCR and directly correlated with heterologous amylase activity. Hence, we could compare the efficiency between two different signal peptides. In summary, we present a strategy to exploit CRISPR/Cas9 for gene mutation, multiplex knock-out, and the targeted knock-in of an expression cassette in A. oryzae. Our system provides straightforward strain engineering and paves the way for development of fungal screening systems.}, language = {en} } @article{SchulteTiggesFoersterNikolovskietal.2022, author = {Schulte-Tigges, Joschua and F{\"o}rster, Marco and Nikolovski, Gjorgji and Reke, Michael and Ferrein, Alexander and Kaszner, Daniel and Matheis, Dominik and Walter, Thomas}, title = {Benchmarking of various LiDAR sensors for use in self-driving vehicles in real-world environments}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s22197146}, pages = {20 Seiten}, year = {2022}, abstract = {Abstract In this paper, we report on our benchmark results of the LiDAR sensors Livox Horizon, Robosense M1, Blickfeld Cube, Blickfeld Cube Range, Velodyne Velarray H800, and Innoviz Pro. The idea was to test the sensors in different typical scenarios that were defined with real-world use cases in mind, in order to find a sensor that meet the requirements of self-driving vehicles. For this, we defined static and dynamic benchmark scenarios. In the static scenarios, both LiDAR and the detection target do not move during the measurement. In dynamic scenarios, the LiDAR sensor was mounted on the vehicle which was driving toward the detection target. We tested all mentioned LiDAR sensors in both scenarios, show the results regarding the detection accuracy of the targets, and discuss their usefulness for deployment in self-driving cars.}, language = {en} } @article{AkimbekovDigelTastambeketal.2022, author = {Akimbekov, Nuraly S. and Digel, Ilya and Tastambek, Kuanysh T. and Marat, Adel K. and Turaliyeva, Moldir A. and Kaiyrmanova, Gulzhan K.}, title = {Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production}, series = {Biology}, volume = {11}, journal = {Biology}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2079-7737}, doi = {10.3390/biology11091306}, pages = {47 Seiten}, year = {2022}, abstract = {It was generally believed that coal sources are not favorable as live-in habitats for microorganisms due to their recalcitrant chemical nature and negligible decomposition. However, accumulating evidence has revealed the presence of diverse microbial groups in coal environments and their significant metabolic role in coal biogeochemical dynamics and ecosystem functioning. The high oxygen content, organic fractions, and lignin-like structures of lower-rank coals may provide effective means for microbial attack, still representing a greatly unexplored frontier in microbiology. Coal degradation/conversion technology by native bacterial and fungal species has great potential in agricultural development, chemical industry production, and environmental rehabilitation. Furthermore, native microalgal species can offer a sustainable energy source and an excellent bioremediation strategy applicable to coal spill/seam waters. Additionally, the measures of the fate of the microbial community would serve as an indicator of restoration progress on post-coal-mining sites. This review puts forward a comprehensive vision of coal biodegradation and bioprocessing by microorganisms native to coal environments for determining their biotechnological potential and possible applications.}, language = {en} } @article{HoffmannUhlCeblinetal.2022, author = {Hoffmann, Andreas and Uhl, Matthias and Ceblin, Maximilian and Rohrbach, Felix and Bansmann, Joachim and Mallah, Marcel and Heuermann, Holger and Jacob, Timo and Kuehne, Alexander J.C.}, title = {Atmospheric pressure plasma-jet treatment of PAN-nonwovens—carbonization of nanofiber electrodes}, series = {C - Journal of Carbon Research}, volume = {8}, journal = {C - Journal of Carbon Research}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2311-5629}, doi = {10.3390/c8030033}, pages = {8 Seiten}, year = {2022}, abstract = {Carbon nanofibers are produced from dielectric polymer precursors such as polyacrylonitrile (PAN). Carbonized nanofiber nonwovens show high surface area and good electrical conductivity, rendering these fiber materials interesting for application as electrodes in batteries, fuel cells, and supercapacitors. However, thermal processing is slow and costly, which is why new processing techniques have been explored for carbon fiber tows. Alternatives for the conversion of PAN-precursors into carbon fiber nonwovens are scarce. Here, we utilize an atmospheric pressure plasma jet to conduct carbonization of stabilized PAN nanofiber nonwovens. We explore the influence of various processing parameters on the conductivity and degree of carbonization of the converted nanofiber material. The precursor fibers are converted by plasma-jet treatment to carbon fiber nonwovens within seconds, by which they develop a rough surface making subsequent surface activation processes obsolete. The resulting carbon nanofiber nonwovens are applied as supercapacitor electrodes and examined by cyclic voltammetry and impedance spectroscopy. Nonwovens that are carbonized within 60 s show capacitances of up to 5 F g⁻¹.}, language = {en} } @article{VahidpourAlghazaliAkcaetal.2022, author = {Vahidpour, Farnoosh and Alghazali, Yousef and Akca, Sevilay and Hommes, Gregor and Sch{\"o}ning, Michael Josef}, title = {An Enzyme-Based Interdigitated Electrode-Type Biosensor for Detecting Low Concentrations of H₂O₂ Vapor/Aerosol}, series = {Chemosensors}, volume = {10}, journal = {Chemosensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors10060202}, pages = {Arikel 202}, year = {2022}, abstract = {This work introduces a novel method for the detection of H₂O₂ vapor/aerosol of low concentrations, which is mainly applied in the sterilization of equipment in medical industry. Interdigitated electrode (IDE) structures have been fabricated by means of microfabrication techniques. A differential setup of IDEs was prepared, containing an active sensor element (active IDE) and a passive sensor element (passive IDE), where the former was immobilized with an enzymatic membrane of horseradish peroxidase that is selective towards H₂O₂. Changes in the IDEs' capacitance values (active sensor element versus passive sensor element) under H₂O₂ vapor/aerosol atmosphere proved the detection in the concentration range up to 630 ppm with a fast response time (<60 s). The influence of relative humidity was also tested with regard to the sensor signal, showing no cross-sensitivity. The repeatability assessment of the IDE biosensors confirmed their stable capacitive signal in eight subsequent cycles of exposure to H₂O₂ vapor/aerosol. Room-temperature detection of H₂O₂ vapor/aerosol with such miniaturized biosensors will allow a future three-dimensional, flexible mapping of aseptic chambers and help to evaluate sterilization assurance in medical industry.}, language = {en} } @article{PoghossianKarschuckWagneretal.2022, author = {Poghossian, Arshak and Karschuck, Tobias and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Field-Effect Capacitors Decorated with Ligand-Stabilized Gold Nanoparticles: Modeling and Experiments}, series = {Biosensors}, volume = {12}, journal = {Biosensors}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios12050334}, pages = {Artikel 334}, year = {2022}, abstract = {Nanoparticles are recognized as highly attractive tunable materials for designing field-effect biosensors with enhanced performance. In this work, we present a theoretical model for electrolyte-insulator-semiconductor capacitors (EISCAP) decorated with ligand-stabilized charged gold nanoparticles. The charged AuNPs are taken into account as additional, nanometer-sized local gates. The capacitance-voltage (C-V) curves and constant-capacitance (ConCap) signals of the AuNP-decorated EISCAPs have been simulated. The impact of the AuNP coverage on the shift of the C-V curves and the ConCap signals was also studied experimentally on Al-p-Si-SiO₂ EISCAPs decorated with positively charged aminooctanethiol-capped AuNPs. In addition, the surface of the EISCAPs, modified with AuNPs, was characterized by scanning electron microscopy for different immobilization times of the nanoparticles.}, language = {en} } @article{PourshahidiAchtsnichtOffenhaeusseretal.2022, author = {Pourshahidi, Ali Mohammad and Achtsnicht, Stefan and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Frequency Mixing Magnetic Detection Setup Employing Permanent Ring Magnets as a Static Offset Field Source}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {22}, editor = {Offenh{\"a}usser, Andreas}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s22228776}, pages = {12 Seiten}, year = {2022}, abstract = {Frequency mixing magnetic detection (FMMD) has been explored for its applications in fields of magnetic biosensing, multiplex detection of magnetic nanoparticles (MNP) and the determination of core size distribution of MNP samples. Such applications rely on the application of a static offset magnetic field, which is generated traditionally with an electromagnet. Such a setup requires a current source, as well as passive or active cooling strategies, which directly sets a limitation based on the portability aspect that is desired for point of care (POC) monitoring applications. In this work, a measurement head is introduced that involves the utilization of two ring-shaped permanent magnets to generate a static offset magnetic field. A steel cylinder in the ring bores homogenizes the field. By variation of the distance between the ring magnets and of the thickness of the steel cylinder, the magnitude of the magnetic field at the sample position can be adjusted. Furthermore, the measurement setup is compared to the electromagnet offset module based on measured signals and temperature behavior.}, language = {en} } @article{KarschuckKaulenPoghossianetal.2021, author = {Karschuck, Tobias and Kaulen, Corinna and Poghossian, Arshak and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Gold nanoparticle-modified capacitive field-effect sensors: Studying the surface density of nanoparticles and coupling of charged polyelectrolyte macromolecules}, series = {Electrochemical Science Advances}, volume = {2}, journal = {Electrochemical Science Advances}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0938-5193}, doi = {10.1002/elsa.202100179}, pages = {10 Seiten}, year = {2021}, abstract = {The coupling of ligand-stabilized gold nanoparticles with field-effect devices offers new possibilities for label-free biosensing. In this work, we study the immobilization of aminooctanethiol-stabilized gold nanoparticles (AuAOTs) on the silicon dioxide surface of a capacitive field-effect sensor. The terminal amino group of the AuAOT is well suited for the functionalization with biomolecules. The attachment of the positively-charged AuAOTs on a capacitive field-effect sensor was detected by direct electrical readout using capacitance-voltage and constant capacitance measurements. With a higher particle density on the sensor surface, the measured signal change was correspondingly more pronounced. The results demonstrate the ability of capacitive field-effect sensors for the non-destructive quantitative validation of nanoparticle immobilization. In addition, the electrostatic binding of the polyanion polystyrene sulfonate to the AuAOT-modified sensor surface was studied as a model system for the label-free detection of charged macromolecules. Most likely, this approach can be transferred to the label-free detection of other charged molecules such as enzymes or antibodies.}, language = {en} } @article{HoffmannRohrbachUhletal.2022, author = {Hoffmann, Andreas and Rohrbach, Felix and Uhl, Matthias and Ceblin, Maximilian and Bauer, Thomas and Mallah, Marcel and Jacob, Timo and Heuermann, Holger and Kuehne, Alexander J. C.}, title = {Atmospheric pressure plasma-jet treatment of polyacrylonitrile-nonwovens—Stabilization and roll-to-roll processing}, series = {Journal of Applied Polymer Science}, volume = {139}, journal = {Journal of Applied Polymer Science}, number = {37}, publisher = {Wiley}, issn = {0021-8995 (Print)}, doi = {10.1002/app.52887}, pages = {1 -- 9}, year = {2022}, abstract = {Carbon nanofiber nonwovens represent a powerful class of materials with prospective application in filtration technology or as electrodes with high surface area in batteries, fuel cells, and supercapacitors. While new precursor-to-carbon conversion processes have been explored to overcome productivity restrictions for carbon fiber tows, alternatives for the two-step thermal conversion of polyacrylonitrile precursors into carbon fiber nonwovens are absent. In this work, we develop a continuous roll-to-roll stabilization process using an atmospheric pressure microwave plasma jet. We explore the influence of various plasma-jet parameters on the morphology of the nonwoven and compare the stabilized nonwoven to thermally stabilized samples using scanning electron microscopy, differential scanning calorimetry, and infrared spectroscopy. We show that stabilization with a non-equilibrium plasma-jet can be twice as productive as the conventional thermal stabilization in a convection furnace, while producing electrodes of comparable electrochemical performance.}, language = {en} }