@inproceedings{HoegenDonckerBragardetal.2021, author = {Hoegen, Anne von and Doncker, Rik W. De and Bragard, Michael and Hoegen, Svenja von}, title = {Problem-based learning in automation engineering: performing a remote laboratory aession aerving various educational attainments}, series = {2021 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2021 IEEE Global Engineering Education Conference (EDUCON)}, publisher = {IEEE}, address = {New York, NY}, doi = {10.1109/EDUCON46332.2021.9453925}, pages = {1605 -- 1614}, year = {2021}, abstract = {During the Covid-19 pandemic, vocational colleges, universities of applied science and technical universities often had to cancel laboratory sessions requiring students' attendance. These above of all are of decisive importance in order to give learners an understanding of theory through practical work.This paper is a contribution to the implementation of distance learning for laboratory work applicable for several upper secondary educational facilities. Its aim is to provide a paradigm for hybrid teaching to analyze and control a non-linear system depicted by a tank model. For this reason, we redesign a full series of laboratory sessions on the basis of various challenges. Thus, it is suitable to serve different reference levels of the European Qualifications Framework (EQF).We present problem-based learning through online platforms to compensate the lack of a laboratory learning environment. With a task deduced from their future profession, we give students the opportunity to develop own solutions in self-defined time intervals. A requirements specification provides the framework conditions in terms of time and content for students having to deal with the challenges of the project in a self-organized manner with regard to inhomogeneous previous knowledge. If the concept of Complete Action is introduced in classes before, they will automatically apply it while executing the project.The goal is to combine students' scientific understanding with a procedural knowledge. We suggest a series of remote laboratory sessions that combine a problem formulation from the subject area of Measurement, Control and Automation Technology with a project assignment that is common in industry by providing extracts from a requirements specification.}, language = {en} } @inproceedings{HueningStuettgen2021, author = {H{\"u}ning, Felix and St{\"u}ttgen, Marcel}, title = {Work in Progress: Interdisciplinary projects in times of COVID-19 crisis - challenges, risks and chances}, series = {2021 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2021 IEEE Global Engineering Education Conference (EDUCON)}, publisher = {IEEE}, address = {New York, NY}, doi = {10.1109/EDUCON46332.2021.9454006}, pages = {1175 -- 1179}, year = {2021}, abstract = {Project work and inter disciplinarity are integral parts of today's engineering work. It is therefore important to incorporate these aspects into the curriculum of academic studies of engineering. At the faculty of Electrical Engineering and Information Technology an interdisciplinary project is part of the bachelor program to address these topics. Since the summer term 2020 most courses changed to online mode during the Covid-19 crisis including the interdisciplinary projects. This online mode introduces additional challenges to the execution of the projects, both for the students as well as for the lecture. The challenges, but also the risks and chances of this kind of project courses are subject of this paper, based on five different interdisciplinary projects}, language = {en} } @article{HugenrothBorchardtRitteretal.2021, author = {Hugenroth, Kristin and Borchardt, Ralf and Ritter, Philine and Groß‑Hardt, Sascha and Meyns, Bart and Verbelen, Tom and Steinseifer, Ulrich and Kaufmann, Tim A. S. and Engelmann, Ulrich M.}, title = {Optimizing cerebral perfusion and hemodynamics during cardiopulmonary bypass through cannula design combining in silico, in vitro and in vivo input}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {Art. No. 16800}, publisher = {Springer}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-021-96397-2}, pages = {1 -- 12}, year = {2021}, abstract = {Cardiopulmonary bypass (CPB) is a standard technique for cardiac surgery, but comes with the risk of severe neurological complications (e.g. stroke) caused by embolisms and/or reduced cerebral perfusion. We report on an aortic cannula prototype design (optiCAN) with helical outflow and jet-splitting dispersion tip that could reduce the risk of embolic events and restores cerebral perfusion to 97.5\% of physiological flow during CPB in vivo, whereas a commercial curved-tip cannula yields 74.6\%. In further in vitro comparison, pressure loss and hemolysis parameters of optiCAN remain unaffected. Results are reproducibly confirmed in silico for an exemplary human aortic anatomy via computational fluid dynamics (CFD) simulations. Based on CFD simulations, we firstly show that optiCAN design improves aortic root washout, which reduces the risk of thromboembolism. Secondly, we identify regions of the aortic intima with increased risk of plaque release by correlating areas of enhanced plaque growth and high wall shear stresses (WSS). From this we propose another easy-to-manufacture cannula design (opti2CAN) that decreases areas burdened by high WSS, while preserving physiological cerebral flow and favorable hemodynamics. With this novel cannula design, we propose a cannulation option to reduce neurological complications and the prevalence of stroke in high-risk patients after CPB.}, language = {en} } @inproceedings{MerkensHebel2021, author = {Merkens, Torsten and Hebel, Christoph}, title = {Sharing mobility concepts - flexible, sustainable, smart}, series = {Proceedings of the 1st UNITED - Southeast Asia Automotive Interest Group (SAIG) International Conference}, booktitle = {Proceedings of the 1st UNITED - Southeast Asia Automotive Interest Group (SAIG) International Conference}, isbn = {978-3-902103-94-9}, pages = {43 -- 44}, year = {2021}, language = {en} } @article{BrockhausBehbahaniMurisetal.2021, author = {Brockhaus, Moritz K. and Behbahani, Mehdi and Muris, Farina and Jansen, Sebastian V. and Schmitz- Rode, Thomas and Steinseifer, Ulrich and Clauser, Johanna C.}, title = {In vitro thrombogenicity testing of pulsatile mechanical circulatory support systems: Design and proof-of-concept}, series = {Artificial Organs}, volume = {45}, journal = {Artificial Organs}, number = {12}, publisher = {Wiley}, address = {Weinheim}, issn = {1525-1594}, doi = {10.1111/aor.14046}, pages = {1513 -- 1521}, year = {2021}, abstract = {Thrombogenic complications are a main issue in mechanical circulatory support (MCS). There is no validated in vitro method available to quantitatively assess the thrombogenic performance of pulsatile MCS devices under realistic hemodynamic conditions. The aim of this study is to propose a method to evaluate the thrombogenic potential of new designs without the use of complex in-vivo trials. This study presents a novel in vitro method for reproducible thrombogenicity testing of pulsatile MCS systems using low molecular weight heparinized porcine blood. Blood parameters are continuously measured with full blood thromboelastometry (ROTEM; EXTEM, FIBTEM and a custom-made analysis HEPNATEM). Thrombus formation is optically observed after four hours of testing. The results of three experiments are presented each with two parallel loops. The area of thrombus formation inside the MCS device was reproducible. The implantation of a filter inside the loop catches embolizing thrombi without a measurable increase of platelet activation, allowing conclusions of the place of origin of thrombi inside the device. EXTEM and FIBTEM parameters such as clotting velocity (α) and maximum clot firmness (MCF) show a total decrease by around 6\% with a characteristic kink after 180 minutes. HEPNATEM α and MCF rise within the first 180 minutes indicate a continuously increasing activation level of coagulation. After 180 minutes, the consumption of clotting factors prevails, resulting in a decrease of α and MCF. With the designed mock loop and the presented protocol we are able to identify thrombogenic hot spots inside a pulsatile pump and characterize their thrombogenic potential.}, language = {en} } @inproceedings{OlderogMohrBegingetal.2021, author = {Olderog, M. and Mohr, P. and Beging, Stefan and Tsoumpas, C. and Ziemons, Karl}, title = {Simulation study on the role of tissue-scattered events in improving sensitivity for a compact time of flight compton positron emission tomograph}, series = {2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)}, booktitle = {2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)}, publisher = {IEEE}, address = {New York, NY}, isbn = {978-1-7281-7693-2}, doi = {10.1109/NSS/MIC42677.2020.9507901}, pages = {4 Seiten}, year = {2021}, abstract = {In positron emission tomography improving time, energy and spatial detector resolutions and using Compton kinematics introduces the possibility to reconstruct a radioactivity distribution image from scatter coincidences, thereby enhancing image quality. The number of single scattered coincidences alone is in the same order of magnitude as true coincidences. In this work, a compact Compton camera module based on monolithic scintillation material is investigated as a detector ring module. The detector interactions are simulated with Monte Carlo package GATE. The scattering angle inside the tissue is derived from the energy of the scattered photon, which results in a set of possible scattering trajectories or broken line of response. The Compton kinematics collimation reduces the number of solutions. Additionally, the time of flight information helps localize the position of the annihilation. One of the questions of this investigation is related to how the energy, spatial and temporal resolutions help confine the possible annihilation volume. A comparison of currently technically feasible detector resolutions (under laboratory conditions) demonstrates the influence on this annihilation volume and shows that energy and coincidence time resolution have a significant impact. An enhancement of the latter from 400 ps to 100 ps leads to a smaller annihilation volume of around 50\%, while a change of the energy resolution in the absorber layer from 12\% to 4.5\% results in a reduction of 60\%. The inclusion of single tissue-scattered data has the potential to increase the sensitivity of a scanner by a factor of 2 to 3 times. The concept can be further optimized and extended for multiple scatter coincidences and subsequently validated by a reconstruction algorithm.}, language = {en} } @inproceedings{UlmerBraunChengetal.2021, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Adapting augmented reality systems to the users' needs using gamification and error solving methods}, series = {Procedia CIRP - 54th CIRP CMS 2021 - Towards Digitalized Manufacturing 4.0}, volume = {104}, booktitle = {Procedia CIRP - 54th CIRP CMS 2021 - Towards Digitalized Manufacturing 4.0}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2021.11.024}, pages = {140 -- 145}, year = {2021}, abstract = {Animations of virtual items in AR support systems are typically predefined and lack interactions with dynamic physical environments. AR applications rarely consider users' preferences and do not provide customized spontaneous support under unknown situations. This research focuses on developing adaptive, error-tolerant AR systems based on directed acyclic graphs and error resolving strategies. Using this approach, users will have more freedom of choice during AR supported work, which leads to more efficient workflows. Error correction methods based on CAD models and predefined process data create individual support possibilities. The framework is implemented in the Industry 4.0 model factory at FH Aachen.}, language = {en} } @inproceedings{Huening2021, author = {H{\"u}ning, Felix}, title = {Sustainable changes beyond covid-19 for a second semester physics course for electrical engineering students}, series = {Blended Learning in Engineering Education: challenging, enlightening - and lasting?}, booktitle = {Blended Learning in Engineering Education: challenging, enlightening - and lasting?}, isbn = {978-2-87352-023-6}, pages = {1424 -- 1428}, year = {2021}, abstract = {The course Physics for Electrical Engineering is part of the curriculum of the bachelor program Electrical Engineering at University of Applied Science Aachen. Before covid-19 the course was conducted in a rather traditional way with all parts (lecture, exercise and lab) face-to-face. This teaching approach changed fundamentally within a week when the covid-19 limitations forced all courses to distance learning. All parts of the course were transformed to pure distance learning including synchronous and asynchronous parts for the lecture, live online-sessions for the exercises and self-paced labs at home. Using these methods, the course was able to impart the required knowledge and competencies. Taking the teacher's observations of the student's learning behaviour and engagement, the formal and informal feedback of the students and the results of the exams into account, the new methods are evaluated with respect to effectiveness, sustainability and suitability for competence transfer. Based on this analysis strong and weak points of the concept and countermeasures to solve the weak points were identified. The analysis further leads to a sustainable teaching approach combining synchronous and asynchronous parts with self-paced learning times that can be used in a very flexible manner for different learning scenarios, pure online, hybrid (mixture of online and presence times) and pure presence teaching.}, language = {en} } @article{LeiseEsserEichenlaubetal.2021, author = {Leise, Philipp and Eßer, Arved and Eichenlaub, Tobias and Schleiffer, Jean-Eric and Altherr, Lena and Rinderknecht, Stephan and Pelz, Peter F.}, title = {Sustainable system design of electric powertrains - comparison of optimization methods}, series = {Engineering Optimization}, journal = {Engineering Optimization}, publisher = {Taylor \& Francis}, address = {London}, issn = {0305-215X}, doi = {10.1080/0305215X.2021.1928660}, year = {2021}, abstract = {The transition within transportation towards battery electric vehicles can lead to a more sustainable future. To account for the development goal 'climate action' stated by the United Nations, it is mandatory, within the conceptual design phase, to derive energy-efficient system designs. One barrier is the uncertainty of the driving behaviour within the usage phase. This uncertainty is often addressed by using a stochastic synthesis process to derive representative driving cycles and by using cycle-based optimization. To deal with this uncertainty, a new approach based on a stochastic optimization program is presented. This leads to an optimization model that is solved with an exact solver. It is compared to a system design approach based on driving cycles and a genetic algorithm solver. Both approaches are applied to find efficient electric powertrains with fixed-speed and multi-speed transmissions. Hence, the similarities, differences and respective advantages of each optimization procedure are discussed.}, language = {en} } @article{GrundlachBaumannEngelmann2021, author = {Grundlach, Michael and Baumann, Martin and Engelmann, Ulrich M.}, title = {How Multimodal Examinations Can Increase Sustainable Student Gain by Aligning Teaching and Assessment}, series = {Current Directions in Biomedical Engineering}, volume = {7}, journal = {Current Directions in Biomedical Engineering}, number = {7/2}, editor = {D{\"o}ssel, Olaf}, publisher = {De Gruyter}, address = {Berlin}, isbn = {2364-5504}, doi = {10.1515/cdbme-2021-2019}, pages = {73 -- 76}, year = {2021}, abstract = {Modern industry and multi-discipline projects require highly trained individuals with resilient science and engineering back-grounds. Graduates must be able to agilely apply excellent theoretical knowledge in their subject matter as well as essential practical "hands-on" knowledge of diverse working processes to solve complex problems. To meet these demands, university education follows the concept of Constructive Alignment and thus increasingly adopts the teaching of necessary practical skills to the actual industry requirements and assessment routines. However, a systematic approach to coherently align these three central teaching demands is strangely absent from current university curricula. We demonstrate the feasibility of implementing practical assessments in a regular theory-based examination, thus defining the term "blended assessment". We assessed a course for natural science and engineering students pursuing a career in biomedical engineering, and evaluated the benefit of blended assessment exams for students and lecturers. Our controlled study assessed the physiological background of electrocardiograms (ECGs), the practical measurement of ECG curves, and their interpretation of basic pathologic alterations. To study on long time effects, students have been assessed on the topic twice with a time lag of 6 months. Our findings suggest a significant improvement in student gain with respect to practical skills and theoretical knowledge. The results of the reassessments support these outcomes. From the lecturers' point of view, blended assessment complements practical training courses while keeping organizational effort manageable. We consider blended assessment a viable tool for providing an improved student gain, industry-ready education format that should be evaluated and established further to prepare university graduates optimally for their future careers.}, language = {en} } @inproceedings{KernImaniVashianiTimmermanns2021, author = {Kern, Alexander and Imani Vashiani, Anahita and Timmermanns, Tobias}, title = {Threat for human beings due to touch voltages and body currents caused by direct lightning strikes in case of non-isolated lightning protection systems using natural components}, series = {35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA)}, booktitle = {35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA)}, publisher = {IEEE}, address = {New York, NY}, isbn = {978-1-6654-2346-5}, doi = {10.1109/ICLPandSIPDA54065.2021.9627465}, pages = {8 Seiten}, year = {2021}, abstract = {For typical cases of non-isolated lightning protection systems (LPS) the impulse currents are investigated which may flow through a human body directly touching a structural part of the LPS. Based on a basic LPS model with conventional down-conductors especially the cases of external and internal steel columns and metal fa{\c{c}}ades are considered and compared. Numerical simulations of the line quantities voltages and currents in the time domain are performed with an equivalent circuit of the entire LPS. As a result it can be stated that by increasing the number of conventional down-conductors and external steel columns the threat for a human being can indeed be reduced, but not down to an acceptable limit. In case of internal steel columns used as natural down-conductors the threat can be reduced sufficiently, depending on the low-resistive connection of the steel columns to the lightning equipotential bonding or the earth termination system, resp. If a metal fa{\c{c}}ade is used the threat for human beings touching is usually very low, if the fa{\c{c}}ade is sufficiently interconnected and multiply connected to the lightning equipotential bonding or the earth termination system, resp.}, language = {en} } @book{Pieper2021, author = {Pieper, Martin}, title = {Quantum mechanics: Introduction to mathematical formulation}, publisher = {Springer}, address = {Wiesbaden}, isbn = {978-3-658-32644-9}, doi = {10.1007/978-3-658-32645-6}, pages = {XIII, 33}, year = {2021}, abstract = {Anyone who has always wanted to understand the hieroglyphs on Sheldon's blackboard in the TV series The Big Bang Theory or who wanted to know exactly what the fate of Schr{\"o}dinger's cat is all about will find a short, descriptive introduction to the world of quantum mechanics in this essential. The text particularly focuses on the mathematical description in the Hilbert space. The content goes beyond popular scientific presentations, but is nevertheless suitable for readers without special prior knowledge thanks to the clear examples.}, language = {en} } @incollection{JordanKatzPieper2021, author = {Jordan, Frank and Katz, Christiane and Pieper, Martin}, title = {Online-Kollaboration in der Mathematik: Ein Design-Based-Research-Projekt}, series = {Forschungsimpulse f{\"u}r hybrides Lehren und Lernen an Hochschulen}, booktitle = {Forschungsimpulse f{\"u}r hybrides Lehren und Lernen an Hochschulen}, publisher = {TH K{\"o}ln}, address = {K{\"o}ln}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:832-cos4-9465}, pages = {245 -- 261}, year = {2021}, abstract = {Die Studie er{\"o}rtert anhand eines Fallbeispiels aus der Mathematik f{\"u}r Ingenieur*innen, wie didaktische Gestaltungsprinzipien f{\"u}r Soziale Pr{\"a}senz, Kollaboration und das L{\"o}sen von praxisnahen Problemen mit mathematischem Denken in einer Online-Umgebung aussehen k{\"o}nnen. Hierf{\"u}r zieht der Beitrag den forschungsmethodologischen Rahmen Design-Based Research (DBR) hinzu und berichtet {\"u}ber Zwischenergebnisse. DBR wird an dieser Stelle als eine systematische Herangehensweise an kurzfristige Lehrver{\"a}nderungen und als Chance auf dem Weg zu einer neuen Hochschullehre nach der COVID-19-Pandemie dargestellt, die theoretische und empirische Erkenntnisse mit Praxisverkn{\"u}pfung und -relevanz vereint.}, language = {de} } @inproceedings{PfeifferBalcGebhardt2021, author = {Pfeiffer, Johann and Balc, N. and Gebhardt, Andreas}, title = {Studie zur Untersuchung der Auswirkung von Fr{\"a}sbahnstrategien auf die Oberfl{\"a}chenqualit{\"a}t von mittels SLM gefertigten Metallteilen}, series = {Tagungsband 21. Nachwuchswissenschaftler*innenkonferenz}, booktitle = {Tagungsband 21. Nachwuchswissenschaftler*innenkonferenz}, publisher = {Verlag Ernst-Abbe-Hochschule Jena}, address = {Jena}, isbn = {978-3-932886-36-2}, pages = {99 -- 102}, year = {2021}, abstract = {F{\"u}r die Herstellung von metallischen Bauteilen wird in der heutigen Zeit eine Vielzahl von Verfahren auf dem Markt angeboten. Dabei stehen die additiven im Wettbewerb zu den konventionellen Verfahren. Die erreichbaren Oberfl{\"a}chenqualit{\"a}ten der additiven sind nicht mit denen spanender Verfahren vergleichbar. F{\"u}r diesen Beitrag wurde analysiert, ob sich ein mittels Selektivem Laserschmelzen (SLM) additiv hergestellter Edelstahl hinsichtlich seiner Oberfl{\"a}chenqualit{\"a}t nach der Zerspanung von einem umgeformten konventionell hergestellten Edelstahl gleicher Sorte unterscheidet.}, language = {de} } @inproceedings{EnglhardWeberArent2021, author = {Englhard, Markus and Weber, Tobias and Arent, Jan-Christoph}, title = {Efficiency enhancement for CFRP-Prepregautoclave manufacturing by means of simulation-assisted loading optimization}, series = {Proceedings of SAMPE Europe Conference 2021}, booktitle = {Proceedings of SAMPE Europe Conference 2021}, pages = {8 Seiten}, year = {2021}, abstract = {A new method for improved autoclave loading within the restrictive framework of helicopter manufacturing is proposed. It is derived from experimental and numerical studies of the curing process and aims at optimizing tooling positions in the autoclave for fast and homogeneous heat-up. The mold positioning is based on two sets of information. The thermal properties of the molds, which can be determined via semi-empirical thermal simulation. The second information is a previously determined distribution of heat transfer coefficients inside the autoclave. Finally, an experimental proof of concept is performed to show a cycle time reduction of up to 31\% using the proposed methodology.}, language = {en} } @book{Feuerriegel2021, author = {Feuerriegel, Uwe}, title = {W{\"a}rme{\"u}bertragung mit EXCEL und VBA: W{\"a}rmetechnische Berechnungen und Simulationen effektiv durchf{\"u}hren und professionell dokumentieren}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-35905-8}, doi = {10.1007/978-3-658-35906-5}, pages = {XX, 439 Seiten}, year = {2021}, abstract = {Dieses Lehrbuch vermittelt die Grundlagen der W{\"a}rme{\"u}bertragung sowie den Umgang mit EXCEL-VBA von der Erstellung von Makros bis zu benutzerdefinierten Funktionen. Es legt damit eine Basis f{\"u}r die schnelle und professionelle Durchf{\"u}hrung von Berechnungen und Simulationen. Die angeleitete Erstellung von Berechnungsmodulen mit EXCEL und VBA aus allen wichtigen Bereichen der W{\"a}rme{\"u}bertragung bildet den inhaltlichen Schwerpunkt. Dazu z{\"a}hlen die station{\"a}re W{\"a}rmeleitung und der station{\"a}re W{\"a}rmedurchgang, die instation{\"a}re W{\"a}rmeleitung, der W{\"a}rme{\"u}bergang bei freier und erzwungener Konvektion sowie die W{\"a}rmestrahlung und der W{\"a}rme{\"u}bergang beim Kondensieren und Sieden. Soweit sinnvoll und m{\"o}glich werden die Stoffwertekorrelationen und die Berechnungsvorschriften aus dem VDI-W{\"a}rmeatlas verwendet. F{\"u}r ausgew{\"a}hlte Anwendungen werden zudem komplexere Auslegungen und Simulationen von Prozessen der W{\"a}rme{\"u}bertragung sowie von W{\"a}rme{\"u}bertragern erstellt. Die Zielgruppen: Studierende in Bachelor- und Masterstudieng{\"a}ngen, Praktiker im Engineering}, language = {de} } @incollection{AltherrLeise2021, author = {Altherr, Lena and Leise, Philipp}, title = {Resilience as a concept for mastering uncertainty}, series = {Mastering Uncertainty in Mechanical Engineering}, booktitle = {Mastering Uncertainty in Mechanical Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-78353-2}, doi = {10.1007/978-3-030-78354-9}, pages = {412 -- 417}, year = {2021}, language = {en} } @incollection{AltherrLeisePfetschetal.2021, author = {Altherr, Lena and Leise, Philipp and Pfetsch, Marc E. and Schmitt, Andreas}, title = {Optimal design of resilient technical systems on the example of water supply systems}, series = {Mastering Uncertainty in Mechanical Engineering}, booktitle = {Mastering Uncertainty in Mechanical Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-78356-3}, pages = {429 -- 433}, year = {2021}, language = {en} } @incollection{LeiseAltherr2021, author = {Leise, Philipp and Altherr, Lena}, title = {Experimental evaluation of resilience metrics in a fluid system}, series = {Mastering Uncertainty in Mechanical Engineering}, booktitle = {Mastering Uncertainty in Mechanical Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-78356-3}, pages = {442 -- 447}, year = {2021}, language = {en} } @inproceedings{NikolovskiRekeElsenetal.2021, author = {Nikolovski, Gjorgji and Reke, Michael and Elsen, Ingo and Schiffer, Stefan}, title = {Machine learning based 3D object detection for navigation in unstructured environments}, series = {2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)}, booktitle = {2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)}, publisher = {IEEE}, isbn = {978-1-6654-7921-9}, doi = {10.1109/IVWorkshops54471.2021.9669218}, pages = {236 -- 242}, year = {2021}, abstract = {In this paper we investigate the use of deep neural networks for 3D object detection in uncommon, unstructured environments such as in an open-pit mine. While neural nets are frequently used for object detection in regular autonomous driving applications, more unusual driving scenarios aside street traffic pose additional challenges. For one, the collection of appropriate data sets to train the networks is an issue. For another, testing the performance of trained networks often requires tailored integration with the particular domain as well. While there exist different solutions for these problems in regular autonomous driving, there are only very few approaches that work for special domains just as well. We address both the challenges above in this work. First, we discuss two possible ways of acquiring data for training and evaluation. That is, we evaluate a semi-automated annotation of recorded LIDAR data and we examine synthetic data generation. Using these datasets we train and test different deep neural network for the task of object detection. Second, we propose a possible integration of a ROS2 detector module for an autonomous driving platform. Finally, we present the performance of three state-of-the-art deep neural networks in the domain of 3D object detection on a synthetic dataset and a smaller one containing a characteristic object from an open-pit mine.}, language = {en} }