@article{ZhantlessovaSavitskayaKistaubayevaetal.2022, author = {Zhantlessova, Sirina and Savitskaya, Irina and Kistaubayeva, Aida and Ignatova, Ludmila and Talipova, Aizhan and Pogrebnjak, Alexander and Digel, Ilya}, title = {Advanced "Green" prebiotic composite of bacterial cellulose/pullulan based on synthetic biology-powered microbial coculture strategy}, series = {Polymers}, volume = {14}, journal = {Polymers}, number = {15}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym14153224}, pages = {Artikel 3224}, year = {2022}, abstract = {Bacterial cellulose (BC) is a biopolymer produced by different microorganisms, but in biotechnological practice, Komagataeibacter xylinus is used. The micro- and nanofibrillar structure of BC, which forms many different-sized pores, creates prerequisites for the introduction of other polymers into it, including those synthesized by other microorganisms. The study aims to develop a cocultivation system of BC and prebiotic producers to obtain BC-based composite material with prebiotic activity. In this study, pullulan (PUL) was found to stimulate the growth of the probiotic strain Lactobacillus rhamnosus GG better than the other microbial polysaccharides gellan and xanthan. BC/PUL biocomposite with prebiotic properties was obtained by cocultivation of Komagataeibacter xylinus and Aureobasidium pullulans, BC and PUL producers respectively, on molasses medium. The inclusion of PUL in BC is proved gravimetrically by scanning electron microscopy and by Fourier transformed infrared spectroscopy. Cocultivation demonstrated a composite effect on the aggregation and binding of BC fibers, which led to a significant improvement in mechanical properties. The developed approach for "grafting" of prebiotic activity on BC allows preparation of environmentally friendly composites of better quality.}, language = {en} } @article{HendersonScheerWolf2009, author = {Henderson, Colin J. and Scheer, Nico and Wolf, C. Roland}, title = {Advances in the generation of mouse models to elucidate the pathways of drug metabolism in rodents and man}, series = {Expert Review of Clinical Pharmacology}, volume = {2}, journal = {Expert Review of Clinical Pharmacology}, number = {2}, publisher = {Taylor \& Francis}, address = {London}, issn = {1751-2441}, doi = {10.1586/17512433.2.2.105}, pages = {105 -- 109}, year = {2009}, language = {en} } @article{ElbersPfefferFrieseletal.1995, author = {Elbers, Gereon and Pfeffer, Hans-Ulrich and Friesel, J{\"u}rgen and Beier, Reinhold}, title = {Air Pollution Monitoring in Street Canyons / Hans-Ulrich Pfeffer, J{\"u}rgen Friesel, Gereon Elbers, Reinhold Beier,}, series = {Transport and air pollution : proceedings ; 3rd international symposium, Palais des Papes, Avignon, France, 6 - 10 June 1994 = Transports et pollution de l'air / [Third International Symposium on Transport and Air Pollution]. Ed. by Robert Joumard. Organizer: French National Institute for Transport and Safety Research}, journal = {Transport and air pollution : proceedings ; 3rd international symposium, Palais des Papes, Avignon, France, 6 - 10 June 1994 = Transports et pollution de l'air / [Third International Symposium on Transport and Air Pollution]. Ed. by Robert Joumard. Organizer: French National Institute for Transport and Safety Research}, publisher = {Elsevier}, address = {Amsterdam}, pages = {IX, 337 S : graph. Darst.}, year = {1995}, language = {en} } @article{BaumannPeschel1998, author = {Baumann, Marcus and Peschel, G.}, title = {Aktuelle Entwicklungen zur Luftreinhaltung in der Stadt Aachen}, series = {Wechselwirkung : Wissenschaft \& vernetztes Denken}, volume = {20}, journal = {Wechselwirkung : Wissenschaft \& vernetztes Denken}, number = {91}, issn = {0172-1623}, pages = {22 -- 29}, year = {1998}, language = {de} } @article{RoeschKratzHeringetal.2016, author = {R{\"o}sch, C. and Kratz, F. and Hering, T. and Trautmann, S. and Umanskaya, N. and Tippk{\"o}tter, Nils and M{\"u}ller-Renno, C.M. and Ulber, R. and Hannig, M. and Ziegler, C.}, title = {Albumin-lysozyme interactions: cooperative adsorption on titanium and enzymatic activity}, series = {Colloids and Surfaces B: Biointerfaces}, volume = {149}, journal = {Colloids and Surfaces B: Biointerfaces}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.colsurfb.2016.09.048}, pages = {115 -- 121}, year = {2016}, abstract = {The interplay of albumin (BSA) and lysozyme (LYZ) adsorbed simultaneously on titanium was analyzed by gel electrophoresis and BCA assay. It was found that BSA and lysozyme adsorb cooperatively. Additionally, the isoelectric point of the respective protein influences the adsorption. Also, the enzymatic activity of lysozyme and amylase (AMY) in mixtures with BSA was considered with respect to a possible influence of protein-protein interaction on enzyme activity. Indeed, an increase of lysozyme activity in the presence of BSA could be observed. In contrast, BSA does not influence the activity of amylase.}, language = {en} } @article{Baumann1996, author = {Baumann, Marcus}, title = {Algenbl{\"u}ten \& Treibhauseffekt : Wechselwirkungen mit anthropogenen Aktivit{\"a}ten}, series = {Wechselwirkung : Wissenschaft \& vernetztes Denken}, volume = {18}, journal = {Wechselwirkung : Wissenschaft \& vernetztes Denken}, number = {81}, issn = {0172-1623}, pages = {6 -- 11}, year = {1996}, language = {de} } @article{JerominScheidt1991, author = {Jeromin, G{\"u}nter Erich and Scheidt, Annette}, title = {Aliphatic optically active alcohols by enzyme-aided synthesis}, series = {Tetrahedron Letters . 32 (1991), H. 48}, journal = {Tetrahedron Letters . 32 (1991), H. 48}, isbn = {0040-4039}, pages = {7021 -- 7024}, year = {1991}, language = {en} } @article{PrielmeierWickNagatomoetal.1995, author = {Prielmeier, Franz and Wick, Markus and Nagatomo, Yasushi and Frahm, Jens}, title = {Alteration of Intracellular Metabolite Diffusion in Rat Brain In Vivo During Ischemia and Reperfusion / Markus Wick, Yasushi Nagatomo, Franz Prielmeier, Jens Frahm}, series = {Stroke. 26 (1995), H. 10}, journal = {Stroke. 26 (1995), H. 10}, isbn = {0039-2499}, pages = {1930 -- 1934}, year = {1995}, language = {en} } @article{UndenBongaerts1997, author = {Unden, Gottfried and Bongaerts, Johannes}, title = {Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors}, series = {Biochimica et biophysica acta (BBA) - Bioenergetics}, volume = {Vol. 1320}, journal = {Biochimica et biophysica acta (BBA) - Bioenergetics}, number = {Iss. 3}, issn = {1879-2650 (E-Journal); 0005-2728 (Print)}, pages = {217 -- 234}, year = {1997}, language = {en} } @article{Mang1994, author = {Mang, Thomas}, title = {Aluminium-Kunststoff-Verbundmaterial trennen und verwerten}, series = {Umwelt. 24 (1994), H. 4}, journal = {Umwelt. 24 (1994), H. 4}, isbn = {0041-6355}, pages = {152 -- 153}, year = {1994}, language = {de} } @misc{O'ConnellHovenSiegertetal.2007, author = {O'Connell, Timothy and Hoven, Nina and Siegert, Petra and Maurer, Karl-Heinz}, title = {Amadoriasen in Wasch- und Reinigungsmitteln [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 45}, year = {2007}, language = {de} } @article{BiselliBornThoemmesetal.1996, author = {Biselli, Manfred and Born, C. and Th{\"o}mmes, J. and Wandrey, C.}, title = {An approach to integrated antibody production: Coupling of fluidized bed cultivation and fluidized bed adsorption / Born, C. ; Th{\"o}mmes, J. ; Biselli, M. ; Wandrey, C. ; Kula, M.-R.}, series = {Bioprocess Engineering. 15 (1996), H. 1}, journal = {Bioprocess Engineering. 15 (1996), H. 1}, isbn = {1615-7591}, pages = {21 -- 29}, year = {1996}, language = {en} } @article{SpiessWilfriedAlvarezetal.2011, author = {Spiess, Elmar and Wilfried, Reichardt and Alvarez, Gerardo and Gottrup, Marcus and {\"O}hlschl{\"a}ger, Peter}, title = {An Artificial PAP Gene Breaks Self-tolerance and Promotes Tumor Regression in the TRAMP Model for Prostate Carcinoma}, series = {Molecular Therapy}, volume = {20}, journal = {Molecular Therapy}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1525-0016}, pages = {555 -- 564}, year = {2011}, language = {en} } @inproceedings{TippkoetterRoikaewUlber2008, author = {Tippk{\"o}tter, Nils and Roikaew, W. and Ulber, R.}, title = {An automated pilot plant for the bioengineering processing of concentrated whey}, series = {European BioPerspectives : in cooperation with BIOTECHNICA 2008 : 7 - 9 October 2008 Hannover, Germany ; book of abstracts ; abstracts, poster programme}, booktitle = {European BioPerspectives : in cooperation with BIOTECHNICA 2008 : 7 - 9 October 2008 Hannover, Germany ; book of abstracts ; abstracts, poster programme}, publisher = {Dechema}, address = {Frankfurt am Main}, pages = {98}, year = {2008}, language = {en} } @article{NiedermeyerZhouDursunetal.2016, author = {Niedermeyer, Angela and Zhou, Bei and Dursun, G{\"o}zde and Temiz Artmann, Ayseg{\"u}l and Markert, Bernd}, title = {An examination of tissue engineered scaffolds in a bioreactor}, series = {Proceedings in Applied Mathematics and Mechanics PAMM}, volume = {16}, journal = {Proceedings in Applied Mathematics and Mechanics PAMM}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1617-7061}, doi = {10.1002/pamm.201610038}, pages = {99 -- 100}, year = {2016}, abstract = {Replacement tissues, designed to fill in articular cartilage defects, should exhibit the same properties as the native material. The aim of this study is to foster the understanding of, firstly, the mechanical behavior of the material itself and, secondly, the influence of cultivation parameters on cell seeded implants as well as on cell migration into acellular implants. In this study, acellular cartilage replacement material is theoretically, numerically and experimentally investigated regarding its viscoelastic properties, where a phenomenological model for practical applications is developed. Furthermore, remodeling and cell migration are investigated.}, language = {en} } @article{ScheerHendersonKapelyukhetal.2019, author = {Scheer, Nico and Henderson, Colin James and Kapelyukh, Yury and Rode, Anja and Mclaren, Aileen W. and MacLeod, Alastair Kenneth and Lin, De and Wright, Jayne and Stanley, Lesley and Wolf, C. Roland}, title = {An extensively humanised mouse model to predict pathways of drug disposition, drug/drug interactions, and to facilitate the design of clinical trials}, series = {Drug Metabolism and Disposition}, journal = {Drug Metabolism and Disposition}, number = {Early view}, doi = {10.1124/dmd.119.086397}, pages = {69 Seiten}, year = {2019}, language = {en} } @article{OehlschlaegerPesOsenetal.2006, author = {{\"O}hlschl{\"a}ger, Peter and Pes, Michaela and Osen, Wolfram and D{\"u}rst, Matthias}, title = {An improved rearranged Human Papillomavirus Type 16 E7 DNA vaccine candidate (HPV-16 E7SH) induces an E7 wildtype-specific T cell response / {\"O}hlschl{\"a}ger, Peter ; Pes, Michaela ; Osen, Wolfram ; D{\"u}rst, Matthias ; Schneider, Achim ; Gissmann, Lutz ; Kaufman}, series = {Vaccine. 24 (2006), H. 15}, journal = {Vaccine. 24 (2006), H. 15}, isbn = {0264-410X}, pages = {2880 -- 2893}, year = {2006}, language = {en} } @article{SchiffelsPinkenburgScheldenetal.2013, author = {Schiffels, Johannes and Pinkenburg, Olaf and Schelden, Maximilian and Aboulnaga, El-Hussiny A. A. and Baumann, Marcus and Selmer, Thorsten}, title = {An innovative cloning platform enables large-scale production and maturation of an oxygen-tolerant [NiFe]-hydrogenase from cupriavidus necator in Escherichia coli}, series = {PLOS one. 2013}, journal = {PLOS one. 2013}, publisher = {Public Library of Science}, address = {San Francisco, California}, issn = {1932-6203}, doi = {10.1371/journal.pone.0068812}, year = {2013}, language = {en} } @article{ScheerGrothHansetal.2001, author = {Scheer, Nico and Groth, Anne and Hans, Stefan and Campos-Ortega, Jos{\´e} A.}, title = {An instructive function for Notch in promoting gliogenesis in the zebrafish retina}, series = {Development}, volume = {128}, journal = {Development}, number = {7}, issn = {0950-1991}, pages = {1099 -- 1107}, year = {2001}, language = {en} } @article{CheenakulaHoffstadtKrafftetal.2022, author = {Cheenakula, Dheeraja and Hoffstadt, Kevin and Krafft, Simone and Reinecke, Diana and Klose, Holger and Kuperjans, Isabel and Gr{\"o}mping, Markus}, title = {Anaerobic digestion of algal-bacterial biomass of an Algal Turf Scrubber system}, series = {Biomass Conversion and Biorefinery}, volume = {13}, journal = {Biomass Conversion and Biorefinery}, publisher = {Springer}, address = {Berlin}, issn = {2190-6823}, doi = {10.1007/s13399-022-03236-z}, pages = {15 Seiten}, year = {2022}, abstract = {This study investigated the anaerobic digestion of an algal-bacterial biofilm grown in artificial wastewater in an Algal Turf Scrubber (ATS). The ATS system was located in a greenhouse (50°54′19ʺN, 6°24′55ʺE, Germany) and was exposed to seasonal conditions during the experiment period. The methane (CH4) potential of untreated algal-bacterial biofilm (UAB) and thermally pretreated biofilm (PAB) using different microbial inocula was determined by anaerobic batch fermentation. Methane productivity of UAB differed significantly between microbial inocula of digested wastepaper, a mixture of manure and maize silage, anaerobic sewage sludge, and percolated green waste. UAB using sewage sludge as inoculum showed the highest methane productivity. The share of methane in biogas was dependent on inoculum. Using PAB, a strong positive impact on methane productivity was identified for the digested wastepaper (116.4\%) and a mixture of manure and maize silage (107.4\%) inocula. By contrast, the methane yield was significantly reduced for the digested anaerobic sewage sludge (50.6\%) and percolated green waste (43.5\%) inocula. To further evaluate the potential of algal-bacterial biofilm for biogas production in wastewater treatment and biogas plants in a circular bioeconomy, scale-up calculations were conducted. It was found that a 0.116 km2 ATS would be required in an average municipal wastewater treatment plant which can be viewed as problematic in terms of space consumption. However, a substantial amount of energy surplus (4.7-12.5 MWh a-1) can be gained through the addition of algal-bacterial biomass to the anaerobic digester of a municipal wastewater treatment plant. Wastewater treatment and subsequent energy production through algae show dominancy over conventional technologies.}, language = {en} }