@article{SavitskayaKistaubayevaDigeletal.2017, author = {Savitskaya, I. S. and Kistaubayeva, A. S. and Digel, Ilya and Shokatayeva, D. H.}, title = {Physicochemical and Antibacterial Properties of Composite Films Based on Bacterial Cellulose and Chitosan for Wound Dressing Materials}, series = {Eurasian Chemico-Technological Journal}, volume = {19}, journal = {Eurasian Chemico-Technological Journal}, number = {3}, issn = {2522-4867}, doi = {10.18321/ectj670}, pages = {255 -- 264}, year = {2017}, language = {en} } @inproceedings{GrundmannBodenCeriottietal.2017, author = {Grundmann, Jan Thimo and Boden, Ralf and Ceriotti, Matteo and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Lange, Caroline and Lichtenheldt, Roy and Pelivan, Ivanka and Peloni, Alessandro and Riemann, Johannes and Spr{\"o}witz, Tom and Tardivel, Simon}, title = {Soil to sail-asteroid landers on near-term sailcraft as an evolution of the GOSSAMER small spacecraft solar sail concept for in-situ characterization}, series = {5th IAA Planetary Defense Conference}, booktitle = {5th IAA Planetary Defense Conference}, pages = {30 Seiten}, year = {2017}, language = {en} } @article{ValeroBung2017, author = {Valero, Daniel and Bung, Daniel Bernhard}, title = {Artificial Neural Networks and pattern recognition for air-water flow velocity estimation using a single-tip optical fibre probe}, series = {Journal of Hydro-environment Research}, volume = {19}, journal = {Journal of Hydro-environment Research}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1570-6443}, doi = {10.1016/j.jher.2017.08.004}, pages = {150 -- 159}, year = {2017}, language = {en} } @article{KleinButenwegKlinkel2017, author = {Klein, Michel and Butenweg, Christoph and Klinkel, Sven}, title = {The Influence of Soil-Structure-Interaction on the Fatigue Analysis in the Foundation Design of Onshore Wind Turbines}, series = {Procedia Engineering}, volume = {199}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2017.09.325}, pages = {3218 -- 3223}, year = {2017}, language = {en} } @article{KarnatakKantzBialonski2017, author = {Karnatak, Rajat and Kantz, Holger and Bialonski, Stephan}, title = {Early warning signal for interior crises in excitable systems}, series = {Physical Review E}, volume = {96}, journal = {Physical Review E}, number = {4}, issn = {2470-0053}, doi = {10.1103/PhysRevE.96.042211}, pages = {042211}, year = {2017}, language = {en} } @inproceedings{Dachwald2017, author = {Dachwald, Bernd}, title = {Radiation pressure force model for an ideal laser-enhanced solar sail}, series = {4th International Symposium on Solar Sailing}, booktitle = {4th International Symposium on Solar Sailing}, pages = {1 -- 5}, year = {2017}, abstract = {The concept of a laser-enhanced solar sail is introduced and the radiation pressure force model for an ideal laser-enhanced solar sail is derived. A laser-enhanced solar sail is a "traditional" solar sail that is, however, not solely propelled by solar radiation, but additionally by a laser beam that illuminates the sail. The additional laser radiation pressure increases the sail's propulsive force and can give, depending on the location of the laser source, more control authority over the direction of the solar sail's propulsive force vector. This way, laser-enhanced solar sails may augment already existing solar sail mission concepts and make novel mission concepts feasible.}, language = {en} } @misc{HacklWegmannKahmannetal.2017, author = {Hackl, Michael and Wegmann, Kilian and Kahmann, Stephanie Lucina and Heinze, Nicolai and Staat, Manfred and Neiss, Wolfram F. and Scaal, Martin and M{\"u}ller, Lars P.}, title = {Reply to the letter to the editor: shortening osteotomy of the proximal radius}, series = {Knee Surgery, Sports Traumatology, Arthroscopy}, volume = {25}, journal = {Knee Surgery, Sports Traumatology, Arthroscopy}, number = {10}, doi = {10.1007/s00167-017-4666-8}, pages = {3328 -- 3329}, year = {2017}, language = {en} } @article{HacklAndermahrStaatetal.2017, author = {Hackl, M. and Andermahr, J. and Staat, Manfred and Bremer, I. and Borggrefe, J. and Prescher, A. and M{\"u}ller, L. P. and Wegmann, K.}, title = {Suture button reconstruction of the central band of the interosseous membrane in Essex-Lopresti lesions: a comparative biomechanical investigation}, series = {The Journal of Hand Surgery (European Volume)}, volume = {42}, journal = {The Journal of Hand Surgery (European Volume)}, number = {4}, publisher = {Sage}, address = {London}, issn = {2043-6289 (Online)}, doi = {10.1177/1753193416665943}, pages = {370 -- 376}, year = {2017}, language = {en} } @inproceedings{StopforthDavrajhFerrein2017, author = {Stopforth, Riaan and Davrajh, Shaniel and Ferrein, Alexander}, title = {Design considerations of the duo fugam dual rotor UAV}, series = {2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech)}, booktitle = {2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech)}, isbn = {978-1-5386-2314-5}, doi = {10.1109/RoboMech.2017.8261115}, pages = {7 -- 13}, year = {2017}, language = {en} } @inproceedings{NiemuellerNeumannHenkeetal.2017, author = {Niemueller, Tim and Neumann, Tobias and Henke, Christoph and Sch{\"o}nitz, Sebastian and Reuter, Sebastian and Ferrein, Alexander and Jeschke, Sabina and Lakemeyer, Gerhard}, title = {Improvements for a robust production in the RoboCup logistics league 2016}, series = {RoboCup 2016: Robot World Cup XX. RoboCup 2016.}, booktitle = {RoboCup 2016: Robot World Cup XX. RoboCup 2016.}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-68792-6}, doi = {10.1007/978-3-319-68792-6_49}, pages = {589 -- 600}, year = {2017}, language = {en} } @article{LopesLeandroCarvalhoetal.2017, author = {Lopes, Pedro and Leandro, Jorge and Carvalho, Rita F. and Bung, Daniel Bernhard}, title = {Alternating skimming flow over a stepped spillway}, series = {Environmental Fluid Mechanics}, volume = {17}, journal = {Environmental Fluid Mechanics}, number = {2}, publisher = {Springer}, address = {Berlin}, issn = {1573-1510}, doi = {10.1007/s10652-016-9484-x}, pages = {303 -- 322}, year = {2017}, language = {en} } @article{PoghossianWernerBuniatyanetal.2017, author = {Poghossian, Arshak and Werner, Frederik and Buniatyan, V. V. and Wagner, Torsten and Miamoto, K. and Yoshinobu, T. and Sch{\"o}ning, Michael Josef}, title = {Towards addressability of light-addressable potentiometric sensors: Shunting effect of non-illuminated region and cross-talk}, series = {Sensor and Actuators B: Chemical}, journal = {Sensor and Actuators B: Chemical}, number = {244}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2017.01.047}, pages = {1071 -- 1079}, year = {2017}, abstract = {The LAPS (light-addressable potentiometric sensor) platform is one of the most attractive approaches for chemical and biological sensing with many applications ranging from pH and ion/analyte concentration measurements up to cell metabolism detection and chemical imaging. However, although it is generally accepted that LAPS measurements are spatially resolved, the light-addressability feature of LAPS devices has not been discussed in detail so far. In this work, an extended electrical equivalent-circuit model of the LAPS has been presented, which takes into account possible cross-talk effects due to the capacitive coupling of the non-illuminated region. A shunting effect of the non-illuminated area on the measured photocurrent and addressability of LAPS devices has been studied. It has been shown, that the measured photocurrent will be determined not only by the local interfacial potential in the illuminated region but also by possible interfacial potential changes in the non-illuminated region, yielding cross-talk effects. These findings were supported by the experimental investigations of a penicillin-sensitive multi-spot LAPS and a metal-insulator-semiconductor LAPS as model systems.}, language = {en} } @article{MolinnusPoghossianKeusgenetal.2017, author = {Molinnus, Denise and Poghossian, Arshak and Keusgen, Michael and Katz, Evgeny and Sch{\"o}ning, Michael Josef}, title = {Coupling of Biomolecular Logic Gates with Electronic Transducers: From Single Enzyme Logic Gates to Sense/Act/Treat Chips}, series = {Electroanalysis}, volume = {29}, journal = {Electroanalysis}, number = {8}, publisher = {Wiley}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.201700208}, pages = {1840 -- 1849}, year = {2017}, abstract = {The integration of biomolecular logic principles with electronic transducers allows designing novel digital biosensors with direct electrical output, logically triggered drug-release, and closed-loop sense/act/treat systems. This opens new opportunities for advanced personalized medicine in the context of theranostics. In the present work, we will discuss selected examples of recent developments in the field of interfacing enzyme logic gates with electrodes and semiconductor field-effect devices. Special attention is given to an enzyme OR/Reset logic gate based on a capacitive field-effect electrolyte-insulator-semiconductor sensor modified with a multi-enzyme membrane. Further examples are a digital adrenaline biosensor based on an AND logic gate with binary YES/NO output and an integrated closed-loop sense/act/treat system comprising an amperometric glucose sensor, a hydrogel actuator, and an insulin (drug) sensor.}, language = {en} } @incollection{HerrmannKearneyRoegeretal.2017, author = {Herrmann, Ulf and Kearney, D. and R{\"o}ger, M. and Prahl, C.}, title = {System performance measurements}, series = {The Performance of Concentrated Solar Power (CSP) Systems : Modelling, Measurement and Assessment}, booktitle = {The Performance of Concentrated Solar Power (CSP) Systems : Modelling, Measurement and Assessment}, publisher = {Woodhead Publishing}, address = {Duxford}, isbn = {978-0-08-100448-7}, doi = {https://doi.org/10.1016/B978-0-08-100447-0.00005-5}, pages = {115 -- 165}, year = {2017}, abstract = {This chapter introduces performance and acceptance testing and describes state-of-the-art tools, methods, and instruments to assess the plant performance or realize plant acceptance testing. The status of the development of standards for performance assessment is given.}, language = {en} } @inproceedings{ThurnBalcGebhardtetal.2017, author = {Thurn, Laura and Balc, Nicolae and Gebhardt, Andreas and Kessler, Julia}, title = {Education packed in technology to promote innovations: Teaching Additive Manufacturing based on a rolling Lab}, series = {Modern Technologies in Manufacturing (MTeM 2017 - AMaTUC)}, booktitle = {Modern Technologies in Manufacturing (MTeM 2017 - AMaTUC)}, issn = {2261-236X}, doi = {10.1051/matecconf/201713702013}, pages = {6 Seiten}, year = {2017}, language = {en} } @inproceedings{JablonskiKochBronderetal.2017, author = {Jablonski, Melanie and Koch, Claudia and Bronder, Thomas and Poghossian, Arshak and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Field-Effect Biosensors Modified with Tobacco Mosaic Virus Nanotubes as Enzyme Nanocarrier}, series = {MDPI Proceeding}, volume = {1}, booktitle = {MDPI Proceeding}, number = {4}, doi = {10.3390/proceedings1040505}, pages = {4}, year = {2017}, language = {en} } @inproceedings{SchleupenEngemannBagherietal.2017, author = {Schleupen, Josef and Engemann, Heiko and Bagheri, Mohsen and Kallweit, Stephan and Dahmann, Peter}, title = {Developing a climbing maintenance robot for tower and rotor blade service of wind turbines}, series = {Advances in Robot Design and Intelligent Control : Proceedings of the 25th Conference on Robotics in Alpe-Adria-Danube Region (RAAD16)}, booktitle = {Advances in Robot Design and Intelligent Control : Proceedings of the 25th Conference on Robotics in Alpe-Adria-Danube Region (RAAD16)}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-49058-8}, doi = {10.1007/978-3-319-49058-8_34}, pages = {310 -- 319}, year = {2017}, language = {en} } @incollection{PoghossianSchoening2017, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Nanomaterial-Modified Capacitive Field-Effect Biosensors}, series = {Springer Series on Chemical Sensors and Biosensors (Methods and Applications)}, booktitle = {Springer Series on Chemical Sensors and Biosensors (Methods and Applications)}, publisher = {Springer}, address = {Berlin, Heidelberg}, doi = {10.1007/5346_2017_2}, pages = {1 -- 25}, year = {2017}, abstract = {The coupling of charged molecules, nanoparticles, and more generally, inorganic/organic nanohybrids with semiconductor field-effect devices based on an electrolyte-insulator-semiconductor (EIS) system represents a very promising strategy for the active tuning of electrochemical properties of these devices and, thus, opening new opportunities for label-free biosensing by the intrinsic charge of molecules. The simplest field-effect sensor is a capacitive EIS sensor, which represents a (bio-)chemically sensitive capacitor. In this chapter, selected examples of recent developments in the field of label-free biosensing using nanomaterial-modified capacitive EIS sensors are summarized. In the first part, we present applications of EIS sensors modified with negatively charged gold nanoparticles for the label-free electrostatic detection of positively charged small proteins and macromolecules, for monitoring the layer-by-layer formation of oppositely charged polyelectrolyte (PE) multilayers as well as for the development of an enzyme-based biomolecular logic gate. In the second part, examples of a label-free detection by means of EIS sensors modified with a positively charged weak PE layer are demonstrated. These include electrical detection of on-chip and in-solution hybridized DNA (deoxyribonucleic acid) as well as an EIS sensor with pH-responsive weak PE/enzyme multilayers for enhanced field-effect biosensing.}, language = {en} } @article{KatzPoghossianSchoening2017, author = {Katz, Evgeny and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Enzyme-based logic gates and circuits - analytical applications and interfacing with electronics}, series = {Analytical and Bioanalytical Chemistry}, volume = {409}, journal = {Analytical and Bioanalytical Chemistry}, publisher = {Springer}, address = {Berlin}, issn = {1618-2650}, doi = {10.1007/s00216-016-0079-7}, pages = {81 -- 94}, year = {2017}, abstract = {The paper is an overview of enzyme-based logic gates and their short circuits, with specific examples of Boolean AND and OR gates, and concatenated logic gates composed of multi-step enzyme-biocatalyzed reactions. Noise formation in the biocatalytic reactions and its decrease by adding a "filter" system, converting convex to sigmoid response function, are discussed. Despite the fact that the enzyme-based logic gates are primarily considered as components of future biomolecular computing systems, their biosensing applications are promising for immediate practical use. Analytical use of the enzyme logic systems in biomedical and forensic applications is discussed and exemplified with the logic analysis of biomarkers of various injuries, e.g., liver injury, and with analysis of biomarkers characteristic of different ethnicity found in blood samples on a crime scene. Interfacing of enzyme logic systems with modified electrodes and semiconductor devices is discussed, giving particular attention to the interfaces functionalized with signal-responsive materials. Future perspectives in the design of the biomolecular logic systems and their applications are discussed in the conclusion.}, language = {en} } @article{BaeckerKochEibenetal.2017, author = {B{\"a}cker, Matthias and Koch, Claudia and Eiben, Sabine and Geiger, Fania and Eber, Fabian and Gliemann, Hartmut and Poghossian, Arshak and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Tobacco mosaic virus as enzyme nanocarrier for electrochemical biosensors}, series = {Sensors and Actuators B: Chemical}, volume = {238}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.07.096}, pages = {716 -- 722}, year = {2017}, abstract = {The conjunction of (bio-)chemical recognition elements with nanoscale biological building blocks such as virus particles is considered as a very promising strategy for the creation of biohybrids opening novel opportunities for label-free biosensing. This work presents a new approach for the development of biosensors using tobacco mosaic virus (TMV) nanotubes or coat proteins (CPs) as enzyme nanocarriers. Sensor chips combining an array of Pt electrodes loaded with glucose oxidase (GOD)-modified TMV nanotubes or CP aggregates were used for amperometric detection of glucose as a model system for the first time. The presence of TMV nanotubes or CPs on the sensor surface allows binding of a high amount of precisely positioned enzymes without substantial loss of their activity, and may also ensure accessibility of their active centers for analyte molecules. Specific and efficient immobilization of streptavidin-conjugated GOD ([SA]-GOD) complexes on biotinylated TMV nanotubes or CPs was achieved via bioaffinity binding. These layouts were tested in parallel with glucose sensors with adsorptively immobilized [SA]-GOD, as well as [SA]-GOD crosslinked with glutardialdehyde, and came out to exhibit superior sensor performance. The achieved results underline a great potential of an integration of virus/biomolecule hybrids with electronic transducers for future applications in biosensorics and biochips.}, language = {en} }