@inproceedings{KesslerBalcGebhardtetal.2017, author = {Kessler, Julia and Balc, Nicolae and Gebhardt, Andreas and Abbas, Karim}, title = {Basic research on lattice structures focused on the reliance of the cross sectional area and additional coatings}, series = {The 4th International Conference on Computing and Solutions in Manufacturing Engineering 2016 - CoSME'16}, booktitle = {The 4th International Conference on Computing and Solutions in Manufacturing Engineering 2016 - CoSME'16}, edition = {Vol. 94}, doi = {10.1051/matecconf/20179403008}, pages = {7 S.}, year = {2017}, language = {en} } @inproceedings{KesslerBalcGebhardt2016, author = {Kessler, Julia and Balc, Nicolae and Gebhardt, Andreas}, title = {Basic research on lattice structures focused on the strut shape and welding beads}, series = {Physics Procedia}, volume = {Vol. 83}, booktitle = {Physics Procedia}, issn = {1875-3884}, doi = {10.1016/j.phpro.2016.08.086}, pages = {833 -- 838}, year = {2016}, language = {en} } @article{KesslerBalcGebhardtetal.2015, author = {Kessler, Julia and Balc, Nicolae and Gebhardt, Andreas and Abbas, Karim}, title = {Basic Research on Lattice Structures Focused on the Tensile Strength}, series = {Applied Mechanics and Materials}, volume = {Vol. 808}, journal = {Applied Mechanics and Materials}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, issn = {1662-7482}, doi = {10.4028/www.scientific.net/AMM.808.193}, pages = {193 -- 198}, year = {2015}, language = {en} } @inproceedings{LuftGebhardtBalc2019, author = {Luft, Angela and Gebhardt, Andreas and Balc, Nicolae}, title = {Challenges of additive manufacturing in production systems}, series = {Modern technologies in manufacturing (MTeM 2019)}, volume = {299}, booktitle = {Modern technologies in manufacturing (MTeM 2019)}, number = {Article 01003}, doi = {10.1051/matecconf/201929901003}, pages = {6 Seiten}, year = {2019}, language = {en} } @inproceedings{ThurnBalcGebhardtetal.2017, author = {Thurn, Laura and Balc, Nicolae and Gebhardt, Andreas and Kessler, Julia}, title = {Education packed in technology to promote innovations: Teaching Additive Manufacturing based on a rolling Lab}, series = {Modern Technologies in Manufacturing (MTeM 2017 - AMaTUC)}, booktitle = {Modern Technologies in Manufacturing (MTeM 2017 - AMaTUC)}, issn = {2261-236X}, doi = {10.1051/matecconf/201713702013}, pages = {6 Seiten}, year = {2017}, language = {en} } @article{FateriHoetterGebhardt2012, author = {Fateri, Miranda and H{\"o}tter, Jan-Steffen and Gebhardt, Andreas}, title = {Experimental and Theoretical Investigation of Buckling Deformation of Fabricated Objects by Selective Laser Melting}, series = {Physics Procedia}, volume = {39}, journal = {Physics Procedia}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1875-3892}, doi = {10.1016/j.phpro.2012.10.062}, pages = {464 -- 470}, year = {2012}, abstract = {Although Selective Laser Melting (SLM) process is an innovative manufacturing method, there are challenges such as inferior mechanical properties of fabricated objects. Regarding this, buckling deformation which is caused by thermal stress is one of the undesired mechanical properties which must be alleviated. As buckling deformation is more observable in hard to process materials, silver is selected to be studied theoretically and experimentally for this paper. Different scanning strategies are utilized and a Finite Element Method (FEM) is applied to calculate the temperature gradient in order to determine its effect on the buckling deformation of the objects from experiments.}, language = {en} } @inproceedings{FateriGebhardtKhosravi2013, author = {Fateri, Miranda and Gebhardt, Andreas and Khosravi, Maziar}, title = {Experimental investigation of selective laser melting of lunar regolith for in-situ applications}, series = {ASME 2013 International Mechanical Engineering Congress and Exposition : San Diego, California, USA, November 15-21, 2013. Vol. 2A: Advanced manufacturing}, booktitle = {ASME 2013 International Mechanical Engineering Congress and Exposition : San Diego, California, USA, November 15-21, 2013. Vol. 2A: Advanced manufacturing}, publisher = {ASME}, organization = {American Society of Mechanical Engineers}, isbn = {978-0-7918-5618-5}, pages = {V02AT02A008}, year = {2013}, language = {en} } @article{FateriGebhardtThuemmleretal.2014, author = {Fateri, Miranda and Gebhardt, Andreas and Th{\"u}mmler, Stefan and Thurn, Laura}, title = {Experimental investigation on selective laser melting of glass}, series = {Physics procedia : 8th International Conference on Laser Assisted Net Shape Engineering LANE 2014}, volume = {56 (2014)}, journal = {Physics procedia : 8th International Conference on Laser Assisted Net Shape Engineering LANE 2014}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1875-3892 (E-Journal); 1875-3884 (Print)}, doi = {10.1016/j.phpro.2014.08.118}, pages = {357 -- 364}, year = {2014}, language = {en} } @article{DuesGebhardtKallweitetal.1994, author = {Dues, M. and Gebhardt, Andreas and Kallweit, Stephan and Scheffler, T. and Siekmann, H. and Uchiyama, T.}, title = {Flow Visualization in a Cavitating Flow}, series = {Proceedings of the German-Japanese Symposium on Multi-Phase Flow : Karlsruhe, Germany, August 23 - 25, 1994 / comp. by U. M{\"u}ller ...}, journal = {Proceedings of the German-Japanese Symposium on Multi-Phase Flow : Karlsruhe, Germany, August 23 - 25, 1994 / comp. by U. M{\"u}ller ...}, publisher = {Kernforschungszentrum Karlsruhe}, address = {Karlsruhe}, pages = {391 -- 402}, year = {1994}, language = {en} } @inproceedings{AlhwarinFerreinGebhardtetal.2015, author = {Alhwarin, Faraj and Ferrein, Alexander and Gebhardt, Andreas and Kallweit, Stephan and Scholl, Ingrid and Tedjasukmana, Osmond Sanjaya}, title = {Improving additive manufacturing by image processing and robotic milling}, series = {2015 IEEE International Conference on Automation Science and Engineering (CASE), Aug 24-28, 2015 Gothenburg, Sweden}, booktitle = {2015 IEEE International Conference on Automation Science and Engineering (CASE), Aug 24-28, 2015 Gothenburg, Sweden}, doi = {10.1109/CoASE.2015.7294217}, pages = {924 -- 929}, year = {2015}, language = {en} } @article{CosmaKesslerGebhardtetal.2020, author = {Cosma, Cosmin and Kessler, Julia and Gebhardt, Andreas and Campbell, Ian and Balc, Nicolae}, title = {Improving the Mechanical Strength of Dental Applications and Lattice Structures SLM Processed}, series = {Materials}, volume = {13}, journal = {Materials}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {1996-1944}, doi = {10.3390/ma13040905}, pages = {1 -- 18}, year = {2020}, abstract = {To manufacture custom medical parts or scaffolds with reduced defects and high mechanical characteristics, new research on optimizing the selective laser melting (SLM) parameters are needed. In this work, a biocompatible powder, 316L stainless steel, is characterized to understand the particle size, distribution, shape and flowability. Examination revealed that the 316L particles are smooth, nearly spherical, their mean diameter is 39.09 μm and just 10\% of them hold a diameter less than 21.18 μm. SLM parameters under consideration include laser power up to 200 W, 250-1500 mm/s scanning speed, 80 μm hatch spacing, 35 μm layer thickness and a preheated platform. The effect of these on processability is evaluated. More than 100 samples are SLM-manufactured with different process parameters. The tensile results show that is possible to raise the ultimate tensile strength up to 840 MPa, adapting the SLM parameters for a stable processability, avoiding the technological defects caused by residual stress. Correlating with other recent studies on SLM technology, the tensile strength is 20\% improved. To validate the SLM parameters and conditions established, complex bioengineering applications such as dental bridges and macro-porous grafts are SLM-processed, demonstrating the potential to manufacture medical products with increased mechanical resistance made of 316L.}, language = {en} } @inproceedings{GerhardsSchleserOttenetal.2019, author = {Gerhards, Benjamin and Schleser, Markus and Otten,, Christian and Schwarz, Alexander and Gebhardt, Andreas}, title = {Innovative Laser Beam Joining Technology for Additive Manufactured Parts}, series = {Conference Proceedings 72nd IIW Annual Assembly and International Conference, 7-12 July 2019, Bratislava}, booktitle = {Conference Proceedings 72nd IIW Annual Assembly and International Conference, 7-12 July 2019, Bratislava}, pages = {1 -- 8}, year = {2019}, language = {en} } @incollection{FateriGebhardt2020, author = {Fateri, Miranda and Gebhardt, Andreas}, title = {Introduction to Additive Manufacturing}, series = {3D Printing of Optical Components}, booktitle = {3D Printing of Optical Components}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-58960-8}, doi = {10.1007/978-3-030-58960-8_1}, pages = {1 -- 22}, year = {2020}, abstract = {Additive manufacturing (AM) works by creating objects layer by layer in a manner similar to a 2D printer with the "printed" layers stacked on top of each other. The layer-wise manufacturing nature of AM enables fabrication of freeform geometries which cannot be fabricated using conventional manufacturing methods as a one part. Depending on how each layer is created and bonded to the adjacent layers, different AM methods have been developed. In this chapter, the basic terms, common materials, and different methods of AM are described, and their potential applications are discussed.}, language = {en} } @inproceedings{FateriGebhardt2014, author = {Fateri, Miranda and Gebhardt, Andreas}, title = {Jewelry fabrication via selective laser melting of glass}, series = {ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis Volume 1: Applied Mechanics; Automotive Systems; Biomedical Biotechnology Engineering; Computational Mechanics; Design; Digital Manufacturing; Education; Marine and Aerospace Applications}, booktitle = {ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis Volume 1: Applied Mechanics; Automotive Systems; Biomedical Biotechnology Engineering; Computational Mechanics; Design; Digital Manufacturing; Education; Marine and Aerospace Applications}, isbn = {978-0-7918-4583-7}, doi = {10.1115/ESDA2014-20380}, pages = {V001T06A005}, year = {2014}, abstract = {Selective Laser Melting (SLM) is one of the Additive Manufacturing (AM) technologies applicable for producing complex geometries which are typically expensive or difficult to fabricate using conventional methods. This process has been extensively investigated experimentally for various metals and the fabrication process parameters have been established for different applications; however, fabricating 3D glass objects using SLM technology has remained a challenge so far although it could have many applications. This paper presents a summery on various experimental evaluations of a material database incorporating the build parameters of glass powder using the SLM process for jewelry applications.}, language = {en} } @article{Gebhardt2001, author = {Gebhardt, Andreas}, title = {Laserwelding with fillerwire}, series = {LIA handbook of laser material processing / Laser Institute of America}, journal = {LIA handbook of laser material processing / Laser Institute of America}, address = {Orlando, Florida}, isbn = {3-540-41770-2}, year = {2001}, language = {en} } @article{SchwarzGebhardtSchleseretal.2019, author = {Schwarz, Alexander and Gebhardt, Andreas and Schleser, Markus and Popoola, Patricia}, title = {New Welding Joint Geometries Manufactured by Powder Bed Fusion from 316L}, series = {Materials Performance and Characterization 8}, journal = {Materials Performance and Characterization 8}, number = {in press}, issn = {2379-1365}, doi = {10.1520/MPC20180096}, year = {2019}, language = {en} } @inproceedings{GrossmannGabrielliHerdrichetal.2015, author = {Großmann, Agnes and Gabrielli, Roland Antonius and Herdrich, Georg and Fasoulas, Stefanos and Schnauffer, Peter and Middendorf, Peter and Fateri, Miranda and Gebhardt, Andreas}, title = {Overview of the MultiRob 3D Lunar Industrial Development Project}, series = {Conference Contribution for the 30th ISTS, Kobe, Japan, 04.07.-10.07.2015}, booktitle = {Conference Contribution for the 30th ISTS, Kobe, Japan, 04.07.-10.07.2015}, pages = {8 S.}, year = {2015}, language = {en} } @article{GebhardtSchmidt2002, author = {Gebhardt, Andreas and Schmidt, Frank-Michael}, title = {Practical experiences with making and finishing of coloured models using 3D printing}, year = {2002}, language = {en} } @article{FateriGebhardt2015, author = {Fateri, Miranda and Gebhardt, Andreas}, title = {Process Parameters Development of Selective Laser Melting of Lunar Regolith for On-Site Manufacturing Applications}, series = {International Journal of Applied Ceramic Technology}, volume = {12}, journal = {International Journal of Applied Ceramic Technology}, number = {1}, publisher = {Wiley-Blackwell}, address = {Oxford}, isbn = {1744-7402}, doi = {10.1111/ijac.12326}, pages = {46 -- 52}, year = {2015}, language = {en} } @inproceedings{RieperGebhardtStucker2016, author = {Rieper, Harald and Gebhardt, Andreas and Stucker, Brent}, title = {Process parameters for Selective Laser Melting of AgCu7}, series = {DDMC, Fraunhofer Direct Digital Manufacturing Conference, 3}, booktitle = {DDMC, Fraunhofer Direct Digital Manufacturing Conference, 3}, publisher = {Fraunhofer-Verlag}, address = {Stuttgart}, isbn = {978-3-8396-1001-5}, pages = {171 -- 176}, year = {2016}, language = {en} }