@incollection{Dachwald2017, author = {Dachwald, Bernd}, title = {Light propulsion systems for spacecraft}, series = {Optical nano and micro actuator technology}, booktitle = {Optical nano and micro actuator technology}, editor = {Knopf, George K. and Otani, Yukitoshi}, publisher = {CRC Press}, address = {Boca Raton}, isbn = {9781315217628 (eBook)}, pages = {577 -- 598}, year = {2017}, language = {en} } @article{YoshinobuMiyamotoWerneretal.2017, author = {Yoshinobu, Tatsuo and Miyamoto, Ko-ichiro and Werner, Frederik and Poghossian, Arshak and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Light-addressable potentiometric sensors for quantitative spatial imaging of chemical species}, series = {Annual Review of Analytical Chemistry}, volume = {10}, journal = {Annual Review of Analytical Chemistry}, publisher = {Annual Reviews}, address = {Palo Alto, Calif.}, issn = {1936-1327}, doi = {10.1146/annurev-anchem-061516-045158}, pages = {225 -- 246}, year = {2017}, abstract = {A light-addressable potentiometric sensor (LAPS) is a semiconductor-based chemical sensor, in which a measurement site on the sensing surface is defined by illumination. This light addressability can be applied to visualize the spatial distribution of pH or the concentration of a specific chemical species, with potential applications in the fields of chemistry, materials science, biology, and medicine. In this review, the features of this chemical imaging sensor technology are compared with those of other technologies. Instrumentation, principles of operation, and various measurement modes of chemical imaging sensor systems are described. The review discusses and summarizes state-of-the-art technologies, especially with regard to the spatial resolution and measurement speed; for example, a high spatial resolution in a submicron range and a readout speed in the range of several tens of thousands of pixels per second have been achieved with the LAPS. The possibility of combining this technology with microfluidic devices and other potential future developments are discussed.}, language = {en} } @inproceedings{BreuerGuthmannSchoeningetal.2017, author = {Breuer, Lars and Guthmann, Eric and Sch{\"o}ning, Michael Josef and Thoelen, Ronald and Wagner, Torsten}, title = {Light-Stimulated Hydrogels with Incorporated Graphene Oxide as Actuator Material for Flow Control in Microfluidic Applications}, series = {Proceedings Eurosensors 2017 Conference, Paris, France, 3-6 September 2017}, booktitle = {Proceedings Eurosensors 2017 Conference, Paris, France, 3-6 September 2017}, doi = {10.3390/proceedings1040524}, pages = {1 -- 4}, year = {2017}, language = {en} } @article{LiuSchaapBallemansetal.2017, author = {Liu, Z. and Schaap, K. S. and Ballemans, L. and de Blois, E. and Rohde, M. and Paulßen, Elisabeth}, title = {Measurement of reaction kinetics of [177Lu]Lu-DOTA-TATE using a microfluidic system}, series = {Dalton Transactions}, volume = {46}, journal = {Dalton Transactions}, number = {42}, issn = {1477-9234}, doi = {10.1039/C7DT01830D}, pages = {14669 -- 14676}, year = {2017}, language = {en} } @article{SeifarthGrosseGrossmannetal.2017, author = {Seifarth, Volker and Grosse, Joachim O. and Grossmann, Matthias and Janke, Heinz Peter and Arndt, Patrick and Koch, Sabine and Epple, Matthias and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Mechanical induction of bi-directional orientation of primary porcine bladder smooth muscle cells in tubular fibrin-poly(vinylidene fluoride) scaffolds for ureteral and urethral repair using cyclic and focal balloon catheter stimulation}, series = {Journal of Biomaterials Applications}, volume = {32}, journal = {Journal of Biomaterials Applications}, number = {3}, publisher = {Sage}, address = {London}, issn = {1530-8022}, doi = {10.1177/0885328217723178}, pages = {321 -- 330}, year = {2017}, language = {en} } @inproceedings{SchreiberKraftZuendorf2017, author = {Schreiber, Marc and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {Metrics Driven Research Collaboration: Focusing on Common Project Goals Continuously}, series = {39th International Conference on Software Engineering, May 20-28, 2017 - Buenos Aires, Argentina}, booktitle = {39th International Conference on Software Engineering, May 20-28, 2017 - Buenos Aires, Argentina}, pages = {8 Seiten}, year = {2017}, abstract = {Research collaborations provide opportunities for both practitioners and researchers: practitioners need solutions for difficult business challenges and researchers are looking for hard problems to solve and publish. Nevertheless, research collaborations carry the risk that practitioners focus on quick solutions too much and that researchers tackle theoretical problems, resulting in products which do not fulfill the project requirements. In this paper we introduce an approach extending the ideas of agile and lean software development. It helps practitioners and researchers keep track of their common research collaboration goal: a scientifically enriched software product which fulfills the needs of the practitioner's business model. This approach gives first-class status to application-oriented metrics that measure progress and success of a research collaboration continuously. Those metrics are derived from the collaboration requirements and help to focus on a commonly defined goal. An appropriate tool set evaluates and visualizes those metrics with minimal effort, and all participants will be pushed to focus on their tasks with appropriate effort. Thus project status, challenges and progress are transparent to all research collaboration members at any time.}, language = {en} } @inproceedings{SchreiberKraftZuendorf2017, author = {Schreiber, Marc and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {Metrics driven research collaboration: focusing on common project goals continuously}, series = {Proceedings : 2017 IEEE/ACM 4th International Workshop on Software Engineering Research and Industrial Practice : SER\&IP 2017 : 21 May 2017 Buenos Aires, Argentina}, booktitle = {Proceedings : 2017 IEEE/ACM 4th International Workshop on Software Engineering Research and Industrial Practice : SER\&IP 2017 : 21 May 2017 Buenos Aires, Argentina}, editor = {Bilof, Randall}, publisher = {IEEE Press}, address = {Piscataway, NJ}, isbn = {978-1-5386-2797-6}, doi = {10.1109/SER-IP.2017..6}, pages = {41 -- 47}, year = {2017}, language = {en} } @inproceedings{CarzanaDachwaldNoomen2017, author = {Carzana, Livio and Dachwald, Bernd and Noomen, Ron}, title = {Model and trajectory optimization for an ideal laser-enhanced solar sail}, series = {68th International Astronautical Congress}, booktitle = {68th International Astronautical Congress}, year = {2017}, abstract = {A laser-enhanced solar sail is a solar sail that is not solely propelled by solar radiation but additionally by a laser beam that illuminates the sail. This way, the propulsive acceleration of the sail results from the combined action of the solar and the laser radiation pressure onto the sail. The potential source of the laser beam is a laser satellite that coverts solar power (in the inner solar system) or nuclear power (in the outer solar system) into laser power. Such a laser satellite (or many of them) can orbit anywhere in the solar system and its optimal orbit (or their optimal orbits) for a given mission is a subject for future research. This contribution provides the model for an ideal laser-enhanced solar sail and investigates how a laser can enhance the thrusting capability of such a sail. The term "ideal" means that the solar sail is assumed to be perfectly reflecting and that the laser beam is assumed to have a constant areal power density over the whole sail area. Since a laser beam has a limited divergence, it can provide radiation pressure at much larger solar distances and increase the radiation pressure force into the desired direction. Therefore, laser-enhanced solar sails may make missions feasible, that would otherwise have prohibitively long flight times, e.g. rendezvous missions in the outer solar system. This contribution will also analyze exemplary mission scenarios and present optimial trajectories without laying too much emphasis on the design and operations of the laser satellites. If the mission studies conclude that laser-enhanced solar sails would have advantages with respect to "traditional" solar sails, a detailed study of the laser satellites and the whole system architecture would be the second next step}, language = {en} } @article{HorbachDuongStaat2017, author = {Horbach, Andreas and Duong, Minh Tuan and Staat, Manfred}, title = {Modelling of compressible and orthotropic surgical mesh implants based on optical deformation measurement}, series = {Journal of the mechanical behavior of biomedical materials}, volume = {74}, journal = {Journal of the mechanical behavior of biomedical materials}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1751-6161}, doi = {10.1016/j.jmbbm.2017.06.012}, pages = {400 -- 410}, year = {2017}, language = {en} } @inproceedings{PfaffMoshiriReichetal.2017, author = {Pfaff, Raphael and Moshiri, Amir and Reich, Alexander and G{\"a}bel, Markus}, title = {Modelling of the effect of sanding on the wheel-rail adhesion area}, series = {First International Conference on Rail Transportation}, booktitle = {First International Conference on Rail Transportation}, pages = {1 -- 7}, year = {2017}, language = {en} } @article{WerkhausenAlbrachtCroninetal.2017, author = {Werkhausen, Amelie and Albracht, Kirsten and Cronin, Neil J. and Meier, Rahel and Mojsen-Moeller, Jens and Seynnes, Olivier R.}, title = {Modulation of muscle-tendon interaction in the human triceps surae during an energy dissipation task}, series = {Journal of Experimental Biology}, volume = {220}, journal = {Journal of Experimental Biology}, number = {22}, issn = {0022-0949}, doi = {10.1242/jeb.164111}, pages = {4141 -- 4149}, year = {2017}, language = {en} } @article{MeyerHentschkeHageretal.2017, author = {Meyer, Jan and Hentschke, Reinhard and Hager, Jonathan and Hojdis, Nils and Karimi-Varzaneh, Hossein Ali}, title = {Molecular Simulation of Viscous Dissipation due to Cyclic Deformation of a Silica-Silica Contact in Filled Rubber}, series = {Macromolecules}, volume = {50}, journal = {Macromolecules}, number = {17}, issn = {1520-5835}, doi = {10.1021/acs.macromol.7b00947}, pages = {6679 -- 6689}, year = {2017}, language = {en} } @inproceedings{RajanKubalskiAltayetal.2017, author = {Rajan, Sreelakshmy and Kubalski, Thomas and Altay, Okyay and Dalguer, Luis A and Butenweg, Christoph}, title = {Multi-dimensional fragility analysis of a RC building with components using response surface method}, series = {24th International Conference on Structural Mechanics in Reactor Technology, Busan, Korea, 20-25 August, 2017}, booktitle = {24th International Conference on Structural Mechanics in Reactor Technology, Busan, Korea, 20-25 August, 2017}, publisher = {International Assn for Structural Mechanics in Reactor Technology (IASMiRT)}, address = {Raleigh, USA}, isbn = {9781510856776}, pages = {3126 -- 3135}, year = {2017}, abstract = {Conventional fragility curves describe the vulnerability of the main structure under external hazards. However, in complex structures such as nuclear power plants, the safety or the risk depends also on the components associated with a system. The classical fault tree analysis gives an overall view of the failure and contains several subsystems to the main event, however, the interactions in the subsystems are not well represented. In order to represent the interaction of the components, a method suggested by Cimellaro et al. (2006) using multidimensional performance limit state functions to obtain the system fragility curves is adopted. This approach gives the possibility of deriving the cumulative fragility taking into account the interaction of the response of different components. In this paper, this approach is used to evaluate seismic risk of a representative electrical building infrastructure, including the component, of a nuclear power plant. A simplified model of the structure, with nonlinear material behavior is employed for the analysis in Abaqus©. The input variables considered are the material parameters, boundary conditions and the seismic input. The variability of the seismic input is obtained from selected ground motion time histories of spectrum compatible synthetic ccelerograms. Unlike the usual Monte Carlo methods used for the probabilistic analysis of the structure, a computationally effective response surface method is used. This method reduces the computational effort of the calculations by reducing the required number of samples.}, language = {en} } @inproceedings{SchmidtsBoltesKraftetal.2017, author = {Schmidts, Oliver and Boltes, Maik and Kraft, Bodo and Schreiber, Marc}, title = {Multi-pedestrian tracking by moving Bluetooth-LE beacons and stationary receivers}, series = {2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 18-21 September 2017, Sapporo, Japan}, booktitle = {2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 18-21 September 2017, Sapporo, Japan}, pages = {1 -- 4}, year = {2017}, language = {en} } @inproceedings{AltherrEdererFarnetaneetal.2017, author = {Altherr, Lena and Ederer, Thorsten and Farnetane, Lucas S. and P{\"o}ttgen, Philipp and Verg{\´e}, Angela and Pelz, Peter F.}, title = {Multicriterial design of a hydrostatic transmission system via mixed-integer programming}, series = {Operations Research Proceedings 2015}, booktitle = {Operations Research Proceedings 2015}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-42901-4}, doi = {10.1007/978-3-319-42902-1_41}, pages = {301 -- 307}, year = {2017}, abstract = {In times of planned obsolescence the demand for sustainability keeps growing. Ideally, a technical system is highly reliable, without failures and down times due to fast wear of single components. At the same time, maintenance should preferably be limited to pre-defined time intervals. Dispersion of load between multiple components can increase a system's reliability and thus its availability inbetween maintenance points. However, this also results in higher investment costs and additional efforts due to higher complexity. Given a specific load profile and resulting wear of components, it is often unclear which system structure is the optimal one. Technical Operations Research (TOR) finds an optimal structure balancing availability and effort. We present our approach by designing a hydrostatic transmission system.}, language = {en} } @inproceedings{SchoppHeuermannMarso2017, author = {Schopp, Christoph and Heuermann, Holger and Marso, Michel}, title = {Multiphysical Study of an Atmospheric Microwave Argon Plasma Jet}, series = {IEEE Transactions on Plasma Science}, volume = {45}, booktitle = {IEEE Transactions on Plasma Science}, number = {6}, publisher = {IEEE}, issn = {1939-9375}, doi = {10.1109/TPS.2017.2692735}, pages = {932 -- 937}, year = {2017}, language = {en} } @inproceedings{PeloniDachwaldCeriotti2017, author = {Peloni, Alessandro and Dachwald, Bernd and Ceriotti, Matteo}, title = {Multiple NEA rendezvous mission: Solar sailing options}, series = {Fourth International Symposium on Solar Sailing}, booktitle = {Fourth International Symposium on Solar Sailing}, pages = {1 -- 11}, year = {2017}, abstract = {The scientific interest in near-Earth asteroids (NEAs) and the classification of some of those as potentially hazardous asteroid for the Earth stipulated the interest in NEA exploration. Close-up observations of these objects will increase drastically our knowledge about the overall NEA population. For this reason, a multiple NEA rendezvous mission through solar sailing is investigated, taking advantage of the propellantless nature of this groundbreaking propulsion technology. Considering a spacecraft based on the DLR/ESA Gossamer technology, this work focuses on the search of possible sequences of NEA encounters. The effectiveness of this approach is demonstrated through a number of fully-optimized trajectories. The results show that it is possible to visit five NEAs within 10 years with near-term solar-sail technology. Moreover, a study on a reduced NEA database demonstrates the reliability of the approach used, showing that 58\% of the sequences found with an approximated trajectory model can be converted into real solar-sail trajectories. Lastly, this second study shows the effectiveness of the proposed automatic optimization algorithm, which is able to find solutions for a large number of mission scenarios without any input required from the user.}, language = {en} } @article{PeloniDachwaldCeriotti2017, author = {Peloni, Alessandro and Dachwald, Bernd and Ceriotti, Matteo}, title = {Multiple near-earth asteroid rendezvous mission: Solar-sailing options}, series = {Advances in Space Research}, journal = {Advances in Space Research}, number = {In Press, Corrected Proof}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2017.10.017}, year = {2017}, language = {en} } @incollection{KrollLudwigs2017, author = {Kroll-Ludwigs, Kathrin}, title = {Names of individuals}, series = {European Encyclopedia of Private International Law}, booktitle = {European Encyclopedia of Private International Law}, publisher = {Edward Elgar Publishing}, address = {Cheltenham, UK}, isbn = {9781782547228}, year = {2017}, language = {en} } @article{MoraisGomesSilvaetal.2017, author = {Morais, Paulo V. and Gomes, Vanderley F., Jr. and Silva, Anielle C. A. and Dantas, Noelio O. and Sch{\"o}ning, Michael Josef and Siqueira, Jos{\´e} R., Jr.}, title = {Nanofilm of ZnO nanocrystals/carbon nanotubes as biocompatible layer for enzymatic biosensors in capacitive field-effect devices}, series = {Journal of Materials Science}, volume = {52}, journal = {Journal of Materials Science}, number = {20}, publisher = {Springer}, address = {Berlin}, issn = {1573-4803}, doi = {10.1007/s10853-017-1369-y}, pages = {12314 -- 12325}, year = {2017}, abstract = {The incorporation of nanomaterials that are biocompatible with different types of biological compounds has allowed the development of a new generation of biosensors applied especially in the biomedical field. In particular, the integration of film-based nanomaterials employed in field-effect devices can be interesting to develop biosensors with enhanced properties. In this paper, we studied the fabrication of sensitive nanofilms combining ZnO nanocrystals and carbon nanotubes (CNTs), prepared by means of the layer-by-layer (LbL) technique, in a capacitive electrolyte-insulator-semiconductor (EIS) structure for detecting glucose and urea. The ZnO nanocrystals were incorporated in a polymeric matrix of poly(allylamine) hydrochloride (PAH), and arranged with multi-walled CNTs in a LbL PAH-ZnO/CNTs film architecture onto EIS chips. The electrochemical characterizations were performed by capacitance-voltage and constant capacitance measurements, while the morphology of the films was characterized by atomic force microscopy. The enzymes glucose oxidase and urease were immobilized on film's surface for detection of glucose and urea, respectively. In order to obtain glucose and urea biosensors with optimized amount of sensitive films, we investigated the ideal number of bilayers for each detection system. The glucose biosensor showed better sensitivity and output signal for an LbL PAH-ZnO/CNTs nanofilm with 10 bilayers. On the other hand, the urea biosensor presented enhanced properties even for the first bilayer, exhibiting high sensitivity and output signal. The presence of the LbL PAH-ZnO/CNTs films led to biosensors with better sensitivity and enhanced response signal, demonstrating that the adequate use of nanostructured films is feasible for proof-of-concept biosensors with improved properties that may be employed for biomedical applications.}, language = {en} }