@inproceedings{FunkeKeinzKustereretal.2015, author = {Funke, Harald and Keinz, Jan and Kusterer, K. and Haj Ayed, A. and Kazari, M. and Kitajima, J. and Horikawa, A. and Okada, K.}, title = {Experimental and Numerical Study on Optimizing the DLN Micromix Hydrogen Combustion Principle for Industrial Gas Turbine Applications}, series = {ASME Turbo Expo 2015: Turbine Technical Conference and Exposition Volume 4A: Combustion, Fuels and Emissions Montreal, Quebec, Canada, June 15-19, 2015}, booktitle = {ASME Turbo Expo 2015: Turbine Technical Conference and Exposition Volume 4A: Combustion, Fuels and Emissions Montreal, Quebec, Canada, June 15-19, 2015}, isbn = {978-0-7918-5668-0}, doi = {10.1115/GT2015-42043}, pages = {V04AT04A008}, year = {2015}, language = {en} } @article{FunkeKeinzKustereretal.2017, author = {Funke, Harald and Keinz, Jan and Kusterer, K. and Haj Ayed, A. and Kazari, M. and Kitajima, J. and Horikawa, A. and Okada, K.}, title = {Development and Testing of a Low NOX Micromix Combustion Chamber for an Industrial Gas Turbine}, series = {International Journal of Gas Turbine, Propulsion and Power Systems}, volume = {9}, journal = {International Journal of Gas Turbine, Propulsion and Power Systems}, number = {1}, issn = {1882-5079}, doi = {10.38036/jgpp.9.1_27}, pages = {27 -- 36}, year = {2017}, abstract = {The Micromix combustion principle, based on cross-flow mixing of air and hydrogen, promises low emission applications in future gas turbines. The Micromix combustion takes place in several hundreds of miniaturized diffusion-type micro-flames. The major advantage is the inherent safety against flash-back and low NOx-emissions due to a very short residence time of reactants in the flame region. The paper gives insight into the Micromix design and scaling procedure for different energy densities and the interaction of scaling laws and key design drivers in gas turbine integration. Numerical studies, experimental testing, gas turbine integration and interface considerations are evaluated. The aerodynamic stabilization of the miniaturized flamelets and the resulting flow field, flame structure and NOx formation are analysed experimentally and numerically. The results show and confirm the successful adaption of the low NOx Micromix characteristics for a range of different nozzle sizes, energy densities and thermal power output.}, language = {de} } @article{FunkeKeinzKustereretal.2016, author = {Funke, Harald and Keinz, Jan and Kusterer, Karsten and Ayed, Anis Haj and Kazari, Masahide and Kitajima, Junichi and Horikawa, Atsushi and Okada, Kunio}, title = {Experimental and Numerical Study on Optimizing the Dry Low NOₓ Micromix Hydrogen Combustion Principle for Industrial Gas Turbine Applications}, series = {Journal of Thermal Science and Engineering Applications}, volume = {9}, journal = {Journal of Thermal Science and Engineering Applications}, number = {2}, publisher = {ASME}, address = {New York, NY}, issn = {1948-5093}, doi = {10.1115/1.4034849}, pages = {021001 -- 021001-10}, year = {2016}, abstract = {Combined with the use of renewable energy sources for its production, hydrogen represents a possible alternative gas turbine fuel for future low-emission power generation. Due to the difference in the physical properties of hydrogen compared to other fuels such as natural gas, well-established gas turbine combustion systems cannot be directly applied to dry low NOₓ (DLN) hydrogen combustion. The DLN micromix combustion of hydrogen has been under development for many years, since it has the promise to significantly reduce NOₓ emissions. This combustion principle for air-breathing engines is based on crossflow mixing of air and gaseous hydrogen. Air and hydrogen react in multiple miniaturized diffusion-type flames with an inherent safety against flashback and with low NOₓ emissions due to a very short residence time of the reactants in the flame region. The paper presents an advanced DLN micromix hydrogen application. The experimental and numerical study shows a combustor configuration with a significantly reduced number of enlarged fuel injectors with high-thermal power output at constant energy density. Larger fuel injectors reduce manufacturing costs, are more robust and less sensitive to fuel contamination and blockage in industrial environments. The experimental and numerical results confirm the successful application of high-energy injectors, while the DLN micromix characteristics of the design point, under part-load conditions, and under off-design operation are maintained. Atmospheric test rig data on NOₓ emissions, optical flame-structure, and combustor material temperatures are compared to numerical simulations and show good agreement. The impact of the applied scaling and design laws on the miniaturized micromix flamelets is particularly investigated numerically for the resulting flow field, the flame-structure, and NOₓ formation.}, language = {en} } @article{FunkeReckerBosschaertsetal.2011, author = {Funke, Harald and Recker, E. and Bosschaerts, W. and Boonen, Q. and B{\"o}rner, Sebastian}, title = {Parametrical study of the „Micromix" hydrogen combustion principle}, series = {10th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, ISAIF10-049, Brussels, Belgium, 4-7 July 2011}, journal = {10th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, ISAIF10-049, Brussels, Belgium, 4-7 July 2011}, year = {2011}, language = {en} } @article{FunkeRobinson2007, author = {Funke, Harald and Robinson, A. E.}, title = {Development of a new test rig for a micro scale hydrogen combustion chamber}, series = {Proceedings of the 2nd European Conference for Aero-Space Sciences : July 1 - 6, 2007, Brussels, Belgium}, journal = {Proceedings of the 2nd European Conference for Aero-Space Sciences : July 1 - 6, 2007, Brussels, Belgium}, publisher = {-}, pages = {1 -- 8}, year = {2007}, language = {en} } @article{FunkeRobinsonHendricketal.2010, author = {Funke, Harald and Robinson, A. E. and Hendrick, P. and Wagemakers, R.}, title = {Design and Testing of a Micromix Combustor With Recuperative Wall Cooling for a Hydrogen Fuelled µ-Scale Gas Turbine}, series = {Proceedings of the ASME Turbo Expo 2010 : presented at the 2010 ASME Turbo Expo, June 14 - 18, 2010, Glasgow, UK / sponsored by the International Gas Turbine Institute / Vol. 5: Industrial and cogeneration ; microturbines and small turbomachinery ; oil and gas applications ; wind turbine technology}, journal = {Proceedings of the ASME Turbo Expo 2010 : presented at the 2010 ASME Turbo Expo, June 14 - 18, 2010, Glasgow, UK / sponsored by the International Gas Turbine Institute / Vol. 5: Industrial and cogeneration ; microturbines and small turbomachinery ; oil and gas applications ; wind turbine technology}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-4400-7}, pages = {587 -- 596}, year = {2010}, language = {en} } @article{FunkeRoennaRobinson2008, author = {Funke, Harald and R{\"o}nna, Uwe and Robinson, A. E.}, title = {Development and testing of a 10 kW diffusive micromix combustor for hydrogen-fuelled μ-scale gas turbines}, series = {Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air ; GT2008 ; June 9-13, 2008, Berlin, Germany}, journal = {Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air ; GT2008 ; June 9-13, 2008, Berlin, Germany}, publisher = {ASME}, address = {New York, NY}, pages = {1 -- 8}, year = {2008}, language = {en} } @misc{GamgamiCzupallaGarciaetal.2016, author = {Gamgami, Farid and Czupalla, Markus and Garcia, Antonio and Agnolon, David}, title = {From planetary transits to spacecraft design: achieving PLATO's pointing performance}, series = {A7. Symposium on technological Requirement for future space astronomy and solar-system science missions}, journal = {A7. Symposium on technological Requirement for future space astronomy and solar-system science missions}, year = {2016}, abstract = {In the last decades, several hundred exoplanets could be detected thanks to space-based observatories, namely CNES' COROT and NASA's Kepler. To expand this quest ESA plans to launch CHEOPS as the f irst small class mission in the cosmic visions program (S1) and PLATO as the 3rd medium class mission, so called M3 . PLATO's primary objective is the detection of Earth like Exoplanets orbiting solar type stars in the habitable zone and characterisation of their bulk properties. This is possible by precise lightcurve measurement via 34 cameras. That said it becomes obvious that accurate pointing is key to achieve the required signal to noise ratio for positive transit detection. The paper will start with a comprehensive overview of PLATO's mission objectives and mission architecture. Hereafter, special focus will be devoted to PLATO's pointing requirements. Understanding the very nature of PLATO's pointing requirements is essential to derive a design baseline to achieve the required performance. The PLATO frequency domain is of particular interest, ranging from 40 mHz to 3 Hz. Due to the very different time-scales involved, the spectral pointing requirement is decomposed into a high frequency part dominated by the attitude control system and the low frequency part dominated by the thermo-elastic properties of the spacecraft's configuration. Both pose stringent constraints on the overall design as well as technology properties to comply with the derived requirements and thus assure a successful mission.}, language = {en} } @article{GazdaMaurischat2020, author = {Gazda, Quentin and Maurischat, Andreas}, title = {Special functions and Gauss-Thakur sums in higher rank and dimension}, publisher = {De Gruyter}, address = {Berlin}, pages = {26 Seiten}, year = {2020}, language = {en} } @inproceedings{GehlerOberBloebaumDachwald2009, author = {Gehler, M. and Ober-Bl{\"o}baum, S. and Dachwald, Bernd}, title = {Application of discrete mechanics and optimal control to spacecraft in non-keplerian motion around small solar system bodies}, series = {Procceedings of the 60th International Astronautical Congress}, booktitle = {Procceedings of the 60th International Astronautical Congress}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-161567908-9}, pages = {1360 -- 1371}, year = {2009}, abstract = {Prolonged operations close to small solar system bodies require a sophisticated control logic to minimize propellant mass and maximize operational efficiency. A control logic based on Discrete Mechanics and Optimal Control (DMOC) is proposed and applied to both conventionally propelled and solar sail spacecraft operating at an arbitrarily shaped asteroid in the class of Itokawa. As an example, stand-off inertial hovering is considered, recently identified as a challenging part of the Marco Polo mission. The approach is easily extended to stand-off orbits. We show that DMOC is applicable to spacecraft control at small objects, in particular with regard to the fact that the changes in gravity are exploited by the algorithm to optimally control the spacecraft position. Furthermore, we provide some remarks on promising developments.}, language = {en} } @inproceedings{GeibenGoettenHavermann2020, author = {Geiben, Benedikt and G{\"o}tten, Falk and Havermann, Marc}, title = {Aerodynamic analysis of a winged sub-orbital spaceplane}, publisher = {DGLR}, address = {Bonn}, doi = {10.25967/530170}, year = {2020}, abstract = {This paper primarily presents an aerodynamic CFD analysis of a winged spaceplane geometry based on the Japanese Space Walker proposal. StarCCM was used to calculate aerodynamic coefficients for a typical space flight trajectory including super-, trans- and subsonic Mach numbers and two angles of attack. Since the solution of the RANS equations in such supersonic flight regimes is still computationally expensive, inviscid Euler simulations can principally lead to a significant reduction in computational effort. The impact on accuracy of aerodynamic properties is further analysed by comparing both methods for different flight regimes up to a Mach number of 4.}, language = {en} } @article{GenzKingWahle1992, author = {Genz, M. and King, H. and Wahle, Michael}, title = {Mikrozellige Polyurethan-Elastomere als Federelement in Automobilanwendungen}, series = {Automobiltechnische Zeitschrift ; ATZ}, volume = {94}, journal = {Automobiltechnische Zeitschrift ; ATZ}, number = {10}, issn = {0001-2785}, pages = {512 -- 520}, year = {1992}, language = {de} } @book{Gerhardt1999, author = {Gerhardt, Hans Joachim}, title = {Windeinwirkung auf Bedachungssysteme}, publisher = {Shaker}, address = {Aachen}, isbn = {3-8265-4799-3}, pages = {IV, 126 S. : Ill., graph. Darst.}, year = {1999}, language = {de} } @article{Gerhardt1991, author = {Gerhardt, Hans Joachim}, title = {Windlastannahmen f{\"u}r große Industriehallen mit Flachdach}, series = {Die Bautechnik. 68 (1991), H. 3}, journal = {Die Bautechnik. 68 (1991), H. 3}, isbn = {0005-6820}, pages = {93 -- 97}, year = {1991}, language = {de} } @article{Gerhardt1986, author = {Gerhardt, Hans Joachim}, title = {Belastung von Rauchabzugsgeraeten bei Windangriff}, series = {Sanitaer- und Heizungstechnik. 51 (1986), H. 3}, journal = {Sanitaer- und Heizungstechnik. 51 (1986), H. 3}, isbn = {0036-4401}, pages = {150 -- 152}, year = {1986}, language = {de} } @article{Gerhardt2003, author = {Gerhardt, Hans Joachim}, title = {Rauchableitung und deren Effektivit{\"a}t in der 4. Elbtunnelr{\"o}hre}, series = {tunnel - Internationale Fachzeitschrift f{\"u}r unterirdisches Bauen (2003)}, journal = {tunnel - Internationale Fachzeitschrift f{\"u}r unterirdisches Bauen (2003)}, isbn = {0722-6241}, pages = {19 -- 28}, year = {2003}, language = {de} } @book{Gerhardt2005, author = {Gerhardt, Hans Joachim}, title = {Windsch{\"a}den : mit 6 Tabellen. - (Schadenfreies Bauen ; 37)}, publisher = {Fraunhofer-IRB-Verl.}, address = {Stuttgart}, isbn = {3-8167-6670-6}, pages = {129 S. : zahlr. Ill., graph. Darst.}, year = {2005}, language = {de} } @article{Gerhardt1999, author = {Gerhardt, Hans Joachim}, title = {RWA-Einbau in Geb{\"a}udew{\"a}nden}, series = {Brandschutz in {\"o}ffentlichen und privaten Geb{\"a}uden (1999)}, journal = {Brandschutz in {\"o}ffentlichen und privaten Geb{\"a}uden (1999)}, pages = {46 -- 48}, year = {1999}, language = {de} } @article{Gerhardt1998, author = {Gerhardt, Hans Joachim}, title = {Die Bestimmung der Windbelastung von Bauwerken im Windkanal}, series = {Der Pr{\"u}fingenieur (1998)}, journal = {Der Pr{\"u}fingenieur (1998)}, pages = {31 -- 45}, year = {1998}, language = {de} } @article{Gerhardt1992, author = {Gerhardt, Hans Joachim}, title = {Physikalische und brandschutztechnische Grundlagen des Rauch- und W{\"a}rmeabzugs}, series = {VDI-Berichte. 983 (1992)}, journal = {VDI-Berichte. 983 (1992)}, isbn = {0083-5560}, pages = {51 -- 69}, year = {1992}, language = {de} }