@inproceedings{AchenbachGeimerGoettscheetal.2011, author = {Achenbach, Timm and Geimer, K. and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Lynen, A. and Bauer, J.}, title = {Simulation and flow measurements of volumetric high temperature absorbers for solar tower power plants}, series = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, booktitle = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, address = {Granada}, pages = {1 CD-ROM}, year = {2011}, language = {en} } @inproceedings{KremersPieper2015, author = {Kremers, Alexander and Pieper, Martin}, title = {Simulation and Verification of Bionic Heat Exchangers with COMSOL Multiphysics® Software}, series = {COMSOL Conference 2015 User Presentations ; COMSOL Conference 2015 Grenoble October 14 - 16, 2015 - World Trade Center, Grenoble, France}, booktitle = {COMSOL Conference 2015 User Presentations ; COMSOL Conference 2015 Grenoble October 14 - 16, 2015 - World Trade Center, Grenoble, France}, publisher = {COMSOL}, address = {G{\"o}ttingen ; Berlin}, pages = {6 Seiten}, year = {2015}, language = {en} } @inproceedings{FrotscherGossmannTemizArtmannetal.2013, author = {Frotscher, Ralf and Goßmann, Matthias and Temiz Artmann, Ayseg{\"u}l and Staat, Manfred}, title = {Simulation of cardiac cell-seeded membranes using the edge-based smoothed FEM}, series = {1st International Conference "Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures", Minsk, Belarus, Sept. 16-20, 2013}, booktitle = {1st International Conference "Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures", Minsk, Belarus, Sept. 16-20, 2013}, publisher = {Verl. d. Weißruss. Staatl. Univ.}, address = {Minsk}, organization = {International Conference Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures <1, 2013, Minsk>}, isbn = {978-985-553-135-8}, pages = {165 -- 167}, year = {2013}, language = {en} } @inproceedings{AlexopoulosHoffschmidtRauetal.2012, author = {Alexopoulos, Spiros and Hoffschmidt, Bernhard and Rau, Christoph and Sattler, Johannes Christoph}, title = {Simulation of hybrid solar tower power plants}, series = {30th ISES Biennial Solar World Congress 2011 : Kassel, Germany, 28 August - 2 September 2011. Vol. 5}, booktitle = {30th ISES Biennial Solar World Congress 2011 : Kassel, Germany, 28 August - 2 September 2011. Vol. 5}, publisher = {Curran}, address = {Red Hook, NY}, organization = {International Solar Energy Society}, pages = {4044 -- 4050}, year = {2012}, language = {en} } @inproceedings{ButenwegKleemannAltayetal.2013, author = {Butenweg, Christoph and Kleemann, Anne and Altay, Okyay and Renault, Philippe}, title = {Simulation of impact-loads on reinforced concrete structural elements}, series = {22nd International Conference on Structural Mechanics in Reactor Technology 2013 : (SMiRT 22) ; San Francisco, California, USA, 18 - 23 August 2013}, booktitle = {22nd International Conference on Structural Mechanics in Reactor Technology 2013 : (SMiRT 22) ; San Francisco, California, USA, 18 - 23 August 2013}, organization = {International Conference on Structural Mechanics in Reactor Technology, SMIRT <22, 2013, San Francisco, Calif.>}, pages = {1 -- 10}, year = {2013}, language = {en} } @inproceedings{AugensteinHerbergsKuperjansetal.2005, author = {Augenstein, Eckardt and Herbergs, S. and Kuperjans, Isabel and Lucas, K.}, title = {Simulation of industrial energy supply systems with integrated cost optimization}, series = {Proceedings of ECOS 2005, the 18th International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems : Trondheim, Norway, June 20 - 22, 2005. - Vol. 2}, booktitle = {Proceedings of ECOS 2005, the 18th International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems : Trondheim, Norway, June 20 - 22, 2005. - Vol. 2}, editor = {Kjelstrup, Signe}, publisher = {Tapir Academic Press}, address = {Trondheim}, isbn = {82-519-2041-8}, pages = {627 -- 634}, year = {2005}, language = {en} } @inproceedings{KronhardtAlexopoulosReisseletal.2015, author = {Kronhardt, Valentina and Alexopoulos, Spiros and Reißel, Martin and Latzke, Markus and Rendon, C. and Sattler, Johannes Christoph and Herrmann, Ulf}, title = {Simulation of operational management for the Solar Thermal Test and Demonstration Power Plant J{\"u}lich using optimized control strategies of the storage system}, series = {Energy procedia}, booktitle = {Energy procedia}, issn = {1876-6102}, pages = {1 -- 6}, year = {2015}, language = {en} } @inproceedings{BehbahaniRibleMoulinecetal.2015, author = {Behbahani, Mehdi and Rible, Sebastian and Moulinec, Charles and Fournier, Yvan and Nicolai, Mike and Crosetto, Paolo}, title = {Simulation of the FDA Centrifugal Blood Pump Using High Performance Computing}, series = {World Academy of Science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering}, volume = {9}, booktitle = {World Academy of Science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering}, number = {5}, year = {2015}, language = {en} } @inproceedings{AchenbachGeimerLynenetal.2012, author = {Achenbach, Timm and Geimer, Konstantin and Lynen, Arthur and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard}, title = {Simulation of thermo-mechanical processes in open volumetric absorber modules}, series = {SolarPaces 2012 : concentrating solar power and chemical energy systems : Sept. 11 - 14 2012, Marrakech, Marokko}, booktitle = {SolarPaces 2012 : concentrating solar power and chemical energy systems : Sept. 11 - 14 2012, Marrakech, Marokko}, pages = {1 -- 8}, year = {2012}, language = {en} } @inproceedings{AlexopoulosHoffschmidtRauetal.2009, author = {Alexopoulos, Spiros and Hoffschmidt, Bernhard and Rau, Christoph and Schwarzb{\"o}zl, Peter}, title = {Simulation results for a hybridization concept of a small solar tower power plant}, series = {SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings}, booktitle = {SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings}, publisher = {Deutsches Zentrum f. Luft- u. Raumfahrt}, address = {Stuttgart}, isbn = {9783000287558}, pages = {1 CD-ROM}, year = {2009}, language = {en} } @inproceedings{AlexopoulosHoffschmidtRauetal.2010, author = {Alexopoulos, Spiros and Hoffschmidt, Bernhard and Rau, Christoph and Schmitz, M. and Schwarzb{\"o}zl, P. and Pomp, Stefan}, title = {Simulation results for a hybridized operation of a gas turbine or a burner for a small solar tower power plant}, series = {SolarPACES 2010 : the CSP Conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, booktitle = {SolarPACES 2010 : the CSP Conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, publisher = {Soc. OSC}, address = {Saint Maur}, pages = {82 -- 83}, year = {2010}, language = {en} } @inproceedings{StreunAlKaddoumParletal.2012, author = {Streun, M. and Al-Kaddoum, R. and Parl, C. and Pietrzyk, U. and Ziemons, Karl and Waasen, S. van}, title = {Simulation studies of optical photons in monolithic block scintillators}, series = {2011 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, booktitle = {2011 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-4673-0120-6 (electronic ISBN)}, doi = {10.1109/NSSMIC.2011.6154621}, pages = {1380 -- 1382}, year = {2012}, abstract = {The interest in PET detectors with monolithic block scintillators is growing. In order to obtain high spatial resolutions dedicated positioning algorithms are required. But even an ideal algorithm can only deliver information which is provided by the detector. In this simulation study we investigated the light distribution on one surface of cuboid LSO scintillators of different size. Scintillators with a large aspect ratio (small footprint and large height) showed significant position information only for a minimum interaction depth of the gamma particle. The results allow a quantitative estimate for a useful aspect ratio.}, language = {en} } @inproceedings{ElMoussaouiKassmiAlexopoulosetal.2021, author = {El Moussaoui, Noureddine and Kassmi, Khalil and Alexopoulos, Spiros and Schwarzer, Klemens and Chayeb, Hamid and Bachiri, Najib}, title = {Simulation studies on a new innovative design of a hybrid solar distiller MSDH alimented with a thermal and photovoltaic energy}, series = {Materialstoday: Proceedings}, volume = {45}, booktitle = {Materialstoday: Proceedings}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2214-7853}, doi = {10.1016/j.matpr.2021.03.115}, pages = {7653 -- 7660}, year = {2021}, abstract = {In this paper, we present the structure, the simulation the operation of a multi-stage, hybrid solar desalination system (MSDH), powered by thermal and photovoltaic (PV) (MSDH) energy. The MSDH system consists of a lower basin, eight horizontal stages, a field of four flat thermal collectors with a total area of 8.4 m2, 3 Kw PV panels and solar batteries. During the day the system is heated by thermal energy, and at night by heating resistors, powered by solar batteries. These batteries are charged by the photovoltaic panels during the day. More specifically, during the day and at night, we analyse the temperature of the stages and the production of distilled water according to the solar irradiation intensity and the electric heating power, supplied by the solar batteries. The simulations were carried out in the meteorological conditions of the winter month (February 2020), presenting intensities of irradiance and ambient temperature reaching 824 W/m2 and 23 °C respectively. The results obtained show that during the day the system is heated by the thermal collectors, the temperature of the stages and the quantity of water produced reach 80 °C and 30 Kg respectively. At night, from 6p.m. the system is heated by the electric energy stored in the batteries, the temperature of the stages and the quantity of water produced reach respectively 90 °C and 104 Kg for an electric heating power of 2 Kw. Moreover, when the electric power varies from 1 Kw to 3 Kw the quantity of water produced varies from 92 Kg to 134 Kg. The analysis of these results and their comparison with conventional solar thermal desalination systems shows a clear improvement both in the heating of the stages, by 10\%, and in the quantity of water produced by a factor of 3.}, language = {en} } @inproceedings{OlderogMohrBegingetal.2021, author = {Olderog, M. and Mohr, P. and Beging, Stefan and Tsoumpas, C. and Ziemons, Karl}, title = {Simulation study on the role of tissue-scattered events in improving sensitivity for a compact time of flight compton positron emission tomograph}, series = {2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)}, booktitle = {2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)}, publisher = {IEEE}, address = {New York, NY}, isbn = {978-1-7281-7693-2}, doi = {10.1109/NSS/MIC42677.2020.9507901}, pages = {4 Seiten}, year = {2021}, abstract = {In positron emission tomography improving time, energy and spatial detector resolutions and using Compton kinematics introduces the possibility to reconstruct a radioactivity distribution image from scatter coincidences, thereby enhancing image quality. The number of single scattered coincidences alone is in the same order of magnitude as true coincidences. In this work, a compact Compton camera module based on monolithic scintillation material is investigated as a detector ring module. The detector interactions are simulated with Monte Carlo package GATE. The scattering angle inside the tissue is derived from the energy of the scattered photon, which results in a set of possible scattering trajectories or broken line of response. The Compton kinematics collimation reduces the number of solutions. Additionally, the time of flight information helps localize the position of the annihilation. One of the questions of this investigation is related to how the energy, spatial and temporal resolutions help confine the possible annihilation volume. A comparison of currently technically feasible detector resolutions (under laboratory conditions) demonstrates the influence on this annihilation volume and shows that energy and coincidence time resolution have a significant impact. An enhancement of the latter from 400 ps to 100 ps leads to a smaller annihilation volume of around 50\%, while a change of the energy resolution in the absorber layer from 12\% to 4.5\% results in a reduction of 60\%. The inclusion of single tissue-scattered data has the potential to increase the sensitivity of a scanner by a factor of 2 to 3 times. The concept can be further optimized and extended for multiple scatter coincidences and subsequently validated by a reconstruction algorithm.}, language = {en} } @inproceedings{KreyerEsch2017, author = {Kreyer, J{\"o}rg and Esch, Thomas}, title = {Simulation Tool for Predictive Control Strategies for an ORCSystem in Heavy Duty Vehicles}, series = {European GT Conference 2017}, booktitle = {European GT Conference 2017}, pages = {16 Seiten}, year = {2017}, abstract = {Scientific questions - How can a non-stationary heat offering in the commercial vehicle be used to reduce fuel consumption? - Which potentials offer route and environmental information among with predicted speed and load trajectories to increase the efficiency of a ORC-System? Methods - Desktop bound holistic simulation model for a heavy duty truck incl. an ORC System - Prediction of massflows, temperatures and mixture quality (AFR) of exhaust gas}, language = {en} } @inproceedings{KolditzAlbinFasseetal.2015, author = {Kolditz, Melanie and Albin, Thivaharan and Fasse, Alessandro and Br{\"u}ggemann, Gert-Peter and Abel, Dirk and Albracht, Kirsten}, title = {Simulative Analysis of Joint Loading During Leg Press Exercise for Control Applications}, series = {IFAC-PapersOnLine}, volume = {48}, booktitle = {IFAC-PapersOnLine}, number = {20}, doi = {10.1016/j.ifacol.2015.10.179}, pages = {435 -- 440}, year = {2015}, language = {en} } @inproceedings{LudowicyRingsFingeretal.2018, author = {Ludowicy, Jonas and Rings, Ren{\´e} and Finger, Felix and Braun, Carsten}, title = {Sizing Studies of Light Aircraft with Parallel Hybrid Propulsion Systems}, series = {Deutscher Luft- und Raumfahrtkongress 2018}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2018}, doi = {10.25967/480227}, pages = {15 S.}, year = {2018}, language = {en} } @inproceedings{LudowicyRingsFingeretal.2018, author = {Ludowicy, Jonas and Rings, Ren{\´e} and Finger, Felix and Braun, Carsten}, title = {Sizing Studies of Light Aircraft with Serial Hybrid Propulsion Systems}, series = {Luft- und Raumfahrt - Digitalisierung und Vernetzung : Deutscher Luft- und Raumfahrtkongress 2018. 4. - 6. September 2018 - Friedrichshafen}, booktitle = {Luft- und Raumfahrt - Digitalisierung und Vernetzung : Deutscher Luft- und Raumfahrtkongress 2018. 4. - 6. September 2018 - Friedrichshafen}, pages = {11 S.}, year = {2018}, language = {en} } @inproceedings{GrundmannBieleDachwaldetal.2017, author = {Grundmann, Jan Thimo and Biele, Jens and Dachwald, Bernd and Grimm, Christian D. and Lange, Caroline and Ulamec, Stephan and Ziach, Christian and Spr{\"o}witz, Tom and Ruffer, Michael and Seefeldt, Patric and Spietz, Peter and Toth, Norbert and Mimasu, Yuya and Rittweger, Andreas and Bibring, Jean-Pierre and Braukhane, Andy and Boden, Ralf Christian and Dumont, Etienne and Jahnke, Stephan Siegfried and Jetzschmann, Michael and Kr{\"u}ger, Hans and Lange, Michael and Gomez, Antonio Martelo and Massonett, Didier and Okada, Tatsuaki and Sagliano, Marco and Sasaki, Kaname and Schr{\"o}der, Silvio and Sippel, Martin and Skoczylas, Thomas and Wejmo, Elisabet}, title = {Small landers and separable sub-spacecraft for near-term solar sails}, series = {The Fourth International Symposium on Solar Sailing 2017}, booktitle = {The Fourth International Symposium on Solar Sailing 2017}, pages = {1 -- 10}, year = {2017}, abstract = {Following the successful PHILAE landing with ESA's ROSETTA probe and the launch of the MINERVA rovers and the Mobile Asteroid Surface Scout, MASCOT, aboard the JAXA space probe, HAYABUSA2, to asteroid (162173) Ryugu, small landers have found increasing interest. Integrated at the instrument level in their mothership they support small solar system body studies. With efficient capabilities, resource-friendly design and inherent robustness they are an attractive exploration mission element. We discuss advantages and constraints of small sub-spacecraft, focusing on emerging areas of activity such as asteroid diversity studies, planetary defence, and asteroid mining, on the background of our projects PHILAE, MASCOT, MASCOT2, the JAXA-DLR Solar Power Sail Lander Design Study, and others. The GOSSAMER-1 solar sail deployment concept also involves independent separable sub-spacecraft operating synchronized to deploy the sail. Small spacecraft require big changes in the way we do things and occasionally a little more effort than would be anticipated based on a traditional large spacecraft approach. In a Constraints-Driven Engineering environment we apply Concurrent Design and Engineering (CD/CE), Concurrent Assembly, Integration and Verification (CAIV) and Model-Based Systems Engineering (MBSE). Near-term solar sails will likely be small spacecraft which we expect to harmonize well with nano-scale separable instrument payload packages.}, language = {en} } @inproceedings{GrundmannBauerBieleetal.2018, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Biele, Jens and Boden, Ralf and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Herč{\´i}k, David and Ho, Tra-Mi and Jahnke, Rico and Koch, Aaron D and Koncz, Alexander and Krause, Christian and Lange, Caroline and Lichtenheldt, Roy and Maiwald, Volker and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Pelivan, Ivanka and Peloni, Alessandro and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Tardivel, Simon and T{\´o}th, Norbert and Wejmo, Elisabet and Wolff, Friederike and Ziach, Christian}, title = {Small spacecraft based multiple near-earth asteroid rendezvous and landing with near-term solar sails and 'Now-Term 'technologies}, series = {69 th International Astronautical Congress (IAC)}, booktitle = {69 th International Astronautical Congress (IAC)}, pages = {1 -- 18}, year = {2018}, abstract = {Physical interaction with small solar system bodies (SSSB) is the next step in planetary science, planetary in-situ resource utilization (ISRU), and planetary defense (PD). It requires a broader understanding of the surface properties of the target objects, with particular interest focused on those near Earth. Knowledge of composition, multi-scale surface structure, thermal response, and interior structure is required to design, validate and operate missions addressing these three fields. The current level of understanding is occasionally simplified into the phrase, "If you've seen one asteroid, you've seen one asteroid", meaning that the in-situ characterization of SSSBs has yet to cross the threshold towards a robust and stable scheme of classification. This would enable generic features in spacecraft design, particularly for ISRU and science missions. Currently, it is necessary to characterize any potential target object sufficiently by a dedicated pre-cursor mission to design the mission which then interacts with the object in a complex fashion. To open up strategic approaches, much broader in-depth characterization of potential target objects would be highly desirable. In SSSB science missions, MASCOT-like nano-landers and instrument carriers which integrate at the instrument level to their mothership have met interest. By its size, MASCOT is compatible with small interplanetary missions. The DLR-ESTEC Gossamer Roadmap Science Working Groups' studies identified Multiple Near-Earth asteroid (NEA) Rendezvous (MNR) as one of the space science missions only feasible with solar sail propulsion. The Solar Polar Orbiter (SPO) study showed the ability to access any inclination, theDisplaced-L1 (DL1) mission operates close to Earth, where objects of interest to PD and for ISRU reside. Other studies outline the unique capability of solar sails to provide access to all SSSB, at least within the orbit of Jupiter, and significant progress has been made to explore the performance envelope of near-term solar sails for MNR. However, it is difficult for sailcraft to interact physically with a SSSB. We expand and extend the philosophy of the recently qualified DLR Gossamer solar sail deployment technology using efficient multiple sub-spacecraft integration to also include landers for one-way in-situ investigations and sample-return missions by synergetic integration and operation of sail and lander. The MASCOT design concept and its characteristic features have created an ideal counterpart for thisand has already been adapted to the needs of the AIM spacecraft, former part of the NASA-ESA AIDA missionDesigning the 69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018. IAC-18-F1.2.3 Page 2 of 17 combined spacecraft for piggy-back launch accommodation enables low-cost massively parallel access to the NEA population.}, language = {en} }