@article{ColomboDriraFrotscheretal.2022, author = {Colombo, Daniele and Drira, Slah and Frotscher, Ralf and Staat, Manfred}, title = {An element-based formulation for ES-FEM and FS-FEM models for implementation in standard solid mechanics finite element codes for 2D and 3D static analysis}, series = {International Journal for Numerical Methods in Engineering}, volume = {124}, journal = {International Journal for Numerical Methods in Engineering}, number = {2}, publisher = {Wiley}, address = {Chichester}, issn = {1097-0207}, doi = {10.1002/nme.7126}, pages = {402 -- 433}, year = {2022}, abstract = {Edge-based and face-based smoothed finite element methods (ES-FEM and FS-FEM, respectively) are modified versions of the finite element method allowing to achieve more accurate results and to reduce sensitivity to mesh distortion, at least for linear elements. These properties make the two methods very attractive. However, their implementation in a standard finite element code is nontrivial because it requires heavy and extensive modifications to the code architecture. In this article, we present an element-based formulation of ES-FEM and FS-FEM methods allowing to implement the two methods in a standard finite element code with no modifications to its architecture. Moreover, the element-based formulation permits to easily manage any type of element, especially in 3D models where, to the best of the authors' knowledge, only tetrahedral elements are used in FS-FEM applications found in the literature. Shape functions for non-simplex 3D elements are proposed in order to apply FS-FEM to any standard finite element.}, language = {en} } @article{DefosseKleinschmidtSchmutzetal.2022, author = {Defosse, Jerome and Kleinschmidt, Joris and Schmutz, Axel and Loop, Torsten and Staat, Manfred and Gatzweiler, Karl-Heinz and Wappler, Frank and Schieren, Mark}, title = {Dental strain on maxillary incisors during tracheal intubation with double-lumen tubes and different laryngoscopy techniques - a blinded manikin study}, series = {Journal of Cardiothoracic and Vascular Anesthesia}, volume = {36}, journal = {Journal of Cardiothoracic and Vascular Anesthesia}, number = {8, Part B}, publisher = {Elsevier}, address = {New York, NY}, issn = {1053-0770}, doi = {10.1053/j.jvca.2022.02.017}, pages = {3021 -- 3027}, year = {2022}, language = {en} } @article{DitzhausGaigall2022, author = {Ditzhaus, Marc and Gaigall, Daniel}, title = {Testing marginal homogeneity in Hilbert spaces with applications to stock market returns}, series = {Test}, volume = {2022}, journal = {Test}, number = {31}, publisher = {Springer}, issn = {1863-8260}, doi = {10.1007/s11749-022-00802-5}, pages = {749 -- 770}, year = {2022}, abstract = {This paper considers a paired data framework and discusses the question of marginal homogeneity of bivariate high-dimensional or functional data. The related testing problem can be endowed into a more general setting for paired random variables taking values in a general Hilbert space. To address this problem, a Cram{\´e}r-von-Mises type test statistic is applied and a bootstrap procedure is suggested to obtain critical values and finally a consistent test. The desired properties of a bootstrap test can be derived that are asymptotic exactness under the null hypothesis and consistency under alternatives. Simulations show the quality of the test in the finite sample case. A possible application is the comparison of two possibly dependent stock market returns based on functional data. The approach is demonstrated based on historical data for different stock market indices.}, language = {en} } @article{EmhardtJarodzkaBrandGruweletal.2022, author = {Emhardt, Selina N. and Jarodzka, Halszka and Brand-Gruwel, Saskia and Drumm, Christian and Niehorster, Diederick C. and van Gog, Tamara}, title = {What is my teacher talking about? Effects of displaying the teacher's gaze and mouse cursor cues in video lectures on students' learning}, series = {Journal of Cognitive Psychology}, journal = {Journal of Cognitive Psychology}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {2044-5911}, doi = {10.1080/20445911.2022.2080831}, pages = {1 -- 19}, year = {2022}, abstract = {Eye movement modelling examples (EMME) are instructional videos that display a teacher's eye movements as "gaze cursor" (e.g. a moving dot) superimposed on the learning task. This study investigated if previous findings on the beneficial effects of EMME would extend to online lecture videos and compared the effects of displaying the teacher's gaze cursor with displaying the more traditional mouse cursor as a tool to guide learners' attention. Novices (N = 124) studied a pre-recorded video lecture on how to model business processes in a 2 (mouse cursor absent/present) × 2 (gaze cursor absent/present) between-subjects design. Unexpectedly, we did not find significant effects of the presence of gaze or mouse cursors on mental effort and learning. However, participants who watched videos with the gaze cursor found it easier to follow the teacher. Overall, participants responded positively to the gaze cursor, especially when the mouse cursor was not displayed in the video.}, language = {en} } @article{EngelmannPourshahidiShalabyetal.2022, author = {Engelmann, Ulrich M. and Pourshahidi, Mohammad Ali and Shalaby, Ahmed and Krause, Hans-Joachim}, title = {Probing particle size dependency of frequency mixing magnetic detection with dynamic relaxation simulation}, series = {Journal of Magnetism and Magnetic Materials}, volume = {563}, journal = {Journal of Magnetism and Magnetic Materials}, number = {In progress, Art. No. 169965}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2022.169965}, year = {2022}, abstract = {Biomedical applications of magnetic nanoparticles (MNP) fundamentally rely on the particles' magnetic relaxation as a response to an alternating magnetic field. The magnetic relaxation complexly depends on the interplay of MNP magnetic and physical properties with the applied field parameters. It is commonly accepted that particle core size is a major contributor to signal generation in all the above applications, however, most MNP samples comprise broad distribution spanning nm and more. Therefore, precise knowledge of the exact contribution of individual core sizes to signal generation is desired for optimal MNP design generally for each application. Specifically, we present a magnetic relaxation simulation-driven analysis of experimental frequency mixing magnetic detection (FMMD) for biosensing to quantify the contributions of individual core size fractions towards signal generation. Applying our method to two different experimental MNP systems, we found the most dominant contributions from approx. 20 nm sized particles in the two independent MNP systems. Additional comparison between freely suspended and immobilized MNP also reveals insight in the MNP microstructure, allowing to use FMMD for MNP characterization, as well as to further fine-tune its applicability in biosensing.}, language = {en} } @article{FalkenbergBottBongaertsetal.2022, author = {Falkenberg, Fabian and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {Phylogenetic survey of the subtilase family and a data-mining-based search for new subtilisins from Bacillaceae}, series = {Frontiers in Microbiology}, volume = {2022}, journal = {Frontiers in Microbiology}, number = {13}, publisher = {Frontiers}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2022.1017978}, pages = {Artikel 13:1017978}, year = {2022}, abstract = {The subtilase family (S8), a member of the clan SB of serine proteases are ubiquitous in all kingdoms of life and fulfil different physiological functions. Subtilases are divided in several groups and especially subtilisins are of interest as they are used in various industrial sectors. Therefore, we searched for new subtilisin sequences of the family Bacillaceae using a data mining approach. The obtained 1,400 sequences were phylogenetically classified in the context of the subtilase family. This required an updated comprehensive overview of the different groups within this family. To fill this gap, we conducted a phylogenetic survey of the S8 family with characterised holotypes derived from the MEROPS database. The analysis revealed the presence of eight previously uncharacterised groups and 13 subgroups within the S8 family. The sequences that emerged from the data mining with the set filter parameters were mainly assigned to the subtilisin subgroups of true subtilisins, high-alkaline subtilisins, and phylogenetically intermediate subtilisins and represent an excellent source for new subtilisin candidates.}, language = {en} } @article{FalkenbergRahbaFischeretal.2022, author = {Falkenberg, Fabian and Rahba, Jade and Fischer, David and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {Biochemical characterization of a novel oxidatively stable, halotolerant, and high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101T}, series = {FEBS Open Bio}, volume = {12}, journal = {FEBS Open Bio}, number = {10}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2211-5463}, doi = {10.1002/2211-5463.13457}, pages = {1729 -- 1746}, year = {2022}, abstract = {Halophilic and halotolerant microorganisms represent a promising source of salt-tolerant enzymes suitable for various biotechnological applications where high salt concentrations would otherwise limit enzymatic activity. Considering the current growing enzyme market and the need for more efficient and new biocatalysts, the present study aimed at the characterization of a high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101T. The protease gene was cloned and expressed in Bacillus subtilis DB104. The recombinant protease SPAO with 269 amino acids belongs to the subfamily of high-alkaline subtilisins. The biochemical characteristics of purified SPAO were analyzed in comparison with subtilisin Carlsberg, Savinase, and BPN'. SPAO, a monomer with a molecular mass of 27.1 kDa, was active over a wide range of pH 6.0-12.0 and temperature 20-80 °C, optimally at pH 9.0-9.5 and 55 °C. The protease is highly oxidatively stable to hydrogen peroxide and retained 58\% of residual activity when incubated at 10 °C with 5\% (v/v) H2O2 for 1 h while stimulated at 1\% (v/v) H2O2. Furthermore, SPAO was very stable and active at NaCl concentrations up to 5.0 m. This study demonstrates the potential of SPAO for biotechnological applications in the future.}, language = {en} } @article{FiedlerOrzadaFloeseretal.2022, author = {Fiedler, Thomas M. and Orzada, Stephan and Fl{\"o}ser, Martina and Rietsch, Stefan H. G. and Schmidt, Simon and Stelter, Jonathan K. and Wittrich, Marco and Quick, Harald H. and Bitz, Andreas and Ladd, Mark E.}, title = {Performance and safety assessment of an integrated transmitarray for body imaging at 7 T under consideration of specificabsorption rate, tissue temperature, and thermal dose}, series = {NMR in Biomedicine}, volume = {35}, journal = {NMR in Biomedicine}, number = {5}, publisher = {Wiley}, issn = {0952-3480 (Print)}, doi = {10.1002/nbm.4656}, pages = {1 -- 17}, year = {2022}, abstract = {In this study, the performance of an integrated body-imaging array for 7 T with 32 radiofrequency (RF) channels under consideration of local specific absorption rate (SAR), tissue temperature, and thermal dose limits was evaluated and the imaging performance was compared with a clinical 3 T body coil. Thirty-two transmit elements were placed in three rings between the bore liner and RF shield of the gradient coil. Slice-selective RF pulse optimizations for B1 shimming and spokes were performed for differently oriented slices in the body under consideration of realistic constraints for power and local SAR. To improve the B1+ homogeneity, safety assessments based on temperature and thermal dose were performed to possibly allow for higher input power for the pulse optimization than permissible with SAR limits. The results showed that using two spokes, the 7 T array outperformed the 3 T birdcage in all the considered regions of interest. However, a significantly higher SAR or lower duty cycle at 7 T is necessary in some cases to achieve similar B1+ homogeneity as at 3 T. The homogeneity in up to 50 cm-long coronal slices can particularly benefit from the high RF shim performance provided by the 32 RF channels. The thermal dose approach increases the allowable input power and the corresponding local SAR, in one example up to 100 W/kg, without limiting the exposure time necessary for an MR examination. In conclusion, the integrated antenna array at 7 T enables a clinical workflow for body imaging and comparable imaging performance to a conventional 3 T clinical body coil.}, language = {en} } @article{FunkeBeckmann2022, author = {Funke, Harald and Beckmann, Nils}, title = {Flexible fuel operation of a Dry-Low-NOx Micromix Combustor with Variable Hydrogen Methane Mixture}, series = {International Journal of Gas Turbine, Propulsion and Power Systems}, volume = {13}, journal = {International Journal of Gas Turbine, Propulsion and Power Systems}, number = {2}, issn = {1882-5079}, pages = {1 -- 7}, year = {2022}, abstract = {The role of hydrogen (H2) as a carbon-free energy carrier is discussed since decades for reducing greenhouse gas emissions. As bridge technology towards a hydrogen-based energy supply, fuel mixtures of natural gas or methane (CH4) and hydrogen are possible. The paper presents the first test results of a low-emission Micromix combustor designed for flexible-fuel operation with variable H2/CH4 mixtures. The numerical and experimental approach for considering variable fuel mixtures instead of recently investigated pure hydrogen is described. In the experimental studies, a first generation FuelFlex Micromix combustor geometry is tested at atmospheric pressure at gas turbine operating conditions corresponding to part- and full-load. The H2/CH4 fuel mixture composition is varied between 57 and 100 vol.\% hydrogen content. Despite the challenges flexible-fuel operation poses onto the design of a combustion system, the evaluated FuelFlex Micromix prototype shows a significant low NOx performance}, language = {en} } @article{FunkeEschRoosen2022, author = {Funke, Harald and Esch, Thomas and Roosen, Petra}, title = {Powertrain Adaptions for LPG Usage in General Aviation}, series = {MTZ worldwide}, volume = {2022}, journal = {MTZ worldwide}, number = {83}, publisher = {Springer Nature}, address = {Basel}, doi = {10.1007/s38313-021-0756-6}, pages = {58 -- 62}, year = {2022}, abstract = {In general aviation, too, it is desirable to be able to operate existing internal combustion engines with fuels that produce less CO₂ than Avgas 100LL being widely used today It can be assumed that, in comparison, the fuels CNG, LPG or LNG, which are gaseous under normal conditions, produce significantly lower emissions. Necessary propulsion system adaptations were investigated as part of a research project at Aachen University of Applied Sciences.}, language = {en} } @article{GaigallGerstenbergTrinh2022, author = {Gaigall, Daniel and Gerstenberg, Julian and Trinh, Thi Thu Ha}, title = {Empirical process of concomitants for partly categorial data and applications in statistics}, series = {Bernoulli}, volume = {28}, journal = {Bernoulli}, number = {2}, publisher = {International Statistical Institute}, address = {Den Haag, NL}, issn = {1573-9759}, doi = {10.3150/21-BEJ1367}, pages = {803 -- 829}, year = {2022}, abstract = {On the basis of independent and identically distributed bivariate random vectors, where the components are categorial and continuous variables, respectively, the related concomitants, also called induced order statistic, are considered. The main theoretical result is a functional central limit theorem for the empirical process of the concomitants in a triangular array setting. A natural application is hypothesis testing. An independence test and a two-sample test are investigated in detail. The fairly general setting enables limit results under local alternatives and bootstrap samples. For the comparison with existing tests from the literature simulation studies are conducted. The empirical results obtained confirm the theoretical findings.}, language = {en} } @article{HaegerBongaertsSiegert2022, author = {Haeger, Gerrit and Bongaerts, Johannes and Siegert, Petra}, title = {A convenient ninhydrin assay in 96-well format for amino acid-releasing enzymes using an air-stable reagent}, series = {Analytical Biochemistry}, journal = {Analytical Biochemistry}, number = {624}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1096-0309}, doi = {10.1016/j.ab.2022.114819}, pages = {Artikel 114819}, year = {2022}, abstract = {An improved and convenient ninhydrin assay for aminoacylase activity measurements was developed using the commercial EZ Nin™ reagent. Alternative reagents from literature were also evaluated and compared. The addition of DMSO to the reagent enhanced the solubility of Ruhemann's purple (RP). Furthermore, we found that the use of a basic, aqueous buffer enhances stability of RP. An acidic protocol for the quantification of lysine was developed by addition of glacial acetic acid. The assay allows for parallel processing in a 96-well format with measurements microtiter plates.}, language = {en} } @article{HeinEubanksLingametal.2022, author = {Hein, Andreas M. and Eubanks, T. Marshall and Lingam, Manasvi and Hibberd, Adam and Fries, Dan and Schneider, Jean and Kervella, Pierre and Kennedy, Robert and Perakis, Nikolaos and Dachwald, Bernd}, title = {Interstellar now! Missions to explore nearby interstellar objects}, series = {Advances in Space Research}, volume = {69}, journal = {Advances in Space Research}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2021.06.052}, pages = {402 -- 414}, year = {2022}, abstract = {The recently discovered first hyperbolic objects passing through the Solar System, 1I/'Oumuamua and 2I/Borisov, have raised the question about near term missions to Interstellar Objects. In situ spacecraft exploration of these objects will allow the direct determination of both their structure and their chemical and isotopic composition, enabling an entirely new way of studying small bodies from outside our solar system. In this paper, we map various Interstellar Object classes to mission types, demonstrating that missions to a range of Interstellar Object classes are feasible, using existing or near-term technology. We describe flyby, rendezvous and sample return missions to interstellar objects, showing various ways to explore these bodies characterizing their surface, dynamics, structure and composition. Their direct exploration will constrain their formation and history, situating them within the dynamical and chemical evolution of the Galaxy. These mission types also provide the opportunity to explore solar system bodies and perform measurements in the far outer solar system.}, language = {en} } @article{HerssensCowburnAlbrachtetal.2022, author = {Herssens, Nolan and Cowburn, James and Albracht, Kirsten and Braunstein, Bjoern and Cazzola, Dario and Colyer, Steffi and Minetti, Alberto E. and Pavei, Gaspare and Rittweger, J{\"o}rn and Weber, Tobias and Green, David A.}, title = {Movement in low gravity environments (MoLo) programme - the MoLo-L.O.O.P. study protocol}, series = {PLOS ONE / Public Library of Science}, volume = {17}, journal = {PLOS ONE / Public Library of Science}, number = {11}, editor = {Cattaneo, Luigi}, publisher = {Plos}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0278051}, pages = {e0278051}, year = {2022}, abstract = {Exposure to prolonged periods in microgravity is associated with deconditioning of the musculoskeletal system due to chronic changes in mechanical stimulation. Given astronauts will operate on the Lunar surface for extended periods of time, it is critical to quantify both external (e.g., ground reaction forces) and internal (e.g., joint reaction forces) loads of relevant movements performed during Lunar missions. Such knowledge is key to predict musculoskeletal deconditioning and determine appropriate exercise countermeasures associated with extended exposure to hypogravity.}, language = {en} } @article{HeuermannEmmrichBongartz2022, author = {Heuermann, Holger and Emmrich, Thomas and Bongartz, Simon}, title = {Microwave spark plug to support ignitions with high compression ratios}, series = {IEEE Transactions on Plasma Science}, journal = {IEEE Transactions on Plasma Science}, number = {Early Access}, publisher = {IEEE}, issn = {1939-9375}, doi = {10.1109/TPS.2022.3183690}, pages = {1 -- 6}, year = {2022}, abstract = {Upcoming gasoline engines should run with a larger number of fuels beginning from petrol over methanol up to gas by a wide range of compression ratios and a homogeneous charge. In this article, the microwave (MW) spark plug, based on a high-speed frequency hopping system, is introduced as a solution, which can support a nitrogen compression ratio up to 1:39 in a chamber and more. First, an overview of the high-speed frequency hopping MW ignition and operation system as well as the large number of applications are presented. Both gives an understanding of this new base technology for MW plasma generation. Focus of the theoretical part is the explanation of the internal construction of the spark plug, on the achievable of the high voltage generation as well as the high efficiency to hold the plasma. In detail, the development process starting with circuit simulations and ending with the numerical multiphysics field simulations is described. The concept is evaluated with a reference prototype covering the frequency range between 2.40 and 2.48 GHz and working over a large power range from 20 to 200 W. A larger number of different measurements starting by vector hot-S11 measurements and ending by combined working scenarios out of hot temperature, high pressure and charge motion are winding up the article. The limits for the successful pressure tests were given by the pressure chamber. Pressures ranged from 1 to 39 bar and charge motion up to 25 m/s as well as temperatures from 30◦ to 125◦.}, language = {en} } @article{HoffmannRohrbachUhletal.2022, author = {Hoffmann, Andreas and Rohrbach, Felix and Uhl, Matthias and Ceblin, Maximilian and Bauer, Thomas and Mallah, Marcel and Jacob, Timo and Heuermann, Holger and Kuehne, Alexander J. C.}, title = {Atmospheric pressure plasma-jet treatment of polyacrylonitrile-nonwovens—Stabilization and roll-to-roll processing}, series = {Journal of Applied Polymer Science}, volume = {139}, journal = {Journal of Applied Polymer Science}, number = {37}, publisher = {Wiley}, issn = {0021-8995 (Print)}, doi = {10.1002/app.52887}, pages = {1 -- 9}, year = {2022}, abstract = {Carbon nanofiber nonwovens represent a powerful class of materials with prospective application in filtration technology or as electrodes with high surface area in batteries, fuel cells, and supercapacitors. While new precursor-to-carbon conversion processes have been explored to overcome productivity restrictions for carbon fiber tows, alternatives for the two-step thermal conversion of polyacrylonitrile precursors into carbon fiber nonwovens are absent. In this work, we develop a continuous roll-to-roll stabilization process using an atmospheric pressure microwave plasma jet. We explore the influence of various plasma-jet parameters on the morphology of the nonwoven and compare the stabilized nonwoven to thermally stabilized samples using scanning electron microscopy, differential scanning calorimetry, and infrared spectroscopy. We show that stabilization with a non-equilibrium plasma-jet can be twice as productive as the conventional thermal stabilization in a convection furnace, while producing electrodes of comparable electrochemical performance.}, language = {en} } @article{HoffmannUhlCeblinetal.2022, author = {Hoffmann, Andreas and Uhl, Matthias and Ceblin, Maximilian and Rohrbach, Felix and Bansmann, Joachim and Mallah, Marcel and Heuermann, Holger and Jacob, Timo and Kuehne, Alexander J.C.}, title = {Atmospheric pressure plasma-jet treatment of PAN-nonwovens—carbonization of nanofiber electrodes}, series = {C - Journal of Carbon Research}, volume = {8}, journal = {C - Journal of Carbon Research}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2311-5629}, doi = {10.3390/c8030033}, pages = {8 Seiten}, year = {2022}, abstract = {Carbon nanofibers are produced from dielectric polymer precursors such as polyacrylonitrile (PAN). Carbonized nanofiber nonwovens show high surface area and good electrical conductivity, rendering these fiber materials interesting for application as electrodes in batteries, fuel cells, and supercapacitors. However, thermal processing is slow and costly, which is why new processing techniques have been explored for carbon fiber tows. Alternatives for the conversion of PAN-precursors into carbon fiber nonwovens are scarce. Here, we utilize an atmospheric pressure plasma jet to conduct carbonization of stabilized PAN nanofiber nonwovens. We explore the influence of various processing parameters on the conductivity and degree of carbonization of the converted nanofiber material. The precursor fibers are converted by plasma-jet treatment to carbon fiber nonwovens within seconds, by which they develop a rough surface making subsequent surface activation processes obsolete. The resulting carbon nanofiber nonwovens are applied as supercapacitor electrodes and examined by cyclic voltammetry and impedance spectroscopy. Nonwovens that are carbonized within 60 s show capacitances of up to 5 F g⁻¹.}, language = {en} } @article{KahmannRauschPluemeretal.2022, author = {Kahmann, Stephanie L. and Rausch, Valentin and Pl{\"u}mer, Jonathan and M{\"u}ller, Lars P. and Pieper, Martin and Wegmann, Kilian}, title = {The automized fracture edge detection and generation of three-dimensional fracture probability heat maps}, series = {Medical Engineering \& Physics}, volume = {2022}, journal = {Medical Engineering \& Physics}, number = {110}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1350-4533}, pages = {7 Seiten}, year = {2022}, abstract = {With proven impact of statistical fracture analysis on fracture classifications, it is desirable to minimize the manual work and to maximize repeatability of this approach. We address this with an algorithm that reduces the manual effort to segmentation, fragment identification and reduction. The fracture edge detection and heat map generation are performed automatically. With the same input, the algorithm always delivers the same output. The tool transforms one intact template consecutively onto each fractured specimen by linear least square optimization, detects the fragment edges in the template and then superimposes them to generate a fracture probability heat map. We hypothesized that the algorithm runs faster than the manual evaluation and with low (< 5 mm) deviation. We tested the hypothesis in 10 fractured proximal humeri and found that it performs with good accuracy (2.5 mm ± 2.4 mm averaged Euclidean distance) and speed (23 times faster). When applied to a distal humerus, a tibia plateau, and a scaphoid fracture, the run times were low (1-2 min), and the detected edges correct by visual judgement. In the geometrically complex acetabulum, at a run time of 78 min some outliers were considered acceptable. An automatically generated fracture probability heat map based on 50 proximal humerus fractures matches the areas of high risk of fracture reported in medical literature. Such automation of the fracture analysis method is advantageous and could be extended to reduce the manual effort even further.}, language = {en} } @article{KaulenSchwabedalSchneideretal.2022, author = {Kaulen, Lars and Schwabedal, Justus T. C. and Schneider, Jules and Ritter, Philipp and Bialonski, Stephan}, title = {Advanced sleep spindle identification with neural networks}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, number = {Article number: 7686}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-11210-y}, pages = {1 -- 10}, year = {2022}, abstract = {Sleep spindles are neurophysiological phenomena that appear to be linked to memory formation and other functions of the central nervous system, and that can be observed in electroencephalographic recordings (EEG) during sleep. Manually identified spindle annotations in EEG recordings suffer from substantial intra- and inter-rater variability, even if raters have been highly trained, which reduces the reliability of spindle measures as a research and diagnostic tool. The Massive Online Data Annotation (MODA) project has recently addressed this problem by forming a consensus from multiple such rating experts, thus providing a corpus of spindle annotations of enhanced quality. Based on this dataset, we present a U-Net-type deep neural network model to automatically detect sleep spindles. Our model's performance exceeds that of the state-of-the-art detector and of most experts in the MODA dataset. We observed improved detection accuracy in subjects of all ages, including older individuals whose spindles are particularly challenging to detect reliably. Our results underline the potential of automated methods to do repetitive cumbersome tasks with super-human performance.}, language = {en} } @article{KemptFreyerNagel2022, author = {Kempt, Hendrik and Freyer, Nils and Nagel, Saskia K.}, title = {Justice and the normative standards of explainability in healthcare}, series = {Philosophy \& Technology}, volume = {35}, journal = {Philosophy \& Technology}, number = {Article number: 100}, publisher = {Springer Nature}, address = {Berlin}, doi = {10.1007/s13347-022-00598-0}, pages = {1 -- 19}, year = {2022}, abstract = {Providing healthcare services frequently involves cognitively demanding tasks, including diagnoses and analyses as well as complex decisions about treatments and therapy. From a global perspective, ethically significant inequalities exist between regions where the expert knowledge required for these tasks is scarce or abundant. One possible strategy to diminish such inequalities and increase healthcare opportunities in expert-scarce settings is to provide healthcare solutions involving digital technologies that do not necessarily require the presence of a human expert, e.g., in the form of artificial intelligent decision-support systems (AI-DSS). Such algorithmic decision-making, however, is mostly developed in resource- and expert-abundant settings to support healthcare experts in their work. As a practical consequence, the normative standards and requirements for such algorithmic decision-making in healthcare require the technology to be at least as explainable as the decisions made by the experts themselves. The goal of providing healthcare in settings where resources and expertise are scarce might come with a normative pull to lower the normative standards of using digital technologies in order to provide at least some healthcare in the first place. We scrutinize this tendency to lower standards in particular settings from a normative perspective, distinguish between different types of absolute and relative, local and global standards of explainability, and conclude by defending an ambitious and practicable standard of local relative explainability.}, language = {en} }