@inproceedings{ElgamalHeuermann2020, author = {Elgamal, Abdelrahman and Heuermann, Holger}, title = {Design and Development of a Hot S-Parameter Measurement System for Plasma and Magnetron Applications}, series = {2020 German Microwave Conference (GeMiC), Cottbus, Germany, 2020}, booktitle = {2020 German Microwave Conference (GeMiC), Cottbus, Germany, 2020}, isbn = {978-3-9820397-1-8}, pages = {124 -- 127}, year = {2020}, language = {en} } @inproceedings{EllerwegRitz2008, author = {Ellerweg, Roland and Ritz, Thomas}, title = {Tool supported requirements analysis for the user centered development of mobile enterprise software}, series = {Proceeding of Wireless Applications and Computing 2008 and Telecommunications, Networks and Systems 2008 : MCCSIS '08 ; IADIS Multi Conference on Computer Science and Information Systems ; 22 - 24 July 2008, Amsterdam, The Netherlands}, booktitle = {Proceeding of Wireless Applications and Computing 2008 and Telecommunications, Networks and Systems 2008 : MCCSIS '08 ; IADIS Multi Conference on Computer Science and Information Systems ; 22 - 24 July 2008, Amsterdam, The Netherlands}, editor = {Roth, J{\"o}rg}, publisher = {IADIS Press}, address = {[Lisboa]}, isbn = {978-972-8924-62-1}, pages = {160 -- 162}, year = {2008}, abstract = {A user centered development method has proved satisfactory for the development of mobile enterprise software. To make use of this method, detailed information about the user and the place where the user interacts with his mobile device is required. This article describes how both can be modeled by a stereotypical and conceptual extended UML extension. Finally, a software tool is presented that supports the developed UML extension.}, language = {en} } @inproceedings{Elsen1998, author = {Elsen, Ingo}, title = {A pixel based approach to view based object recognition with self-organizing neural networks}, series = {IECON'98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society}, booktitle = {IECON'98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society}, publisher = {IEEE}, address = {New York}, isbn = {0-7803-4503-7}, doi = {10.1109/IECON.1998.724032}, pages = {2040 -- 2044}, year = {1998}, abstract = {This paper addresses the pixel based classification of three dimensional objects from arbitrary views. To perform this task a coding strategy, inspired by the biological model of human vision, for pixel data is described. The coding strategy ensures that the input data is invariant against shift, scale and rotation of the object in the input domain. The image data is used as input to a class of self organizing neural networks, the Kohonen-maps or self-organizing feature maps (SOFM). To verify this approach two test sets have been generated: the first set, consisting of artificially generated images, is used to examine the classification properties of the SOFMs; the second test set examines the clustering capabilities of the SOFM when real world image data is applied to the network after it has been preprocessed to be invariant against shift, scale and rotation. It is shown that the clustering capability of the SOFM is strongly dependant on the invariance coding of the images.}, language = {en} } @inproceedings{ElsenKraissKrumbiegel1997, author = {Elsen, Ingo and Kraiss, Karl-Friedrich and Krumbiegel, Dirk}, title = {Pixel based 3D object recognition with bidirectional associative memories}, series = {International Conference on Neural Networks 1997}, booktitle = {International Conference on Neural Networks 1997}, publisher = {IEEE}, address = {New York}, isbn = {0-7803-4122-8}, pages = {1679 -- 1684}, year = {1997}, abstract = {This paper addresses the pixel based recognition of 3D objects with bidirectional associative memories. Computational power and memory requirements for this approach are identified and compared to the performance of current computer architectures by benchmarking different processors. It is shown, that the performance of special purpose hardware, like neurocomputers, is between one and two orders of magnitude higher than the performance of mainstream hardware. On the other hand, the calculation of small neural networks is performed more efficiently on mainstream processors. Based on these results a novel concept is developed, which is tailored for the efficient calculation of bidirectional associative memories. The computational efficiency is further enhanced by the application of algorithms and storage techniques which are matched to characteristics of the application at hand.}, language = {en} } @inproceedings{EltesterFerreinSchiffer2020, author = {Eltester, Niklas Sebastian and Ferrein, Alexander and Schiffer, Stefan}, title = {A smart factory setup based on the RoboCup logistics league}, series = {2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS)}, booktitle = {2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS)}, publisher = {IEEE}, doi = {10.1109/ICPS48405.2020.9274766}, pages = {297 -- 302}, year = {2020}, abstract = {In this paper we present SMART-FACTORY, a setup for a research and teaching facility in industrial robotics that is based on the RoboCup Logistics League. It is driven by the need for developing and applying solutions for digital production. Digitization receives constantly increasing attention in many areas, especially in industry. The common theme is to make things smart by using intelligent computer technology. Especially in the last decade there have been many attempts to improve existing processes in factories, for example, in production logistics, also with deploying cyber-physical systems. An initiative that explores challenges and opportunities for robots in such a setting is the RoboCup Logistics League. Since its foundation in 2012 it is an international effort for research and education in an intra-warehouse logistics scenario. During seven years of competition a lot of knowledge and experience regarding autonomous robots was gained. This knowledge and experience shall provide the basis for further research in challenges of future production. The focus of our SMART-FACTORY is to create a stimulating environment for research on logistics robotics, for teaching activities in computer science and electrical engineering programmes as well as for industrial users to study and explore the feasibility of future technologies. Building on a very successful history in the RoboCup Logistics League we aim to provide stakeholders with a dedicated facility oriented at their individual needs.}, language = {en} } @inproceedings{EndressBragard2017, author = {Endress, Tim and Bragard, Michael}, title = {Recording of efficiency-maps of low-power electric drive systems using a flexible matlab-based test bench}, series = {2017 IEEE 58th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)}, booktitle = {2017 IEEE 58th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-3846-0}, doi = {10.1109/RTUCON.2017.8124775}, pages = {5 Seiten}, year = {2017}, abstract = {This paper introduces a hardware setup to measure efficiency maps of low-power electric motors and their associated inverters. Here, the power of the device under test (DUT) ranges from some Watts to a few hundred Watts. The torque and speed of the DUT are measured independent of voltage and current in multiple load points. A Matlab-based software approach in combination with an open Texas-Instruments (TI) hardware setup ensures flexibility. Exemplarily, the efficiency field of a Permanent Magnet Synchronous Machine (PMSM) is measured to proof the concept. Brushless-DC (BLDC) motors can be tested as well. The nomenclature in this paper is based on the new European standard DIN EN 50598. Special attention is paid to the calculation of the measurement error.}, language = {en} } @inproceedings{EngelThieringerTippkoetter2016, author = {Engel, M. and Thieringer, J. and Tippk{\"o}tter, Nils}, title = {Microbial electrosynthesis for sustainable biobutanol production}, series = {New frontiers of biotech-processes (Himmelfahrtstagung) : 02-04 May 2016, Rhein-Mosel-Halle, Koblenz/Germany}, booktitle = {New frontiers of biotech-processes (Himmelfahrtstagung) : 02-04 May 2016, Rhein-Mosel-Halle, Koblenz/Germany}, publisher = {DECHEMA}, address = {Frankfurt am Main}, pages = {77 -- 78}, year = {2016}, language = {en} } @inproceedings{Engels2013, author = {Engels, Elmar}, title = {A field bus library for MATLAB based on open core engineering}, series = {Proceedings to the 14th International Workshop on Research and Education in Mechatronics, REM 2013, Wien, 05.06.-06.06.2013.}, booktitle = {Proceedings to the 14th International Workshop on Research and Education in Mechatronics, REM 2013, Wien, 05.06.-06.06.2013.}, isbn = {978-3-90275-907-8}, year = {2013}, language = {en} } @inproceedings{EngelsSchnabel2012, author = {Engels, Elmar and Schnabel, Holger}, title = {Rapid-control-prototyping of industrial drives for the sercos automation bus}, series = {13th International Workshop on Mechatronics (MECATRONICS), 2012 9th France-Japan \& 7th Europe-Asia Congress on and Research and Education in Mechatronics (REM)}, booktitle = {13th International Workshop on Mechatronics (MECATRONICS), 2012 9th France-Japan \& 7th Europe-Asia Congress on and Research and Education in Mechatronics (REM)}, isbn = {978-1-4673-4771-6}, pages = {177 -- 181}, year = {2012}, abstract = {This article describes the functionality of a MATLAB® library that can be used to develop motion-logic applications in MATLAB programming language for industrial drive and control systems using the well known sercos automation bus. Therewith MATLAB's functionality is extended to designing automation applications from single axis machines up to multi-kinematic robots.}, language = {en} } @inproceedings{EngemannBadriWenningetal.2019, author = {Engemann, Heiko and Badri, Sriram and Wenning, Marius and Kallweit, Stephan}, title = {Implementation of an Autonomous Tool Trolley in a Production Line}, series = {Advances in Service and Industrial Robotics. RAAD 2019. Advances in Intelligent Systems and Computing, vol 980}, booktitle = {Advances in Service and Industrial Robotics. RAAD 2019. Advances in Intelligent Systems and Computing, vol 980}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-19648-6}, doi = {10.1007/978-3-030-19648-6_14}, pages = {117 -- 125}, year = {2019}, language = {en} } @inproceedings{EngemannWiesenKallweitetal.2018, author = {Engemann, Heiko and Wiesen, Patrick and Kallweit, Stephan and Deshpande, Harshavardhan and Schleupen, Josef}, title = {Autonomous mobile manipulation using ROS}, series = {Advances in Service and Industrial Robotics}, booktitle = {Advances in Service and Industrial Robotics}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-61276-8}, doi = {10.1007/978-3-319-61276-8_43}, pages = {389 -- 401}, year = {2018}, language = {en} } @inproceedings{EnglhardWeberArent2021, author = {Englhard, Markus and Weber, Tobias and Arent, Jan-Christoph}, title = {Efficiency enhancement for CFRP-Prepregautoclave manufacturing by means of simulation-assisted loading optimization}, series = {Proceedings of SAMPE Europe Conference 2021}, booktitle = {Proceedings of SAMPE Europe Conference 2021}, pages = {8 Seiten}, year = {2021}, abstract = {A new method for improved autoclave loading within the restrictive framework of helicopter manufacturing is proposed. It is derived from experimental and numerical studies of the curing process and aims at optimizing tooling positions in the autoclave for fast and homogeneous heat-up. The mold positioning is based on two sets of information. The thermal properties of the molds, which can be determined via semi-empirical thermal simulation. The second information is a previously determined distribution of heat transfer coefficients inside the autoclave. Finally, an experimental proof of concept is performed to show a cycle time reduction of up to 31\% using the proposed methodology.}, language = {en} } @inproceedings{EppleBrandesGligorevicetal.2009, author = {Epple, U. and Brandes, Sinja and Gligorevic, Snjezana and Schnell, Michael}, title = {Receiver optimization for L-DACS1}, series = {IEEE/AIAA 28th Digital Avionics Systems Conference : 23-29 Oct. 2009 : Orlando, Fla.}, booktitle = {IEEE/AIAA 28th Digital Avionics Systems Conference : 23-29 Oct. 2009 : Orlando, Fla.}, organization = {Institute of Electrical and Electronics Engineers}, isbn = {978-1-4244-4078-8}, pages = {4B1-1 -- 4B1-12}, year = {2009}, language = {en} } @inproceedings{ErmelenkoYoshinobuMourzinaetal.2003, author = {Ermelenko, Y. and Yoshinobu, T. and Mourzina, Y. and Sch{\"o}ning, Michael Josef and Vlasov, Y. and Iwasaki, H.}, title = {A multisensor based on laser scanned silicon transducer (LSST): development and properties}, series = {Eurosensors XVII : the 17th European Conference on Solid-State Transducers ; University of Minho, Guimar{\~a}es, Portugal, September 21 - 24, 2003}, booktitle = {Eurosensors XVII : the 17th European Conference on Solid-State Transducers ; University of Minho, Guimar{\~a}es, Portugal, September 21 - 24, 2003}, pages = {72 -- 73}, year = {2003}, language = {en} } @inproceedings{EssingholtMeyerKuhnetal.2018, author = {Essingholt, Felix and Meyer, Frederic and Kuhn, Peter and Schmidt, Philip and Benkner, Thorsten and Grabmaier, Anton}, title = {Non-invasive heart beat measurement using microwave resonators}, series = {Proceedings, Vol. 2, Eurosensors 2018 Conference, Graz, Austria, 9-12 September 2018}, booktitle = {Proceedings, Vol. 2, Eurosensors 2018 Conference, Graz, Austria, 9-12 September 2018}, publisher = {MDPI}, address = {Basel}, issn = {2504-3900}, doi = {10.3390/proceedings2131002}, pages = {1002}, year = {2018}, language = {en} } @inproceedings{EvansBraunUlmeretal.2022, author = {Evans, Benjamin and Braun, Sebastian and Ulmer, Jessica and Wollert, J{\"o}rg}, title = {AAS implementations - current problems and solutions}, series = {20th International Conference on Mechatronics - Mechatronika (ME)}, booktitle = {20th International Conference on Mechatronics - Mechatronika (ME)}, publisher = {IEEE}, isbn = {978-1-6654-1040-3}, doi = {10.1109/ME54704.2022.9982933}, pages = {6 Seiten}, year = {2022}, abstract = {The fourth industrial revolution presents a multitude of challenges for industries, one of which being the increased flexibility required of manufacturing lines as a result of increased consumer demand for individualised products. One solution to tackle this challenge is the digital twin, more specifically the standardised model of a digital twin also known as the asset administration shell. The standardisation of an industry wide communications tool is a critical step in enabling inter-company operations. This paper discusses the current state of asset administration shells, the frameworks used to host them and their problems that need to be addressed. To tackle these issues, we propose an event-based server capable of drastically reducing response times between assets and asset administration shells and a multi-agent system used for the orchestration and deployment of the shells in the field.}, language = {en} } @inproceedings{FateriGebhardt2014, author = {Fateri, Miranda and Gebhardt, Andreas}, title = {Jewelry fabrication via selective laser melting of glass}, series = {ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis Volume 1: Applied Mechanics; Automotive Systems; Biomedical Biotechnology Engineering; Computational Mechanics; Design; Digital Manufacturing; Education; Marine and Aerospace Applications}, booktitle = {ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis Volume 1: Applied Mechanics; Automotive Systems; Biomedical Biotechnology Engineering; Computational Mechanics; Design; Digital Manufacturing; Education; Marine and Aerospace Applications}, isbn = {978-0-7918-4583-7}, doi = {10.1115/ESDA2014-20380}, pages = {V001T06A005}, year = {2014}, abstract = {Selective Laser Melting (SLM) is one of the Additive Manufacturing (AM) technologies applicable for producing complex geometries which are typically expensive or difficult to fabricate using conventional methods. This process has been extensively investigated experimentally for various metals and the fabrication process parameters have been established for different applications; however, fabricating 3D glass objects using SLM technology has remained a challenge so far although it could have many applications. This paper presents a summery on various experimental evaluations of a material database incorporating the build parameters of glass powder using the SLM process for jewelry applications.}, language = {en} } @inproceedings{FateriGebhardtGabriellietal.2015, author = {Fateri, Miranda and Gebhardt, Andreas and Gabrielli, Roland Antonius and Herdrich, Georg and Fasoulas, Stefanos and Großmann, Agnes and Schnauffer, Peter and Middendorf, Peter}, title = {Additive Manufacturing of Lunar Regolith for Extra-terrestrial Industry Plant}, series = {International Symposium on Space Technology and Science (ICTS). July 2015, Kobe, Japan}, booktitle = {International Symposium on Space Technology and Science (ICTS). July 2015, Kobe, Japan}, pages = {5 S.}, year = {2015}, language = {en} } @inproceedings{FateriGebhardtKhosravi2013, author = {Fateri, Miranda and Gebhardt, Andreas and Khosravi, Maziar}, title = {Experimental investigation of selective laser melting of lunar regolith for in-situ applications}, series = {ASME 2013 International Mechanical Engineering Congress and Exposition : San Diego, California, USA, November 15-21, 2013. Vol. 2A: Advanced manufacturing}, booktitle = {ASME 2013 International Mechanical Engineering Congress and Exposition : San Diego, California, USA, November 15-21, 2013. Vol. 2A: Advanced manufacturing}, publisher = {ASME}, organization = {American Society of Mechanical Engineers}, isbn = {978-0-7918-5618-5}, pages = {V02AT02A008}, year = {2013}, language = {en} } @inproceedings{FateriGebhardtRenftle2015, author = {Fateri, Miranda and Gebhardt, Andreas and Renftle, Georg}, title = {Additive Manufacturing of Drainage Segments for Cooling System of Crucibles Melting Furnaces}, series = {International Conference and Expo on Advanced Ceramics and Composites, (ICACC). January 2015, Florida, USA}, booktitle = {International Conference and Expo on Advanced Ceramics and Composites, (ICACC). January 2015, Florida, USA}, pages = {9 S.}, year = {2015}, abstract = {The cooling process in induction based crucible melting furnaces for Industrial applications is one of the important and challenging factors in production and safety engineering. Accordingly, proper implementation of the cooling system of the furnace using optimum cooling guides and fail-safe features are critical in order to improve the safety of the process. Regarding this, manufacturing of porous material with high electrical isolation for the drainage segments of the cooling channels is examined in this study. Consequently, various geometries with different porosities using glass and ceramic powder are fabricated using Selective Laser Sintering (SLS) process. The manufactured parts are examined in a prototype furnace testing and the feasibility of the SLS manufacturing of parts for this application is discussed.}, language = {en} }