@article{SchoenrockMuckeltHastermannetal.2024, author = {Schoenrock, Britt and Muckelt, Paul E. and Hastermann, Maria and Albracht, Kirsten and MacGregor, Robert and Martin, David and Gunga, Hans-Christian and Salanova, Michele and Stokes, Maria J. and Warner, Martin B. and Blottner, Dieter}, title = {Muscle stiffness indicating mission crew health in space}, series = {Scientific Reports}, volume = {14}, journal = {Scientific Reports}, number = {Article number: 4196}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-024-54759-6}, pages = {13 Seiten}, year = {2024}, abstract = {Muscle function is compromised by gravitational unloading in space affecting overall musculoskeletal health. Astronauts perform daily exercise programmes to mitigate these effects but knowing which muscles to target would optimise effectiveness. Accurate inflight assessment to inform exercise programmes is critical due to lack of technologies suitable for spaceflight. Changes in mechanical properties indicate muscle health status and can be measured rapidly and non-invasively using novel technology. A hand-held MyotonPRO device enabled monitoring of muscle health for the first time in spaceflight (> 180 days). Greater/maintained stiffness indicated countermeasures were effective. Tissue stiffness was preserved in the majority of muscles (neck, shoulder, back, thigh) but Tibialis Anterior (foot lever muscle) stiffness decreased inflight vs. preflight (p < 0.0001; mean difference 149 N/m) in all 12 crewmembers. The calf muscles showed opposing effects, Gastrocnemius increasing in stiffness Soleus decreasing. Selective stiffness decrements indicate lack of preservation despite daily inflight countermeasures. This calls for more targeted exercises for lower leg muscles with vital roles as ankle joint stabilizers and in gait. Muscle stiffness is a digital biomarker for risk monitoring during future planetary explorations (Moon, Mars), for healthcare management in challenging environments or clinical disorders in people on Earth, to enable effective tailored exercise programmes.}, language = {en} } @article{BornheimGriegerBlanecketal.2024, author = {Bornheim, Tobias and Grieger, Niklas and Blaneck, Patrick Gustav and Bialonski, Stephan}, title = {Speaker Attribution in German Parliamentary Debates with QLoRA-adapted Large Language Models}, series = {Journal for language technology and computational linguistics : JLCL}, volume = {37}, journal = {Journal for language technology and computational linguistics : JLCL}, number = {1}, publisher = {Gesellschaft f{\"u}r Sprachtechnologie und Computerlinguistik}, address = {Regensburg}, issn = {2190-6858}, doi = {10.21248/jlcl.37.2024.244}, pages = {13 Seiten}, year = {2024}, abstract = {The growing body of political texts opens up new opportunities for rich insights into political dynamics and ideologies but also increases the workload for manual analysis. Automated speaker attribution, which detects who said what to whom in a speech event and is closely related to semantic role labeling, is an important processing step for computational text analysis. We study the potential of the large language model family Llama 2 to automate speaker attribution in German parliamentary debates from 2017-2021. We fine-tune Llama 2 with QLoRA, an efficient training strategy, and observe our approach to achieve competitive performance in the GermEval 2023 Shared Task On Speaker Attribution in German News Articles and Parliamentary Debates. Our results shed light on the capabilities of large language models in automating speaker attribution, revealing a promising avenue for computational analysis of political discourse and the development of semantic role labeling systems.}, language = {en} } @article{BertzSchoeningMolinnusetal.2024, author = {Bertz, Morten and Sch{\"o}ning, Michael Josef and Molinnus, Denise and Homma, Takayuki}, title = {Influence of temperature, light, and H₂O₂ concentration on microbial spore inactivation: in-situ Raman spectroscopy combined with optical trapping}, series = {Physica status solidi (a) applications and materials science}, journal = {Physica status solidi (a) applications and materials science}, number = {Early View}, publisher = {Wiley-VCH}, address = {Berlin}, issn = {1862-6319 (Online)}, doi = {10.1002/pssa.202300866}, pages = {8 Seiten}, year = {2024}, abstract = {To gain insight on chemical sterilization processes, the influence of temperature (up to 70 °C), intense green light, and hydrogen peroxide (H₂O₂) concentration (up to 30\% in aqueous solution) on microbial spore inactivation is evaluated by in-situ Raman spectroscopy with an optical trap. Bacillus atrophaeus is utilized as a model organism. Individual spores are isolated and their chemical makeup is monitored under dynamically changing conditions (temperature, light, and H₂O₂ concentration) to mimic industrially relevant process parameters for sterilization in the field of aseptic food processing. While isolated spores in water are highly stable, even at elevated temperatures of 70 °C, exposure to H₂O₂ leads to a loss of spore integrity characterized by the release of the key spore biomarker dipicolinic acid (DPA) in a concentration-dependent manner, which indicates damage to the inner membrane of the spore. Intensive light or heat, both of which accelerate the decomposition of H₂O₂ into reactive oxygen species (ROS), drastically shorten the spore lifetime, suggesting the formation of ROS as a rate-limiting step during sterilization. It is concluded that Raman spectroscopy can deliver mechanistic insight into the mode of action of H₂O₂-based sterilization and reveal the individual contributions of different sterilization methods acting in tandem.}, language = {en} } @article{PogorelovaRogachevAkimbekovetal.2024, author = {Pogorelova, Natalia and Rogachev, Evgeniy and Akimbekov, Nuraly and Digel, Ilya}, title = {Effect of dehydration method on the micro- and nanomorphological properties of bacterial cellulose produced by Medusomyces gisevii on different substrates}, series = {Journal of materials science}, volume = {2024}, journal = {Journal of materials science}, publisher = {Springer Science + Business Media}, address = {Dordrecht}, issn = {1573-4803 (Online)}, doi = {10.1007/s10853-024-09596-3}, pages = {13 Seiten}, year = {2024}, abstract = {Many important properties of bacterial cellulose (BC), such as moisture absorption capacity, elasticity and tensile strength, largely depend on its structure. This paper presents a study on the effect of the drying method on BC films produced by Medusomyces gisevii using two different procedures: room temperature drying (RT, (24 ± 2 °C, humidity 65 ± 1\%, dried until a constant weight was reached) and freeze-drying (FD, treated at - 75 °C for 48 h). BC was synthesized using one of two different carbon sources—either glucose or sucrose. Structural differences in the obtained BC films were evaluated using atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction. Macroscopically, the RT samples appeared semi-transparent and smooth, whereas the FD group exhibited an opaque white color and sponge-like structure. SEM examination showed denser packing of fibrils in FD samples while RT-samples displayed smaller average fiber diameter, lower surface roughness and less porosity. AFM confirmed the SEM observations and showed that the FD material exhibited a more branched structure and a higher surface roughness. The samples cultivated in a glucose-containing nutrient medium, generally displayed a straight and ordered shape of fibrils compared to the sucrose-derived BC, characterized by a rougher and wavier structure. The BC films dried under different conditions showed distinctly different crystallinity degrees, whereas the carbon source in the culture medium was found to have a relatively small effect on the BC crystallinity.}, language = {en} } @article{EngelmannSimsekShalabyetal.2024, author = {Engelmann, Ulrich M. and Simsek, Beril and Shalaby, Ahmed and Krause, Hans-Joachim}, title = {Key contributors to signal generation in frequency mixing magnetic detection (FMMD): an in silico study}, series = {Sensors}, volume = {24}, journal = {Sensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s24061945}, pages = {Artikel 1945}, year = {2024}, abstract = {Frequency mixing magnetic detection (FMMD) is a sensitive and selective technique to detect magnetic nanoparticles (MNPs) serving as probes for binding biological targets. Its principle relies on the nonlinear magnetic relaxation dynamics of a particle ensemble interacting with a dual frequency external magnetic field. In order to increase its sensitivity, lower its limit of detection and overall improve its applicability in biosensing, matching combinations of external field parameters and internal particle properties are being sought to advance FMMD. In this study, we systematically probe the aforementioned interaction with coupled N{\´e}el-Brownian dynamic relaxation simulations to examine how key MNP properties as well as applied field parameters affect the frequency mixing signal generation. It is found that the core size of MNPs dominates their nonlinear magnetic response, with the strongest contributions from the largest particles. The drive field amplitude dominates the shape of the field-dependent response, whereas effective anisotropy and hydrodynamic size of the particles only weakly influence the signal generation in FMMD. For tailoring the MNP properties and parameters of the setup towards optimal FMMD signal generation, our findings suggest choosing large particles of core sizes dc > 25 nm nm with narrow size distributions (σ < 0.1) to minimize the required drive field amplitude. This allows potential improvements of FMMD as a stand-alone application, as well as advances in magnetic particle imaging, hyperthermia and magnetic immunoassays.}, language = {en} } @article{ZhenLiangStaatetal.2024, author = {Zhen, Manghao and Liang, Yunpei and Staat, Manfred and Li, Quanqui and Li, Jianbo}, title = {Discontinuous fracture behaviors and constitutive model of sandstone specimens containing non-parallel prefabricated fissures under uniaxial compression}, series = {Theoretical and Applied Fracture Mechanics}, volume = {131}, journal = {Theoretical and Applied Fracture Mechanics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8442}, doi = {10.1016/j.tafmec.2024.104373}, pages = {Artikel 104373}, year = {2024}, abstract = {The deformation and damage laws of non-homogeneous irregular structural planes in rocks are the basis for studying the stability of rock engineering. To investigate the damage characteristics of rock containing non-parallel fissures, uniaxial compression tests and numerical simulations were conducted on sandstone specimens containing three non-parallel fissures inclined at 0°, 45° and 90° in this study. The characteristics of crack initiation and crack evolution of fissures with different inclinations were analyzed. A constitutive model for the discontinuous fractures of fissured sandstone was proposed. The results show that the fracture behaviors of fissured sandstone specimens are discontinuous. The stress-strain curves are non-smooth and can be divided into nonlinear crack closure stage, linear elastic stage, plastic stage and brittle failure stage, of which the plastic stage contains discontinuous stress drops. During the uniaxial compression test, the middle or ends of 0° fissures were the first to crack compared to 45° and 90° fissures. The end with small distance between 0° and 45° fissures cracked first, and the end with large distance cracked later. After the final failure, 0° fissures in all specimens were fractured, while 45° and 90° fissures were not necessarily fractured. Numerical simulation results show that the concentration of compressive stress at the tips of 0°, 45° and 90° fissures, as well as the concentration of tensile stress on both sides, decreased with the increase of the inclination angle. A constitutive model for the discontinuous fractures of fissured sandstone specimens was derived by combining the logistic model and damage mechanic theory. This model can well describe the discontinuous drops of stress and agrees well with the whole processes of the stress-strain curves of the fissured sandstone specimens.}, language = {en} } @article{YoshinobuMiyamotoWagneretal.2024, author = {Yoshinobu, Tatsuo and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Field-effect sensors combined with the scanned light pulse technique: from artificial olfactory images to chemical imaging technologies}, series = {Chemosensors}, volume = {12}, journal = {Chemosensors}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors12020020}, pages = {Artikel 20}, year = {2024}, abstract = {The artificial olfactory image was proposed by Lundstr{\"o}m et al. in 1991 as a new strategy for an electronic nose system which generated a two-dimensional mapping to be interpreted as a fingerprint of the detected gas species. The potential distribution generated by the catalytic metals integrated into a semiconductor field-effect structure was read as a photocurrent signal generated by scanning light pulses. The impact of the proposed technology spread beyond gas sensing, inspiring the development of various imaging modalities based on the light addressing of field-effect structures to obtain spatial maps of pH distribution, ions, molecules, and impedance, and these modalities have been applied in both biological and non-biological systems. These light-addressing technologies have been further developed to realize the position control of a faradaic current on the electrode surface for localized electrochemical reactions and amperometric measurements, as well as the actuation of liquids in microfluidic devices.}, language = {en} } @article{KarschuckPoghossianSeretal.2024, author = {Karschuck, Tobias and Poghossian, Arshak and Ser, Joey and Tsokolakyan, Astghik and Achtsnicht, Stefan and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Capacitive model of enzyme-modified field-effect biosensors: Impact of enzyme coverage}, series = {Sensors and Actuators B: Chemical}, volume = {408}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005 (Print)}, doi = {10.1016/j.snb.2024.135530}, pages = {12 Seiten}, year = {2024}, abstract = {Electrolyte-insulator-semiconductor capacitors (EISCAP) belong to field-effect sensors having an attractive transducer architecture for constructing various biochemical sensors. In this study, a capacitive model of enzyme-modified EISCAPs has been developed and the impact of the surface coverage of immobilized enzymes on its capacitance-voltage and constant-capacitance characteristics was studied theoretically and experimentally. The used multicell arrangement enables a multiplexed electrochemical characterization of up to sixteen EISCAPs. Different enzyme coverages have been achieved by means of parallel electrical connection of bare and enzyme-covered single EISCAPs in diverse combinations. As predicted by the model, with increasing the enzyme coverage, both the shift of capacitance-voltage curves and the amplitude of the constant-capacitance signal increase, resulting in an enhancement of analyte sensitivity of the EISCAP biosensor. In addition, the capability of the multicell arrangement with multi-enzyme covered EISCAPs for sequentially detecting multianalytes (penicillin and urea) utilizing the enzymes penicillinase and urease has been experimentally demonstrated and discussed.}, language = {en} } @article{PieronekKleefeld2024, author = {Pieronek, Lukas and Kleefeld, Andreas}, title = {On trajectories of complex-valued interior transmission eigenvalues}, series = {Inverse problems and imaging : IPI}, volume = {18}, journal = {Inverse problems and imaging : IPI}, number = {2}, publisher = {AIMS}, address = {Springfield, Mo}, issn = {1930-8337 (Print)}, doi = {10.3934/ipi.2023041}, pages = {480 -- 516}, year = {2024}, abstract = {This paper investigates the interior transmission problem for homogeneous media via eigenvalue trajectories parameterized by the magnitude of the refractive index. In the case that the scatterer is the unit disk, we prove that there is a one-to-one correspondence between complex-valued interior transmission eigenvalue trajectories and Dirichlet eigenvalues of the Laplacian which turn out to be exactly the trajectorial limit points as the refractive index tends to infinity. For general simply-connected scatterers in two or three dimensions, a corresponding relation is still open, but further theoretical results and numerical studies indicate a similar connection.}, language = {en} } @article{RingersBialonskiEgeetal.2023, author = {Ringers, Christa and Bialonski, Stephan and Ege, Mert and Solovev, Anton and Hansen, Jan Niklas and Jeong, Inyoung and Friedrich, Benjamin M. and Jurisch-Yaksi, Nathalie}, title = {Novel analytical tools reveal that local synchronization of cilia coincides with tissue-scale metachronal waves in zebrafish multiciliated epithelia}, series = {eLife}, volume = {12}, journal = {eLife}, publisher = {eLife Sciences Publications}, issn = {2050-084X}, doi = {10.7554/eLife.77701}, pages = {27 Seiten}, year = {2023}, abstract = {Motile cilia are hair-like cell extensions that beat periodically to generate fluid flow along various epithelial tissues within the body. In dense multiciliated carpets, cilia were shown to exhibit a remarkable coordination of their beat in the form of traveling metachronal waves, a phenomenon which supposedly enhances fluid transport. Yet, how cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine experiments, novel analysis tools, and theory to address this knowledge gap. To investigate collective dynamics of cilia, we studied zebrafish multiciliated epithelia in the nose and the brain. We focused mainly on the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Even though synchronization is local only, we observed global patterns of traveling metachronal waves across the zebrafish multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right noses, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions, i.e., cilia colliding with each other, and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment coincide and generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping.}, language = {en} } @article{AyalaHarrisKleefeldetal.2023, author = {Ayala, Rafael Ceja and Harris, Isaac and Kleefeld, Andreas and Pallikarakis, Nikolaos}, title = {Analysis of the transmission eigenvalue problem with two conductivity parameters}, series = {Applicable Analysis}, journal = {Applicable Analysis}, publisher = {Taylor \& Francis}, issn = {0003-6811}, doi = {10.1080/00036811.2023.2181167}, pages = {37 Seiten}, year = {2023}, abstract = {In this paper, we provide an analytical study of the transmission eigenvalue problem with two conductivity parameters. We will assume that the underlying physical model is given by the scattering of a plane wave for an isotropic scatterer. In previous studies, this eigenvalue problem was analyzed with one conductive boundary parameter whereas we will consider the case of two parameters. We prove the existence and discreteness of the transmission eigenvalues as well as study the dependence on the physical parameters. We are able to prove monotonicity of the first transmission eigenvalue with respect to the parameters and consider the limiting procedure as the second boundary parameter vanishes. Lastly, we provide extensive numerical experiments to validate the theoretical work.}, language = {en} } @article{GaigallGerstenberg2023, author = {Gaigall, Daniel and Gerstenberg, Julian}, title = {Cram{\´e}r-von-Mises tests for the distribution of the excess over a confidence level}, series = {Journal of Nonparametric Statistics}, journal = {Journal of Nonparametric Statistics}, publisher = {Taylor \& Francis}, issn = {1048-5252 (Print)}, doi = {10.1080/10485252.2023.2173958}, year = {2023}, abstract = {The Cram{\´e}r-von-Mises distance is applied to the distribution of the excess over a confidence level. Asymptotics of related statistics are investigated, and it is seen that the obtained limit distributions differ from the classical ones. For that reason, quantiles of the new limit distributions are given and new bootstrap techniques for approximation purposes are introduced and justified. The results motivate new one-sample goodness-of-fit tests for the distribution of the excess over a confidence level and a new confidence interval for the related fitting error. Simulation studies investigate size and power of the tests as well as coverage probabilities of the confidence interval in the finite sample case. A practice-oriented application of the Cram{\´e}r-von-Mises tests is the determination of an appropriate confidence level for the fitting approach. The adoption of the idea to the well-known problem of threshold detection in the context of peaks over threshold modelling is sketched and illustrated by data examples.}, language = {en} } @article{LiphardtFernandezGonzaloAlbrachtetal.2023, author = {Liphardt, Anna-Maria and Fernandez-Gonzalo, Rodrigo and Albracht, Kirsten and Rittweger, J{\"o}rn and Vico, Laurence}, title = {Musculoskeletal research in human space flight - unmet needs for the success of crewed deep space exploration}, series = {npj Microgravity}, volume = {9}, journal = {npj Microgravity}, number = {Article number: 9}, publisher = {Springer Nature}, issn = {2373-8065}, doi = {10.1038/s41526-023-00258-3}, pages = {1 -- 9}, year = {2023}, abstract = {Based on the European Space Agency (ESA) Science in Space Environment (SciSpacE) community White Paper "Human Physiology - Musculoskeletal system", this perspective highlights unmet needs and suggests new avenues for future studies in musculoskeletal research to enable crewed exploration missions. The musculoskeletal system is essential for sustaining physical function and energy metabolism, and the maintenance of health during exploration missions, and consequently mission success, will be tightly linked to musculoskeletal function. Data collection from current space missions from pre-, during-, and post-flight periods would provide important information to understand and ultimately offset musculoskeletal alterations during long-term spaceflight. In addition, understanding the kinetics of the different components of the musculoskeletal system in parallel with a detailed description of the molecular mechanisms driving these alterations appears to be the best approach to address potential musculoskeletal problems that future exploratory-mission crew will face. These research efforts should be accompanied by technical advances in molecular and phenotypic monitoring tools to provide in-flight real-time feedback.}, language = {en} } @article{Gaigall2023, author = {Gaigall, Daniel}, title = {Allocating and forecasting changes in risk}, series = {Journal of risk}, volume = {25}, journal = {Journal of risk}, number = {3}, editor = {AitSahlia, Farid}, publisher = {Infopro Digital Risk}, address = {London}, issn = {1755-2842}, doi = {10.21314/JOR.2022.048}, pages = {1 -- 24}, year = {2023}, abstract = {We consider time-dependent portfolios and discuss the allocation of changes in the risk of a portfolio to changes in the portfolio's components. For this purpose we adopt established allocation principles. We also use our approach to obtain forecasts for changes in the risk of the portfolio's components. To put the approach into practice we present an implementation based on the output of a simulation. Allocation is illustrated with an example portfolio in the context of Solvency II. The quality of the forecasts is investigated with an empirical study.}, language = {en} } @article{Gaigall2023, author = {Gaigall, Daniel}, title = {On the applicability of several tests to models with not identically distributed random effects}, series = {Statistics : A Journal of Theoretical and Applied Statistics}, volume = {57}, journal = {Statistics : A Journal of Theoretical and Applied Statistics}, publisher = {Taylor \& Francis}, address = {London}, isbn = {0323-3944}, issn = {1029-4910}, doi = {10.1080/02331888.2023.2193748}, pages = {14 Seiten}, year = {2023}, abstract = {We consider Kolmogorov-Smirnov and Cram{\´e}r-von-Mises type tests for testing central symmetry, exchangeability, and independence. In the standard case, the tests are intended for the application to independent and identically distributed data with unknown distribution. The tests are available for multivariate data and bootstrap procedures are suitable to obtain critical values. We discuss the applicability of the tests to random effects models, where the random effects are independent but not necessarily identically distributed and with possibly unknown distributions. Theoretical results show the adequacy of the tests in this situation. The quality of the tests in models with random effects is investigated by simulations. Empirical results obtained confirm the theoretical findings. A real data example illustrates the application.}, language = {en} } @article{BialonskiGrieger2023, author = {Bialonski, Stephan and Grieger, Niklas}, title = {Der KI-Chatbot ChatGPT: Eine Herausforderung f{\"u}r die Hochschulen}, series = {Die neue Hochschule}, volume = {2023}, journal = {Die neue Hochschule}, number = {1}, publisher = {HLB}, address = {Bonn}, issn = {0340-448X}, doi = {10.5281/zenodo.7533758}, pages = {24 -- 27}, year = {2023}, abstract = {Essays, Gedichte, Programmcode: ChatGPT generiert automatisch Texte auf bisher unerreicht hohem Niveau. Dieses und nachfolgende Systeme werden nicht nur die akademische Welt nachhaltig ver{\"a}ndern.}, language = {de} } @article{RuebbelkeVoegeleGrajewskietal.2023, author = {R{\"u}bbelke, Dirk and V{\"o}gele, Stefan and Grajewski, Matthias and Zobel, Luzy}, title = {Cross border adjustment mechanism: Initial data for the assessment of hydrogen-based steel production}, series = {Data in Brief}, volume = {47}, journal = {Data in Brief}, number = {Article 108907}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-3409}, doi = {10.1016/j.dib.2023.108907}, pages = {1 -- 5}, year = {2023}, abstract = {Ambitious climate targets affect the competitiveness of industries in the international market. To prevent such industries from moving to other countries in the wake of increased climate protection efforts, cost adjustments may become necessary. Their design requires knowledge of country-specific production costs. Here, we present country-specific cost figures for different production routes of steel, paying particular attention to transportation costs. The data can be used in floor price models aiming to assess the competitiveness of different steel production routes in different countries (R{\"u}bbelke, 2022).}, language = {en} } @article{VoegeleJosyabhatlaBalletal.2023, author = {V{\"o}gele, Stefan and Josyabhatla, Vishnu Teja and Ball, Christopher and Rhoden, Imke and Grajewski, Matthias and R{\"u}bbelke, Dirk and Kuckshinrichs, Wilhelm}, title = {Robust assessment of energy scenarios from stakeholders' perspectives}, series = {Energy}, journal = {Energy}, number = {In Press, Article 128326}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-6785 (Online)}, doi = {10.1016/j.energy.2023.128326}, year = {2023}, abstract = {Using scenarios is vital in identifying and specifying measures for successfully transforming the energy system. Such transformations can be particularly challenging and require the support of a broader set of stakeholders. Otherwise, there will be opposition in the form of reluctance to adopt the necessary technologies. Usually, processes for considering stakeholders' perspectives are very time-consuming and costly. In particular, there are uncertainties about how to deal with modifications in the scenarios. In principle, new consulting processes will be required. In our study, we show how multi-criteria decision analysis can be used to analyze stakeholders' attitudes toward transition paths. Since stakeholders differ regarding their preferences and time horizons, we employ a multi-criteria decision analysis approach to identify which stakeholders will support or oppose a transition path. We provide a flexible template for analyzing stakeholder preferences toward transition paths. This flexibility comes from the fact that our multi-criteria decision aid-based approach does not involve intensive empirical work with stakeholders. Instead, it involves subjecting assumptions to robustness analysis, which can help identify options to influence stakeholders' attitudes toward transitions.}, language = {en} } @article{HeieisBoeckerD'Angeloetal.2023, author = {Heieis, Jule and B{\"o}cker, Jonas and D'Angelo, Olfa and Mittag, Uwe and Albracht, Kirsten and Sch{\"o}nau, Eckhard and Meyer, Andreas and Voigtmann, Thomas and Rittweger, J{\"o}rn}, title = {Curvature of gastrocnemius muscle fascicles as function of muscle-tendon complex length and contraction in humans}, series = {Physiological Reports}, volume = {11}, journal = {Physiological Reports}, number = {11}, publisher = {Wiley}, issn = {2051-817X}, doi = {10.14814/phy2.15739}, pages = {e15739, Seite 1-11}, year = {2023}, abstract = {It has been shown that muscle fascicle curvature increases with increasing contraction level and decreasing muscle-tendon complex length. The analyses were done with limited examination windows concerning contraction level, muscle-tendon complex length, and/or intramuscular position of ultrasound imaging. With this study we aimed to investigate the correlation between fascicle arching and contraction, muscle-tendon complex length and their associated architectural parameters in gastrocnemius muscles to develop hypotheses concerning the fundamental mechanism of fascicle curving. Twelve participants were tested in five different positions (90°/105°*, 90°/90°*, 135°/90°*, 170°/90°*, and 170°/75°*; *knee/ankle angle). They performed isometric contractions at four different contraction levels (5\%, 25\%, 50\%, and 75\% of maximum voluntary contraction) in each position. Panoramic ultrasound images of gastrocnemius muscles were collected at rest and during constant contraction. Aponeuroses and fascicles were tracked in all ultrasound images and the parameters fascicle curvature, muscle-tendon complex strain, contraction level, pennation angle, fascicle length, fascicle strain, intramuscular position, sex and age group were analyzed by linear mixed effect models. Mean fascicle curvature of the medial gastrocnemius increased with contraction level (+5 m-1 from 0\% to 100\%; p = 0.006). Muscle-tendon complex length had no significant impact on mean fascicle curvature. Mean pennation angle (2.2 m-1 per 10°; p < 0.001), inverse mean fascicle length (20 m-1 per cm-1; p = 0.003), and mean fascicle strain (-0.07 m-1 per +10\%; p = 0.004) correlated with mean fascicle curvature. Evidence has also been found for intermuscular, intramuscular, and sex-specific intramuscular differences of fascicle curving. Pennation angle and the inverse fascicle length show the highest predictive capacities for fascicle curving. Due to the strong correlations between pennation angle and fascicle curvature and the intramuscular pattern of curving we suggest for future studies to examine correlations between fascicle curvature and intramuscular fluid pressure.}, language = {en} } @article{JanusAchtsnichtTempeletal.2023, author = {Janus, Kevin Alexander and Achtsnicht, Stefan and Tempel, Laura and Drinic, Aleksaner and Kopp, Alexander and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Influence of fibroin membrane composition and curing parameters on the performance of a biodegradable enzymatic biosensor manufactured from Silicon-Free Carbon}, series = {Physica status solidi : pss. A, Applications and materials science}, volume = {220}, journal = {Physica status solidi : pss. A, Applications and materials science}, number = {22}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300 (Print)}, doi = {10.1002/pssa.202300081}, pages = {Artikel 2300081}, year = {2023}, abstract = {Herein, fibroin, polylactide (PLA), and carbon are investigated for their suitability as biocompatible and biodegradable materials for amperometric biosensors. For this purpose, screen-printed carbon electrodes on the biodegradable substrates fibroin and PLA are modified with a glucose oxidase membrane and then encapsulated with the biocompatible material Ecoflex. The influence of different curing parameters of the carbon electrodes on the resulting biosensor characteristics is studied. The morphology of the electrodes is investigated by scanning electron microscopy, and the biosensor performance is examined by amperometric measurements of glucose (0.5-10 mM) in phosphate buffer solution, pH 7.4, at an applied potential of 1.2 V versus a Ag/AgCl reference electrode. Instead of Ecoflex, fibroin, PLA, and wound adhesive are tested as alternative encapsulation compounds: a series of swelling tests with different fibroin compositions, PLA, and Ecoflex has been performed before characterizing the most promising candidates by chronoamperometry. Therefore, the carbon electrodes are completely covered with the particular encapsulation material. Chronoamperometric measurements with H2O2 concentrations between 0.5 and 10 mM enable studying the leakage current behavior.}, language = {en} }