@incollection{Dachwald2010, author = {Dachwald, Bernd}, title = {Solar sail dynamics and control}, series = {Encyclopedia of Aerospace Engineering}, booktitle = {Encyclopedia of Aerospace Engineering}, publisher = {Wiley}, address = {Hoboken}, doi = {10.1002/9780470686652.eae292}, year = {2010}, abstract = {Solar sails are large and lightweight reflective structures that are propelled by solar radiation pressure. This chapter covers their orbital and attitude dynamics and control. First, the advantages and limitations of solar sails are discussed and their history and development status is outlined. Because the dynamics of solar sails is governed by the (thermo-)optical properties of the sail film, the basic solar radiation pressure force models have to be described and compared before parameters to measure solar sail performance can be defined. The next part covers the orbital dynamics of solar sails for heliocentric motion, planetocentric motion, and motion at Lagrangian equilibrium points. Afterwards, some advanced solar radiation pressure force models are described, which allow to quantify the thrust force on solar sails of arbitrary shape, the effects of temperature, of light incidence angle, of surface roughness, and the effects of optical degradation of the sail film in the space environment. The orbital motion of a solar sail is strongly coupled to its rotational motion, so that the attitude control of these soft and flexible structures is very challenging, especially for planetocentric orbits that require fast attitude maneuvers. Finally, some potential attitude control methods are sketched and selection criteria are given.}, language = {en} } @inproceedings{SeboldtDachwald2003, author = {Seboldt, Wolfgang and Dachwald, Bernd}, title = {Solar sails for near-term advanced scientific deep space missions}, series = {Proceedings of the 8th International Workshop on Combustion and Propulsion}, booktitle = {Proceedings of the 8th International Workshop on Combustion and Propulsion}, pages = {14 Seiten}, year = {2003}, abstract = {Solar sails are propelled in space by reflecting solar photons off large mirroring surfaces, thereby transforming the momentum of the photons into a propulsive force. This innovative concept for low-thrust space propulsion works without any propellant and thus provides a wide range of opportunities for highenergy low-cost missions. Offering an efficient way of propulsion, solar sailcraft could close a gap in transportation options for highly demanding exploration missions within our solar system and even beyond. On December 17th, 1999, a significant step was made towards the realization of this technology: a lightweight solar sail structure with an area of 20 m × 20 m was successfully deployed on ground in a large facility at the German Aerospace Center (DLR) at Cologne. The deployment from a package of 60 cm × 60 cm × 65 cm with a total mass of less than 35 kg was achieved using four extremely light-weight carbon fiber reinforced plastics (CFRP) booms with a specific mass of 100 g/m. The paper briefly reviews the basic principles of solar sails as well as the technical concept and its realization in the ground demonstration experiment, performed in close cooperation between DLR and ESA. Next possible steps are outlined. They could comprise the in-orbit demonstration of the sail deployment on the upper stage of a low-cost rocket and the verification of the propulsion concept by an autonomous and free flying solar sail in the frame of a scientific mission. It is expected that the present design could be extended to sail sizes of about (40 m)2 up to even (70 m)2 without significant mass penalty. With these areas, the maximum achievable thrust at 1 AU would range between 10 and 40 mN - comparable to some electric thrusters. Such prototype sails with a mass between 50 and 150 kg plus a micro-spacecraft of 50 to 250 kg would have a maximum acceleration in the order of 0.1 mm/s2 at 1 AU, corresponding to a maximum ∆V-capability of about 3 km/s per year. Two near/medium-term mission examples to a near-Earth asteroid (NEA) will be discussed: a rendezvous mission and a sample return mission.}, language = {en} } @inproceedings{DachwaldSeboldtHaeusler2002, author = {Dachwald, Bernd and Seboldt, Wolfgang and H{\"a}usler, Bernd}, title = {Performance requirements for near-term interplanetary solar sailcraft missions}, series = {6th International AAAF Symposium on Space Propulsion: Propulsion for Space Transportation of the XXIst Century}, booktitle = {6th International AAAF Symposium on Space Propulsion: Propulsion for Space Transportation of the XXIst Century}, pages = {9 Seiten}, year = {2002}, abstract = {Solar sailcraft provide a wide range of opportunities for high-energy low-cost missions. To date, most mission studies require a rather demanding performance that will not be realized by solar sailcraft of the first generation. However, even with solar sailcraft of moderate performance, scientifically relevant missions are feasible. This is demonstrated with a Near Earth Asteroid sample return mission and various planetary rendezvous missions.}, language = {en} } @inproceedings{SchartnerLoebDachwaldetal.2009, author = {Schartner, Karl-Heinz and Loeb, H. W. and Dachwald, Bernd and Ohndorf, Andreas}, title = {Perspectives of electric propulsion for outer planetary and deep space missions}, series = {European Planetary Science Congress 2009}, booktitle = {European Planetary Science Congress 2009}, pages = {416 -- 416}, year = {2009}, abstract = {Solar-electric propulsion (SEP) is superior with respect to payload capacity, flight time and flexible launch window to the conventional interplanetary transfer method using chemical propulsion combined with gravity assists. This fact results from the large exhaust velocities of electric low-thrust propulsion and is favourable also for missions to the giant planets, Kuiper-belt objects and even for a heliopause probe (IHP) as shown in three studies by the authors funded by DLR. They dealt with a lander for Europa and a sample return mission from a mainbelt asteroid [1], with the TANDEM mission [2]; the third recent one investigates electric propulsion for the transfer to the edge of the solar system. All studies are based on triple-junction solar arrays, on rf-ion thrusters of the qualified RIT-22 type and they use the intelligent trajectory optimization program InTrance [3].}, language = {en} } @inproceedings{SpurmannOhndorfDachwaldetal.2009, author = {Spurmann, J{\"o}rn and Ohndorf, Andreas and Dachwald, Bernd and Seboldt, Wolfgang and L{\"o}b, Horst and Schartner, Karl-Heinz}, title = {Interplanetary trajectory optimization for a sep mission to Saturn}, series = {60th International Astronautical Congress 2009}, booktitle = {60th International Astronautical Congress 2009}, isbn = {9781615679089}, pages = {5234 -- 5248}, year = {2009}, abstract = {The recently proposed NASA and ESA missions to Saturn and Jupiter pose difficult tasks to mission designers because chemical propulsion scenarios are not capable of transferring heavy spacecraft into the outer solar system without the use of gravity assists. Thus our developed mission scenario based on the joint NASA/ESA Titan Saturn System Mission baselines solar electric propulsion to improve mission flexibility and transfer time. For the calculation of near-globally optimal low-thrust trajectories, we have used a method called Evolutionary Neurocontrol, which is implemented in the low-thrust trajectory optimization software InTrance. The studied solar electric propulsion scenario covers trajectory optimization of the interplanetary transfer including variations of the spacecraft's thrust level, the thrust unit's specific impulse and the solar power generator power level. Additionally developed software extensions enabled trajectory optimization with launcher-provided hyperbolic excess energy, a complex solar power generator model and a variable specific impulse ion engine model. For the investigated mission scenario, Evolutionary Neurocontrol yields good optimization results, which also hold valid for the more elaborate spacecraft models. Compared to Cassini/Huygens, the best found solutions have faster transfer times and a higher mission flexibility in general.}, language = {en} } @inproceedings{LoebSchartnerDachwaldetal.2007, author = {Loeb, Horst Wolfgang and Schartner, Karl-Heinz and Dachwald, Bernd and Seboldt, Wolfgang}, title = {SEP-Sample return from a main belt asteroid}, series = {30th International Electric Propulsion Conference}, booktitle = {30th International Electric Propulsion Conference}, pages = {1 -- 11}, year = {2007}, abstract = {By DLR-contact, sample return missions to the large main-belt asteroid "19, Fortuna" have been studied. The mission scenario has been based on three ion thrusters of the RIT-22 model, which is presently under space qualification, and on solar arrays equipped with triple-junction GaAs solar cells. After having designed the spacecraft, the orbit-to-orbit trajectories for both, a one-way SEP mission with a chemical sample return and an all-SEP return mission, have been optimized using a combination of artificial neural networks with evolutionary algorithms. Additionally, body-to-body trajectories have been investigated within a launch period between 2012 and 2015. For orbit-to-orbit calculation, the launch masses of the hybrid mission and of the all-SEP mission resulted in 2.05 tons and 1.56 tons, respectively, including a scientific payload of 246 kg. For the related transfer durations 4.14 yrs and 4.62 yrs were obtained. Finally, a comparison between the mission scenarios based on SEP and on NEP have been carried out favouring clearly SEP.}, language = {en} } @inproceedings{DachwaldMengaliQuartaetal.2007, author = {Dachwald, Bernd and Mengali, Giovanni and Quarta, Alessandro A and Macdonald, Malcolm and McInnes, Colin R}, title = {Optical solar sail degradation modelling}, series = {1st International Symposium on Solar Sailing}, booktitle = {1st International Symposium on Solar Sailing}, pages = {1 -- 27}, year = {2007}, abstract = {We propose a simple parametric OSSD model that describes the variation of the sail film's optical coefficients with time, depending on the sail film's environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails.}, language = {en} } @article{Dachwald2005, author = {Dachwald, Bernd}, title = {Optimization of very-low-thrust trajectories using evolutionary neurocontrol}, series = {Acta Astronautica}, volume = {57}, journal = {Acta Astronautica}, number = {2-8}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, isbn = {1879-2030}, pages = {175 -- 185}, year = {2005}, abstract = {Searching optimal interplanetary trajectories for low-thrust spacecraft is usually a difficult and time-consuming task that involves much experience and expert knowledge in astrodynamics and optimal control theory. This is because the convergence behavior of traditional local optimizers, which are based on numerical optimal control methods, depends on an adequate initial guess, which is often hard to find, especially for very-low-thrust trajectories that necessitate many revolutions around the sun. The obtained solutions are typically close to the initial guess that is rarely close to the (unknown) global optimum. Within this paper, trajectory optimization problems are attacked from the perspective of artificial intelligence and machine learning. Inspired by natural archetypes, a smart global method for low-thrust trajectory optimization is proposed that fuses artificial neural networks and evolutionary algorithms into so-called evolutionary neurocontrollers. This novel method runs without an initial guess and does not require the attendance of an expert in astrodynamics and optimal control theory. This paper details how evolutionary neurocontrol works and how it could be implemented. The performance of the method is assessed for three different interplanetary missions with a thrust to mass ratio <0.15mN/kg (solar sail and nuclear electric).}, language = {en} } @inproceedings{SchoutetensDachwaldHeiligers2021, author = {Schoutetens, Frederic and Dachwald, Bernd and Heiligers, Jeannette}, title = {Optimisation of photon-sail trajectories in the alpha-centauri system using evolutionary neurocontrol}, series = {8th ICATT (International Conference on Astrodynamics Tools and Techniques) 23 - 25 June 2021, Virtual}, booktitle = {8th ICATT (International Conference on Astrodynamics Tools and Techniques) 23 - 25 June 2021, Virtual}, pages = {1 -- 15}, year = {2021}, abstract = {With the increased interest for interstellar exploration after the discovery of exoplanets and the proposal by Breakthrough Starshot, this paper investigates the optimisation of photon-sail trajectories in Alpha Centauri. The prime objective is to find the optimal steering strategy for a photonic sail to get captured around one of the stars after a minimum-time transfer from Earth. By extending the idea of the Breakthrough Starshot project with a deceleration phase upon arrival, the mission's scientific yield will be increased. As a secondary objective, transfer trajectories between the stars and orbit-raising manoeuvres to explore the habitable zones of the stars are investigated. All trajectories are optimised for minimum time of flight using the trajectory optimisation software InTrance. Depending on the sail technology, interstellar travel times of 77.6-18,790 years can be achieved, which presents an average improvement of 30\% with respect to previous work. Still, significant technological development is required to reach and be captured in the Alpha-Centauri system in less than a century. Therefore, a fly-through mission arguably remains the only option for a first exploratory mission to Alpha Centauri, but the enticing results obtained in this work provide perspective for future long-residence missions to our closest neighbouring star system.}, language = {en} } @inproceedings{SeefeldtBauerDachwaldetal.2015, author = {Seefeldt, Patric and Bauer, Waldemar and Dachwald, Bernd and Grundmann, Jan Thimo and Straubel, Marco and Sznajder, Maciej and T{\´o}th, Norbert and Zander, Martin E.}, title = {Large lightweight deployable structures for planetary defence: solar sail propulsion, solar concentrator payloads, large-scale photovoltaic power}, series = {4th IAA Planetary Defense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, booktitle = {4th IAA Planetary Defense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, pages = {24}, year = {2015}, language = {en} } @inproceedings{Dachwald2017, author = {Dachwald, Bernd}, title = {Radiation pressure force model for an ideal laser-enhanced solar sail}, series = {4th International Symposium on Solar Sailing}, booktitle = {4th International Symposium on Solar Sailing}, pages = {1 -- 5}, year = {2017}, abstract = {The concept of a laser-enhanced solar sail is introduced and the radiation pressure force model for an ideal laser-enhanced solar sail is derived. A laser-enhanced solar sail is a "traditional" solar sail that is, however, not solely propelled by solar radiation, but additionally by a laser beam that illuminates the sail. The additional laser radiation pressure increases the sail's propulsive force and can give, depending on the location of the laser source, more control authority over the direction of the solar sail's propulsive force vector. This way, laser-enhanced solar sails may augment already existing solar sail mission concepts and make novel mission concepts feasible.}, language = {en} } @article{PeloniCeriottiDachwald2016, author = {Peloni, Alessandro and Ceriotti, Matteo and Dachwald, Bernd}, title = {Solar-sail trajectory design for a multiple near-earth-asteroid rendezvous mission}, series = {Journal of Guidance, Control, and Dynamics}, volume = {39}, journal = {Journal of Guidance, Control, and Dynamics}, number = {12}, publisher = {AIAA}, address = {Reston, Va.}, issn = {0731-5090}, doi = {10.2514/1.G000470}, pages = {2712 -- 2724}, year = {2016}, abstract = {The scientific interest for near-Earth asteroids as well as the interest in potentially hazardous asteroids from the perspective of planetary defense led the space community to focus on near-Earth asteroid mission studies. A multiple near-Earth asteroid rendezvous mission with close-up observations of several objects can help to improve the characterization of these asteroids. This work explores the design of a solar-sail spacecraft for such a mission, focusing on the search of possible sequences of encounters and the trajectory optimization. This is done in two sequential steps: a sequence search by means of a simplified trajectory model and a set of heuristic rules based on astrodynamics, and a subsequent optimization phase. A shape-based approach for solar sailing has been developed and is used for the first phase. The effectiveness of the proposed approach is demonstrated through a fully optimized multiple near-Earth asteroid rendezvous mission. The results show that it is possible to visit five near-Earth asteroids within 10 years with near-term solar-sail technology.}, language = {en} } @inproceedings{Dachwald2004, author = {Dachwald, Bernd}, title = {Solar sail performance requirements for missions to the outer solar system and beyond}, series = {55th International Astronautical Congress 2004}, booktitle = {55th International Astronautical Congress 2004}, doi = {10.2514/6.IAC-04-S.P.11}, pages = {1 -- 9}, year = {2004}, abstract = {Solar sails enable missions to the outer solar system and beyond, although the solar radiation pressure decreases with the square of solar distance. For such missions, the solar sail may gain a large amount of energy by first making one or more close approaches to the sun. Within this paper, optimal trajectories for solar sail missions to the outer planets and into near interstellar space (200 AU) are presented. Thereby, it is shown that even near/medium-term solar sails with relatively moderate performance allow reasonable transfer times to the boundaries of the solar system.}, language = {en} } @inproceedings{StaatTran2022, author = {Staat, Manfred and Tran, Ngoc Trinh}, title = {Strain based brittle failure criteria for rocks}, series = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022}, booktitle = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022}, publisher = {Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik)}, address = {Hanoi}, isbn = {978-604-357-084-7}, pages = {500 -- 509}, year = {2022}, abstract = {When confining pressure is low or absent, extensional fractures are typical, with fractures occurring on unloaded planes in rock. These "paradox" fractures can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. But this criterion makes unrealistic strength predictions in biaxial compression and tension. A new extension strain criterion overcomes this limitation by adding a weighted principal shear component. The weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr-Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting failure modes, which are unexpected in the understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak P. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion.}, language = {en} } @article{TranTrinhDaoetal.2022, author = {Tran, Ngoc Trinh and Trinh, Tu Luc and Dao, Ngoc Tien and Giap, Van Tan and Truong, Manh Khuyen and Dinh, Thuy Ha and Staat, Manfred}, title = {FEM shakedown analysis of structures under random strength with chance constrained programming}, series = {Vietnam Journal of Mechanics}, volume = {44}, journal = {Vietnam Journal of Mechanics}, number = {4}, publisher = {Vietnam Academy of Science and Technology (VAST)}, issn = {0866-7136}, doi = {10.15625/0866-7136/17943}, pages = {459 -- 473}, year = {2022}, abstract = {Direct methods, comprising limit and shakedown analysis, are a branch of computational mechanics. They play a significant role in mechanical and civil engineering design. The concept of direct methods aims to determine the ultimate load carrying capacity of structures beyond the elastic range. In practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and constraints. If strength and loading are random quantities, the shakedown analysis can be formulated as stochastic programming problem. In this paper, a method called chance constrained programming is presented, which is an effective method of stochastic programming to solve shakedown analysis problems under random conditions of strength. In this study, the loading is deterministic, and the strength is a normally or lognormally distributed variable.}, language = {en} } @article{AngermannGuenthnerHanssenetal.2022, author = {Angermann, Susanne and G{\"u}nthner, Roman and Hanssen, Henner and Lorenz, Georg and Braunisch, Matthias C. and Steubl, Dominik and Matschkal, Julia and Kemmner, Stephan and Hausinger, Renate and Block, Zenonas and Haller, Bernhard and Heemann, Uwe and Kotliar, Konstantin and Grimmer, Timo and Schmaderer, Christoph}, title = {Cognitive impairment and microvascular function in end-stage renal disease}, series = {International Journal of Methods in Psychiatric Research (MPR)}, volume = {31}, journal = {International Journal of Methods in Psychiatric Research (MPR)}, number = {2}, publisher = {Wiley}, issn = {1049-8931 (Print)}, doi = {10.1002/mpr.1909}, pages = {1 -- 10}, year = {2022}, abstract = {Objective Hemodialysis patients show an approximately threefold higher prevalence of cognitive impairment compared to the age-matched general population. Impaired microcirculatory function is one of the assumed causes. Dynamic retinal vessel analysis is a quantitative method for measuring neurovascular coupling and microvascular endothelial function. We hypothesize that cognitive impairment is associated with altered microcirculation of retinal vessels. Methods 152 chronic hemodialysis patients underwent cognitive testing using the Montreal Cognitive Assessment. Retinal microcirculation was assessed by Dynamic Retinal Vessel Analysis, which carries out an examination recording retinal vessels' reaction to a flicker light stimulus under standardized conditions. Results In unadjusted as well as in adjusted linear regression analyses a significant association between the visuospatial executive function domain score of the Montreal Cognitive Assessment and the maximum arteriolar dilation as response of retinal arterioles to the flicker light stimulation was obtained. Conclusion This is the first study determining retinal microvascular function as surrogate for cerebral microvascular function and cognition in hemodialysis patients. The relationship between impairment in executive function and reduced arteriolar reaction to flicker light stimulation supports the involvement of cerebral small vessel disease as contributing factor for the development of cognitive impairment in this patient population and might be a target for noninvasive disease monitoring and therapeutic intervention.}, language = {en} } @article{AkimbekovDigelTastambeketal.2021, author = {Akimbekov, Nuraly S. and Digel, Ilya and Tastambek, Kuanysh T. and Sherelkhan, Dinara K. and Jussupova, Dariya B. and Altynbay, Nazym P.}, title = {Low-rank coal as a source of humic substances for soil amendment and fertility management}, series = {Agriculture}, volume = {11}, journal = {Agriculture}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2077-0472}, doi = {10.3390/agriculture11121261}, pages = {25 Seiten}, year = {2021}, abstract = {Humic substances (HS), as important environmental components, are essential to soil health and agricultural sustainability. The usage of low-rank coal (LRC) for energy generation has declined considerably due to the growing popularity of renewable energy sources and gas. However, their potential as soil amendment aimed to maintain soil quality and productivity deserves more recognition. LRC, a highly heterogeneous material in nature, contains large quantities of HS and may effectively help to restore the physicochemical, biological, and ecological functionality of soil. Multiple emerging studies support the view that LRC and its derivatives can positively impact the soil microclimate, nutrient status, and organic matter turnover. Moreover, the phytotoxic effects of some pollutants can be reduced by subsequent LRC application. Broad geographical availability, relatively low cost, and good technical applicability of LRC offer the advantage of easy fulfilling soil amendment and conditioner requirements worldwide. This review analyzes and emphasizes the potential of LRC and its numerous forms/combinations for soil amelioration and crop production. A great benefit would be a systematic investment strategy implicating safe utilization and long-term application of LRC for sustainable agricultural production.}, language = {en} } @misc{TopcuMadabhushiStaat2022, author = {Topcu, Murat and Madabhushi, Gopal Santana Phani and Staat, Manfred}, title = {Datasets from FEM Simulations done with COMSOL Multiphysics and Code_Aster}, doi = {10.6084/m9.figshare.19333295.v2}, year = {2022}, abstract = {Datasets from FEM Simulations done with COMSOL Multiphysics and Code_Aster for an elastic stress transfer between matrix and fibres having a variable radius.}, language = {en} } @article{AkimbekovDigelTastambeketal.2022, author = {Akimbekov, Nuraly S. and Digel, Ilya and Tastambek, Kuanysh T. and Marat, Adel K. and Turaliyeva, Moldir A. and Kaiyrmanova, Gulzhan K.}, title = {Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production}, series = {Biology}, volume = {11}, journal = {Biology}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2079-7737}, doi = {10.3390/biology11091306}, pages = {47 Seiten}, year = {2022}, abstract = {It was generally believed that coal sources are not favorable as live-in habitats for microorganisms due to their recalcitrant chemical nature and negligible decomposition. However, accumulating evidence has revealed the presence of diverse microbial groups in coal environments and their significant metabolic role in coal biogeochemical dynamics and ecosystem functioning. The high oxygen content, organic fractions, and lignin-like structures of lower-rank coals may provide effective means for microbial attack, still representing a greatly unexplored frontier in microbiology. Coal degradation/conversion technology by native bacterial and fungal species has great potential in agricultural development, chemical industry production, and environmental rehabilitation. Furthermore, native microalgal species can offer a sustainable energy source and an excellent bioremediation strategy applicable to coal spill/seam waters. Additionally, the measures of the fate of the microbial community would serve as an indicator of restoration progress on post-coal-mining sites. This review puts forward a comprehensive vision of coal biodegradation and bioprocessing by microorganisms native to coal environments for determining their biotechnological potential and possible applications.}, language = {en} } @misc{BlottnerHastermannMuckeltetal.2019, author = {Blottner, Dieter and Hastermann, Maria and Muckelt, Paul and Albracht, Kirsten and Schoenrock, Britt and Salanova, Michele and Warner, Martin and Gunga, Hans-Christian and Stokes, Maria}, title = {MYOTONES - Inflight muscle health status monitoring during long-duration space missions onboard the International Space Station: a single case study}, series = {IAC Papers Archive}, journal = {IAC Papers Archive}, publisher = {Pergamon}, address = {Oxford}, issn = {00741795}, pages = {2 Seiten}, year = {2019}, abstract = {The MYOTONES experiment is the first to monitor changes in the basic biomechanical properties (tone, elasticity and stiffness) of the resting human myofascial system due to microgravity with a oninvasive, portable device on board the ISS. The MyotonPRO device applies several brief mechanical stimuli to the surface of the skin, and the natural oscillation signals of the tissue beneath are detected and computed by the MyotonPRO. Thus, an objective, quick and easy determination of the state of the underlying tissue is possible. Two preflight, four inflight and four post flight measurements were performed on a male astronaut using the same 10 measurement points (MP) for each session. MPs were located on the plantar fascia, Achilles tendon, M. soleus, M. gastrocnemius, M. multifidus, M. splenius capitis, M. deltoideus anterior, M. rectus femoris, infrapatellar tendon, M. tibialis anterior. Subcutaneous tissues thickness above the MPs was measured using ultrasound imaging. Magnetic resonance images (MRI) of lower limb muscles and functional tests were also performed pre- and postflight. Our first measurements on board the ISS confirmed increased tone and stiffness of the lumbar multifidus muscle, an important trunk stabilizer, dysfunction of which is known to be associated with back pain. Furthermore, reduced tone and stiffness of Achilles tendon and plantar fascia were observed inflight vs. preflight, confirming previous findings from terrestrial analog studies and parabolic flights. Unexpectedly, the deltoid showed negative inflight changes in tone and stiffness, and increased elasticity, suggesting a potential risk of muscle atrophy in longer spaceflight that should be addressed by adequate inflight countermeasure protocols. Most values from limb and back MPS showed deflected patterns (in either directions) from inflight shortly after the re-entry phase on the landing day and one week later. Most parameter values then normalized to baseline after 3 weeks likely due to 1G re-adaptation and possible outcome of the reconditioning protocol. No major changes in subcutaneous tissues thickness above the MPs were found inflight vs preflight, suggesting no bias (i.e., fluid shift, extreme tissue thickening or loss). Pre- and postflight MRI and functional tests showed negligible changes in calf muscle size, power and force, which is likely due to training effects from current inflight exercise protocols. The MYOTONES experiment is currently ongoing to collect data from further crew members. The potential impact of this research is to better understand the effects of microgravity and countermeasures over the time course of an ISS mission cycle. This will enable exercise countermeasures to be tailored}, language = {en} }