@inproceedings{DarvenizaFlisowskiKernetal.2002, author = {Darveniza, M. and Flisowski, Z. and Kern, Alexander and Landers, E.-U. and LoPiparo, G. and Mazzetti, C. and Rousseau, A. and Sherlock, J.}, title = {Application problems of the probabilistic approach to the assessment of risk for structures and services}, year = {2002}, abstract = {The paper deals with the development of the probabilistic approach to the assessment of risk due to lightning. Sources of damage, types of damage and types of loss are defined and, accordingly, the procedure for risk analysis and the way of assessment of different risk components is proposed. The way to evaluate the influence of different protection measures (lightning protection system; shielding of structure, cables and equipment; routing of internal wiring; surge protective device) in reducing such probabilities is considered. The paper has been prepared within the framework of the activity of IEC TC81-WG9/CLC TC81-WG4 directed to prepare the draft IEC 62305-2 Risk Management, in cooperation with the Secretary of IEC/CLC TC81.}, language = {en} } @inproceedings{KernKrichel2002, author = {Kern, Alexander and Krichel, Frank}, title = {Considerations about the lightning protection system of mains independent renewable energy hybrid-systems - practical experiences}, year = {2002}, abstract = {In the paper a lightning protection design concept for renewable energy hybrid-systems without power mains connection is described. Based on a risk analysis protection measures against direct strikes and overvoltages are shown in an overview. The design concept is realized exemplarily for the hybrid-system VATALI on the Greek island Crete. VATALI, not lightning protected at that time, was a victim of a lightning strike in the year 2000 causing destructions and damages of some mechanical and electrical components with costs of approx. 60.000 €. The hardware costs for the protection measures were about 15.000 €: about 50\% of the costs are due to protection measures against direct strikes, 50\% are due to overvoltage protection.}, language = {en} } @inproceedings{ZischankHeidlerKernetal.2002, author = {Zischank, Wolfgang J. and Heidler, Fridolin and Kern, Alexander and Metwally, I. A. and Wiesinger, J. and Seevers, M.}, title = {Laboratory simulation of direct lightning strokes to a modelled building - measurement of magnetic fields and induced voltages}, year = {2002}, abstract = {In IEC 61312-2 equations for the assessment of the magnetic fields inside structures due to a direct lightning strike are given. These equations are based on computer simulations for shields consisting of a single-layer steel grid of a given mesh width. Real constructions, however, contain at least two layers of reinforcement steel grids. The objective of this study was to experimentally determine the additional shielding effectiveness of a second reinforcement layer compared to a single-layer grid. To this end, simulated structures were set up in the high current laboratory. The structures consisted of cubic cages of 2 m side length with one or with two reinforcement grids, respectively. The structures were exposed to direct lightning currents representing the variety of anticipated lightning current waveforms. The magnetic fields and their derivatives at several positions inside the structure as well as the voltage between "floor" and "roof" in the center were determined for different current injection points. From these data the improvement of the shielding caused by a second reinforcement layer is derived.}, language = {en} } @inproceedings{DielmannPeters2002, author = {Dielmann, Klaus-Peter and Peters, Bernhard}, title = {Micro Turbine Using Different Gases and Liquid Fuels}, year = {2002}, abstract = {Micro turbine using different gases and liquid fuels}, subject = {Gasturbine}, language = {en} } @inproceedings{Bruessermann2005, author = {Br{\"u}ssermann, Klaus}, title = {Platform of Excellence in "Energy and Environment"}, year = {2005}, abstract = {The Ministry of Science and Research in North Rhine-Westphalia created eight platforms of excellence, one in the research area „Energy and Environment" in 2002 at ACUAS. This platform concentrates the research and development of 13 professors in J{\"u}lich and Aachen and of two scientific institutes with different topics: - NOWUM-Energy with emphasis on efficient and economic energy conversion - The Solar Institute J{\"u}lich - SIJ - being the largest research institute in the field of renewables at a University of Applied Sciences in Germany With this platform each possible energy conversion - nuclear, fossil, renewable- can be dealt with to help solving the two most important problems of mankind, energy and potable water. At the CSE are presented the historical development, some research results and the combined master studies in „Energy Systems" and „Nuclear Applications"}, subject = {Energietechnik}, language = {en} } @inproceedings{BruessermannDeuster2005, author = {Br{\"u}ssermann, Klaus and Deuster, M.}, title = {Temperature measurement to optimise the burning process}, year = {2005}, abstract = {One of the most important parameters in a burning chamber - in power stations, in waste to energy plants - is the temperature. This temperature is in the range of 700-1500 °C - one of the most advanced measuring methods being the acoustic pyrometry with the possibility of producing temperature mapping in one level of the burning chamber - comparable to computer tomography. The results of these measurements discussed in the presentation can be used - to fulfil the legal requirements in the FRG or in the EU - to equalise the temperature in one level of the burning chamber to optimise the steam production (better efficiency of the plant) and to minimise the production of temperature controlled flue gas components (NO, CO a. o.) - to control the SNCR-process if used.}, subject = {Pyrometrie}, language = {en} } @article{JildehWagnerSchoeningetal.2015, author = {Jildeh, Zaid B. and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Pieper, Martin}, title = {Simulating the electromagnetic-thermal treatment of thin aluminium layers for adhesion improvement}, series = {Physica status solidi (a)}, volume = {Vol. 212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431893}, pages = {1234 -- 1241}, year = {2015}, abstract = {A composite layer material used in packaging industry is made from joining layers of different materials using an adhesive. An important processing step in the production of aluminium-containing composites is the surface treatment and consequent coating of adhesive material on the aluminium surface. To increase adhesion strength between aluminium layer and the adhesive material, the foil is heat treated. For efficient heating, induction heating was considered as state-of-the-art treatment process. Due to the complexity of the heating process and the unpredictable nature of the heating source, the control of the process is not yet optimised. In this work, a finite element analysis of the process was established and various process parameters were studied. The process was simplified and modelled in 3D. The numerical model contains an air domain, an aluminium layer and a copper coil fitted with a magnetic field concentrating material. The effect of changing the speed of the aluminium foil (or rolling speed) was studied with the change of the coil current. Statistical analysis was used for generating a general control equation of coil current with changing rolling speed.}, language = {en} } @incollection{MottaghyMajorowiczRath2009, author = {Mottaghy, Darius and Majorowicz, Jacek and Rath, Volker}, title = {Ground Surface Temperature Histories Reconstructed from Boreholes in Poland: Implications for Spatial Variability}, series = {The Polish Climate in the European Context: An Historical Overview}, booktitle = {The Polish Climate in the European Context: An Historical Overview}, publisher = {Springer Science+Business Media}, address = {Dordrecht}, isbn = {978-90-481-3167-9}, doi = {10.1007/978-90-481-3167-9_17}, pages = {375 -- 387}, year = {2009}, language = {en} } @article{MottaghyPechnigVogt2011, author = {Mottaghy, Darius and Pechnig, Renate and Vogt, Christian}, title = {The geothermal project Den Haag: 3D numerical models for temperature prediction and reservoir simulation}, series = {Geothermics}, volume = {40}, journal = {Geothermics}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0375-6505}, doi = {10.1016/j.geothermics.2011.07.001}, pages = {199 -- 210}, year = {2011}, abstract = {The proposed Den Haag Zuidwest district heating system of the city of The Hague consists of a deep doublet in a Jurassic sandstone layer that is designed for a production temperature of 75 °C and a reinjection temperature of 40 °C at a flow rate of 150 m3 h-1. The prediction of reservoir temperature and production behavior is crucial for success of the proposed geothermal doublet. This work presents the results of a study of the important geothermal and geohydrological issues for the doublet design. In the first phase of the study, the influences of the three-dimensional (3D) structures of anticlines and synclines on the temperature field were examined. A comprehensive petrophysical investigation was performed to build a large scale 3D-model of the reservoir. Several bottomhole temperatures (BHTs), as well as petrophysical logs were used to calibrate the model using thermal conductivity measurements on 50 samples from boreholes in different lithological units in the study area. Profiles and cross sections extracted from the calculated temperature field were used to study the temperature in the surrounding areas of the planned doublet. In the second phase of the project, a detailed 3D numerical reservoir model was set up, with the aim of predicting the evolution of the producer and injector temperatures, and the extent of the cooled area around the injector. The temperature model from the first phase provided the boundary conditions for the reservoir model. Hydraulic parameters for the target horizons, such as porosity and permeability, were taken from data available from the nearby exploration wells. The simulation results are encouraging as no significant thermal breakthrough is predicted. For the originally planned location of the producer, the extracted water temperature is predicted to be around 79 °C, with an almost negligible cooling in the first 50 years of production. When the producer is located shallower parts of the reservoir, the yield water temperatures is lower, starting at ≈76 °C and decreasing to ≈74 °C after 50 years of operation. This comparatively larger decrease in temperature with time is caused by the structural feature of the reservoir, namely a higher dip causes the cooler water to easily move downward. In view of the poor reservoir data, the reservoir simulation model is constructed to allow iterative updates using data assimilation during planned drilling, testing, and production phases. Measurements during an 8 h pumping test carried out in late 2010 suggest that a flow rate of 150 m3 h-1 is achievable. Fluid temperatures of 76.5 °C were measured, which is very close to the predicted value.}, language = {en} } @article{MottaghySchwambornRath2013, author = {Mottaghy, Darius and Schwamborn, G. and Rath, V.}, title = {Past climate changes and permafrost depth at the Lake El'gygytgyn site: implications from data and thermal modeling}, series = {Climate of the Past}, volume = {9}, journal = {Climate of the Past}, number = {1}, publisher = {Copernicus}, address = {Katlenburg-Lindau}, issn = {1814-9332}, doi = {10.5194/cp-9-119-2013}, pages = {119 -- 133}, year = {2013}, language = {en} } @article{VogtIwanowskiStrahserMarquartetal.2013, author = {Vogt, Christian and Iwanowski-Strahser, Katha and Marquart, Gabriele and Arnold, Juliane and Mottaghy, Darius and Pechnig, Renate and Gnjezda, Daniel and Clauser, Christoph}, title = {Modeling contribution to risk assessment of thermal production power for geothermal reservoirs}, series = {Renewable Energy}, volume = {53}, journal = {Renewable Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0960-1481}, doi = {10.1016/j.renene.2012.11.026}, pages = {230 -- 241}, year = {2013}, language = {en} } @inproceedings{ZieglerSchuellerMottaghy2013, author = {Ziegler, M. and Sch{\"u}ller, R. and Mottaghy, Darius}, title = {Numerical simulation of energy consumption of artificial ground freezing applications subject to water seepage}, series = {Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013}, booktitle = {Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013}, pages = {2985 -- 2988}, year = {2013}, language = {en} } @article{VogtMottaghyRathetal.2014, author = {Vogt, C. and Mottaghy, Darius and Rath, V. and Marquart, G. and Dijkshoorn, L. and Wolf, A. and Clauser, C.}, title = {Vertical variation in heat flow on the Kola Peninsula: palaeoclimate or fluid flow?}, series = {Geophysical Journal International}, volume = {199}, journal = {Geophysical Journal International}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1365-246X}, doi = {10.1093/gji/ggu282}, pages = {829 -- 843}, year = {2014}, abstract = {Following earlier studies, we present forward and inverse simulations of heat and fluid transport of the upper crust using a local 3-D model of the Kola area. We provide best estimates for palaeotemperatures and permeabilities, their errors and their dependencies. Our results allow discriminating between the two mentioned processes to a certain extent, partly resolving the non-uniqueness of the problem. We find clear indications for a significant contribution of advective heat transport, which, in turn, imply only slightly lower ground surface temperatures during the last glacial maximum relative to the present value. These findings are consistent with the general background knowledge of (i) the fracture zones and the corresponding fluid movements in the bedrock and (ii) the glacial history of the Kola area.}, language = {en} } @article{MottaghySchellschmidtPopovetal.2005, author = {Mottaghy, Darius and Schellschmidt, R. and Popov, Y. A. and Clauser, C. and Kukkonen, I. T. and Nover, G. and Milanovsky, S. and Romushkevich, R. A.}, title = {New heat flow data from the immediate vicinity of the Kola super-deep borehole: Vertical variation in heat flow density confirmed and attributed to advection}, series = {Tectonophysics}, volume = {401}, journal = {Tectonophysics}, number = {1-2}, issn = {1879-3266}, doi = {10.1016/j.tecto.2005.03.005}, pages = {119 -- 142}, year = {2005}, language = {en} } @article{MottaghyRath2006, author = {Mottaghy, Darius and Rath, Volker}, title = {Latent heat effects in subsurface heat transport modelling and their impact on palaeotemperature reconstructions}, series = {Geophysical Journal International}, volume = {164}, journal = {Geophysical Journal International}, number = {1}, issn = {1365-246X}, doi = {10.1111/j.1365-246X.2005.02843.x}, pages = {236 -- 245}, year = {2006}, language = {en} } @article{RathMottaghy2007, author = {Rath, V. and Mottaghy, Darius}, title = {Smooth inversion for ground surface temperature histories: estimating the optimum regularization parameter by generalized cross-validation}, series = {Geophysical Journal International}, volume = {171}, journal = {Geophysical Journal International}, number = {3}, issn = {1365-246X}, doi = {10.1111/j.1365-246X.2007.03587.x}, pages = {1440 -- 1448}, year = {2007}, language = {en} } @article{MottaghyVosteenSchellschmidt2008, author = {Mottaghy, Darius and Vosteen, Hans-Dieter and Schellschmidt, R{\"u}diger}, title = {Temperature dependence of the relationship of thermal diffusivity versus thermal conductivity for crystalline rocks}, series = {International Journal of Earth Sciences}, volume = {97}, journal = {International Journal of Earth Sciences}, number = {2}, issn = {1437-3262}, doi = {10.1007/s00531-007-0238-3}, pages = {435 -- 442}, year = {2008}, language = {en} } @incollection{SrivastavaKnolleHoyleretal.2015, author = {Srivastava, Alok and Knolle, Friedhart and Hoyler, Friedrich and Scherer, Ulrich W. and Schnug, Ewald}, title = {Uranium Toxicity in the State of Punjab in North-Western India}, series = {Management of Natural Resources in a Changing Environment}, booktitle = {Management of Natural Resources in a Changing Environment}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-12559-6}, doi = {10.1007/978-3-319-12559-6_21}, pages = {271 -- 275}, year = {2015}, abstract = {Lately there has been an increasing concern about uranium toxicity in some districts of Punjab State located in the North Western part of India after the publication of a report (Blaurock-Busch et al. 2010) which showed that the concentration of uranium in hair and urine of children suffering from physical deformities, neurological and mental disorder from Malwa region (Fig. 1) of Punjab State was manifold higher than the reference ranges. A train which connects the affected region with the nearby city of Bikaner which has a Cancer Hospital has been nicknamed as Cancer Express due to the frenzy generated on account of uranium related toxicity.}, language = {en} } @inproceedings{SirazitdinovaDulzonMueller2015, author = {Sirazitdinova, Y. and Dulzon, A. and M{\"u}ller, Burghard}, title = {Project management practices in engineering university}, series = {21st International Conference for Students and Young Scientists: Modern Technique and Technologies, MTT 2015; National Research Tomsk Polytechnic UniversityTomsk; Russian Federation; 5 October 2015 through 9 October 2015}, booktitle = {21st International Conference for Students and Young Scientists: Modern Technique and Technologies, MTT 2015; National Research Tomsk Polytechnic UniversityTomsk; Russian Federation; 5 October 2015 through 9 October 2015}, doi = {10.1088/1757-899X/93/1/012080}, pages = {4 S.}, year = {2015}, language = {en} } @article{ChenClauserMarquartetal.2015, author = {Chen, Tao and Clauser, Christoph and Marquart, Gabriele and Willbrand, Karen and Mottaghy, Darius}, title = {A new upscaling method for fractured porous media}, series = {Advances in Water Resources}, volume = {80}, journal = {Advances in Water Resources}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0309-1708}, doi = {10.1016/j.advwatres.2015.03.009}, pages = {60 -- 68}, year = {2015}, language = {en} }