@inproceedings{StapenhorstGessnerWoerd2017, author = {Stapenhorst, Carolin and Geßner, Stephan and Woerd, Jan Dirk van der}, title = {ArchitecTours - a close look on structures around us}, series = {Proceedings of IASS Annual Symposia}, booktitle = {Proceedings of IASS Annual Symposia}, editor = {B{\"o}gle, Annette and Grohmann, Manfred}, publisher = {IASS}, address = {Madrid}, issn = {2518-6582}, pages = {9 Seiten}, year = {2017}, abstract = {Architects and civil engineers work together regularly during their professional days and are irreplaceable for each other. This co-operation is sometimes made more difficult by the differences in their disciplinary languages and approaches. Structures are evaluated by architects on the basis of criteria such as spatial impact and usability, while civil engineers analyze them more closely by their bearing and deformation properties, as well as by constructive aspects. This diversity of assessment criteria and approaches is often continued in both academic disciplines in the view on structures. Within the framework of the Exploratory Teaching Space (ETS), a funding program to improve teaching at RWTH Aachen University and to promote new teaching concepts, a project was carried out jointly by the Junior Professorship of Tool-Culture at the Faculty of Architecture and the Institute of Structural Concrete at the Faculty of Civil Engineering. The aim of the project is to present buildings in such a way that the differences in perception between architects and civil engineers are reduced and the common understanding is promoted. The project develops a database, which contains a collection of striking buildings from Aachen and the surrounding area. The buildings are categorized according to terms that come from both disciplinary areas. The collection can be freely explored or crossed through learning trails. The medium of film plays a special role in presenting the buildings. The buildings are assigned to different categories of load bearing structures as linear, planar and spatial structures, and further to different types of material, functional programs and spatial characteristics. Since the buildings are located in the direct vicinity of Aachen, they can be visited by the students. This makes them more sensitive to their environment. Intrinsic motivation, as well as implicit learning is encouraged. The paper will provide a detailed report of the project, its implementation, the feedback of the students and the plans for further development.}, language = {en} } @inproceedings{SchwankeHoefkenSchuba2017, author = {Schwanke, Peter and H{\"o}fken, Hans-Wilhelm and Schuba, Marko}, title = {Security Analysis of the ADS Protocol of a Beckhoff CX2020 PLC}, pages = {1 -- 5}, year = {2017}, abstract = {ICSs (Industrial Control Systems) and its subset SCADA systems (Supervisory Control and Data Acquisition) are getting exposed to a constant stream of new threats. The increasing importance of IT security in ICS requires viable methods to assess the security of ICS, its individual components, and its protocols. This paper presents a security analysis with focus on the communication protocols of a single PLC (Programmable Logic Controller). The PLC, a Beckhoff CX2020, is examined and new vulnerabilities of the system are revealed. Based on these findings recommendations are made to improve security of the Beckhoff system and its protocols.}, language = {en} } @inproceedings{PetersonRoethUibel2017, author = {Peterson, Leif Arne and R{\"o}th, Thilo and Uibel, Thomas}, title = {Holzwerkstoffe in Karosseriestrukturen}, series = {Tagungsband Aachener Holzbautagung 2017}, booktitle = {Tagungsband Aachener Holzbautagung 2017}, editor = {Uibel, Thomas and Peterson, Leif Arne and Baumann, Marcus}, issn = {2197-4489}, pages = {34 -- 45}, year = {2017}, language = {de} } @inproceedings{GranatHoefkenSchuba2017, author = {Granat, Andreas and H{\"o}fken, Hans-Wilhelm and Schuba, Marko}, title = {Intrusion Detection of the ICS Protocol EtherCAT}, pages = {1 -- 5}, year = {2017}, abstract = {Control mechanisms like Industrial Controls Systems (ICS) and its subgroup SCADA (Supervisory Control and Data Acquisition) are a prerequisite to automate industrial processes. While protection of ICS on process management level is relatively straightforward - well known office IT security mechanisms can be used - protection on field bus level is harder to achieve as there are real-time and production requirements like 24x7 to consider. One option to improve security on field bus level is to introduce controls that help to detect and to react on attacks. This paper introduces an initial set of intrusion detection mechanisms for the field bus protocol EtherCAT. To this end existing Ethernet attack vectors including packet injection and man-in-the-middle attacks are tested in an EtherCAT environment, where they could interrupt the EtherCAT network and may even cause physical damage. Based on the signatures of such attacks, a preprocessor and new rule options are defined for the open source intrusion detection system Snort demonstrating the general feasibility of intrusion detection on field bus level.}, language = {en} }