@inproceedings{FerreinBharatheeshaSchifferetal.2019, author = {Ferrein, Alexander and Bharatheesha, Mukunda and Schiffer, Stefan and Corbato, Carlos Hernandez}, title = {TRROS 2018 : Teaching Robotics with ROS Workshop at ERF 2018; Proceedings of the Workshop on Teaching Robotics with ROS (held at ERF 2018), co-located with European Robotics Forum 2018 (ERF 2018), Tampere, Finland, March 15th, 2018}, series = {CEUR Workshop Proceedings}, booktitle = {CEUR Workshop Proceedings}, number = {Vol-2329}, issn = {1613-0073}, pages = {68 Seiten}, year = {2019}, language = {en} } @article{SchoppBritunVoracetal.2019, author = {Schopp, Christoph and Britun, Nikolay and Vorac, Jan and Synek, Petr and Snyders, Rony and Heuermann, Holger}, title = {Thermal and Optical Study on the Frequency Dependence of an Atmospheric Microwave Argon Plasma Jet}, series = {IEEE Transactions on Plasma Science}, volume = {47}, journal = {IEEE Transactions on Plasma Science}, number = {7}, publisher = {IEEE}, address = {New York}, issn = {1939-9375}, pages = {3176 -- 3181}, year = {2019}, language = {en} } @inproceedings{GaldiHartungDugelay2019, author = {Galdi, Chiara and Hartung, Frank and Dugelay, Jean-Luc}, title = {Socrates: A database of realistic data for source camera recognition on smartphones}, series = {Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM}, booktitle = {Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM}, isbn = {978-989-758-351-3}, doi = {10.5220/0007403706480655}, pages = {648 -- 655}, year = {2019}, language = {en} } @incollection{RaoPathroseHueningetal.2019, author = {Rao, Deepak and Pathrose, Plato and H{\"u}ning, Felix and Sid, Jithin}, title = {An Approach for Validating Safety of Perception Software in Autonomous Driving Systems}, series = {Model-Based Safety and Assessment: 6th International Symposium, IMBSA 2019, Thessaloniki, Greece, October 16-18, 2019, Proceedings}, booktitle = {Model-Based Safety and Assessment: 6th International Symposium, IMBSA 2019, Thessaloniki, Greece, October 16-18, 2019, Proceedings}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-32872-6}, doi = {10.1007/978-3-030-32872-6_20}, pages = {303 -- 316}, year = {2019}, abstract = {The increasing complexity of Advanced Driver Assistance Systems (ADAS) presents a challenging task to validate safe and reliable performance of these systems under varied conditions. The test and validation of ADAS/AD with real test drives, although important, involves huge costs and time. Simulation tools provide an alternative with the added advantage of reproducibility but often use ideal sensors, which do not reflect real sensor output accurately. This paper presents a new validation methodology using fault injection, as recommended by the ISO 26262 standard, to test software and system robustness. In our work, we investigated and developed a tool capable of inserting faults at different software and system levels to verify its robustness. The scope of this paper is to cover the fault injection test for the Visteon's DriveCoreā„¢ system, a centralized domain controller for Autonomous driving which is sensor agnostic and SoC agnostic. With this new approach, the validation of safety monitoring functionality and its behavior can be tested using real-world data instead of synthetic data from simulation tools resulting in having better confidence in system performance before proceeding with in-vehicle testing.}, language = {en} } @inproceedings{AlhwarinSchifferFerreinetal.2019, author = {Alhwarin, Faraj and Schiffer, Stefan and Ferrein, Alexander and Scholl, Ingrid}, title = {An Optimized Method for 3D Body Scanning Applications Based on KinectFusion}, series = {Communications in Computer and Information Science}, volume = {1024}, booktitle = {Communications in Computer and Information Science}, publisher = {Springer}, issn = {1865-0929}, doi = {10.1007/978-3-030-29196-9_6}, pages = {100 -- 113}, year = {2019}, language = {en} } @inproceedings{EltesterFerreinSchiffer2020, author = {Eltester, Niklas Sebastian and Ferrein, Alexander and Schiffer, Stefan}, title = {A smart factory setup based on the RoboCup logistics league}, series = {2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS)}, booktitle = {2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS)}, publisher = {IEEE}, doi = {10.1109/ICPS48405.2020.9274766}, pages = {297 -- 302}, year = {2020}, abstract = {In this paper we present SMART-FACTORY, a setup for a research and teaching facility in industrial robotics that is based on the RoboCup Logistics League. It is driven by the need for developing and applying solutions for digital production. Digitization receives constantly increasing attention in many areas, especially in industry. The common theme is to make things smart by using intelligent computer technology. Especially in the last decade there have been many attempts to improve existing processes in factories, for example, in production logistics, also with deploying cyber-physical systems. An initiative that explores challenges and opportunities for robots in such a setting is the RoboCup Logistics League. Since its foundation in 2012 it is an international effort for research and education in an intra-warehouse logistics scenario. During seven years of competition a lot of knowledge and experience regarding autonomous robots was gained. This knowledge and experience shall provide the basis for further research in challenges of future production. The focus of our SMART-FACTORY is to create a stimulating environment for research on logistics robotics, for teaching activities in computer science and electrical engineering programmes as well as for industrial users to study and explore the feasibility of future technologies. Building on a very successful history in the RoboCup Logistics League we aim to provide stakeholders with a dedicated facility oriented at their individual needs.}, language = {en} } @article{SerrorHackHenzeetal.2021, author = {Serror, Martin and Hack, Sacha and Henze, Martin and Schuba, Marko and Wehrle, Klaus}, title = {Challenges and Opportunities in Securing the Industrial Internet of Things}, series = {IEEE Transactions on Industrial Informatics}, volume = {17}, journal = {IEEE Transactions on Industrial Informatics}, number = {5}, publisher = {IEEE}, address = {New York}, issn = {1941-0050}, doi = {10.1109/TII.2020.3023507}, pages = {2985 -- 2996}, year = {2021}, language = {en} } @inproceedings{CordesGligorevicBlicharski2019, author = {Cordes, Sven and Gligorevic, Snjezana and Blicharski, Peter}, title = {Analysis of sine precision influence on DOA estimation using the MUSIC algorithm}, series = {2019 20th International Radar Symposium (IRS)}, booktitle = {2019 20th International Radar Symposium (IRS)}, isbn = {978-3-7369-9860-5}, doi = {10.23919/IRS.2019.8768162}, pages = {1 -- 10}, year = {2019}, language = {en} } @article{SchmidtForkmannSchultzetal.2019, author = {Schmidt, Katharina and Forkmann, Katarina and Schultz, Heidrun and Gratz, Marcel and Bitz, Andreas and Wiech, Katja and Bingel, Ulrike}, title = {Enhanced Neural Reinstatement for Evoked Facial Pain Compared With Evoked Hand Pain}, series = {The Journal of Pain}, journal = {The Journal of Pain}, number = {In Press, Corrected Proof}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1526-5900}, doi = {10.1016/j.jpain.2019.03.003}, year = {2019}, language = {en} } @article{KoenigWolf2018, author = {K{\"o}nig, Johannes Alexander and Wolf, Martin}, title = {GHOST: An Evaluated Competence Developing Game for Cybersecurity Awareness Training}, series = {International Journal on Advances in Security}, volume = {11}, journal = {International Journal on Advances in Security}, number = {3 \& 4}, publisher = {IARIA Journals}, issn = {1942-2636}, pages = {274 -- 287}, year = {2018}, abstract = {To train end users how to interact with digital systems is indispensable to ensure a strong computer security. 'Competence Developing Game'-based approaches are particularly suitable for this purpose because of their motivation-and simulation-aspects. In this paper the Competence Developing Game 'GHOST' for cybersecurity awareness trainings and its underlying patterns are described. Accordingly, requirements for an 'Competence Developing Game' based training are discussed. Based on these requirements it is shown how a game can fulfill these requirements. A supplementary game interaction design and a corresponding evaluation study is shown. The combination of training requirements and interaction design is used to create a 'Competence Developing Game'-based training concept. A part of these concept is implemented into a playable prototype that serves around one hour of play respectively training time. This prototype is used to perform an evaluation of the game and training aspects of the awareness training. Thereby, the quality of the game aspect and the effectiveness of the training aspect are shown.}, language = {en} } @article{ClaerFerreinSchiffer2019, author = {Claer, Mario and Ferrein, Alexander and Schiffer, Stefan}, title = {Calibration of a Rotating or Revolving Platform with a LiDAR Sensor}, series = {Applied Sciences}, volume = {Volume 9}, journal = {Applied Sciences}, number = {issue 11, 2238}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app9112238}, pages = {18 Seiten}, year = {2019}, language = {en} } @inproceedings{SteinbauerFerrein2019, author = {Steinbauer, Gerald and Ferrein, Alexander}, title = {CogRob 2018 : Cognitive Robotics Workshop. Proceedings of the 11th Cognitive Robotics Workshop 2018 co-located with 16th International Conference on Principles of Knowledge Representation and Reasoning (KR 2018). Tempe, AZ, USA, October 27th, 2018.}, series = {CEUR workshop proceedings}, booktitle = {CEUR workshop proceedings}, number = {Vol-2325}, issn = {1613-0073}, pages = {46 Seiten}, year = {2019}, language = {en} } @inproceedings{SchifferBragard2019, author = {Schiffer, Fabian and Bragard, Michael}, title = {Cascaded LQ and Field-Oriented Control of a Mobile Inverse Pendulum (Segway) with Permanent Magnet Synchronous Machines}, series = {2019 20th International Conference on Research and Education in Mechatronics (REM)}, booktitle = {2019 20th International Conference on Research and Education in Mechatronics (REM)}, isbn = {978-1-5386-9257-8}, doi = {10.1109/REM.2019.8744101}, pages = {1 -- 8}, year = {2019}, language = {en} } @inproceedings{BragardSubeSchneideretal.2019, author = {Bragard, Michael and Sube, Maike and Schneider, Maike and Jungemann, Christoph}, title = {Introducing a Cross-University Bachelor's Programme with Orientation Semester - Enabling a Permeable Academic Education System}, series = {2019 20th International Conference on Research and Education in Mechatronics (REM)}, booktitle = {2019 20th International Conference on Research and Education in Mechatronics (REM)}, isbn = {978-1-5386-9257-8}, doi = {10.1109/REM.2019.8744132}, pages = {1 -- 6}, year = {2019}, language = {en} } @article{OrzadaSolbachGratzetal.2019, author = {Orzada, Stephan and Solbach, Klaus and Gratz, Marcel and Brunheim, Sascha and Fiedler, Thomas M. and Johst, S{\"o}ren and Bitz, Andreas and Shooshtary, Samaneh and Abuelhaija, Asjraf and Voelker, Maximilian N. and Rietsch, Stefan H. G. and Kraff, Oliver and Maderwald, Stefan and Fl{\"o}ser, Martina and Oehmingen, Mark and Quick, Harald H. and Ladd, Mark E.}, title = {A 32-channel parallel transmit system add-on for 7T MRI}, series = {Plos one}, journal = {Plos one}, doi = {10.1371/journal.pone.0222452}, year = {2019}, language = {en} } @article{NoureddineKraffLaddetal.2019, author = {Noureddine, Yacine and Kraff, Oliver and Ladd, Mark E. and Wrede, Karsten and Chen, Bixia and Quick, Harald H. and Schaefers, Georg and Bitz, Andreas}, title = {Radiofrequency induced heating around aneurysm clips using a generic birdcage head coil at 7 Tesla under consideration of the minimum distance to decouple multiple aneurysm clips}, series = {Magnetic Resonance in Medicine}, journal = {Magnetic Resonance in Medicine}, number = {Early view}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.27835}, pages = {1 -- 17}, year = {2019}, language = {en} } @article{OrzadaFiedlerBitzetal.2020, author = {Orzada, Stephan and Fiedler, Thomas M. and Bitz, Andreas and Ladd, Mark E. and Quick, Harald H.}, title = {Local SAR compression with overestimation control to reduce maximum relative SAR overestimation and improve multi-channel RF array performance}, series = {Magnetic Resonance Materials in Physics, Biology and Medicine}, journal = {Magnetic Resonance Materials in Physics, Biology and Medicine}, number = {34 (2021)}, publisher = {Springer}, address = {Heidelberg}, isbn = {1352-8661}, doi = {10.1007/s10334-020-00890-0}, pages = {153 -- 164}, year = {2020}, abstract = {Objective In local SAR compression algorithms, the overestimation is generally not linearly dependent on actual local SAR. This can lead to large relative overestimation at low actual SAR values, unnecessarily constraining transmit array performance. Method Two strategies are proposed to reduce maximum relative overestimation for a given number of VOPs. The first strategy uses an overestimation matrix that roughly approximates actual local SAR; the second strategy uses a small set of pre-calculated VOPs as the overestimation term for the compression. Result Comparison with a previous method shows that for a given maximum relative overestimation the number of VOPs can be reduced by around 20\% at the cost of a higher absolute overestimation at high actual local SAR values. Conclusion The proposed strategies outperform a previously published strategy and can improve the SAR compression where maximum relative overestimation constrains the performance of parallel transmission.}, language = {en} } @inproceedings{ChajanSchulteTiggesRekeetal.2021, author = {Chajan, Eduard and Schulte-Tigges, Joschua and Reke, Michael and Ferrein, Alexander and Matheis, Dominik and Walter, Thomas}, title = {GPU based model-predictive path control for self-driving vehicles}, series = {IEEE Intelligent Vehicles Symposium (IV)}, booktitle = {IEEE Intelligent Vehicles Symposium (IV)}, publisher = {IEEE}, isbn = {978-1-7281-5394-0}, doi = {10.1109/IV48863.2021.9575619}, pages = {1243 -- 1248}, year = {2021}, abstract = {One central challenge for self-driving cars is a proper path-planning. Once a trajectory has been found, the next challenge is to accurately and safely follow the precalculated path. The model-predictive controller (MPC) is a common approach for the lateral control of autonomous vehicles. The MPC uses a vehicle dynamics model to predict the future states of the vehicle for a given prediction horizon. However, in order to achieve real-time path control, the computational load is usually large, which leads to short prediction horizons. To deal with the computational load, the control algorithm can be parallelized on the graphics processing unit (GPU). In contrast to the widely used stochastic methods, in this paper we propose a deterministic approach based on grid search. Our approach focuses on systematically discovering the search area with different levels of granularity. To achieve this, we split the optimization algorithm into multiple iterations. The best sequence of each iteration is then used as an initial solution to the next iteration. The granularity increases, resulting in smooth and predictable steering angle sequences. We present a novel GPU-based algorithm and show its accuracy and realtime abilities with a number of real-world experiments.}, language = {en} } @inproceedings{LorenzAltherrPelz2020, author = {Lorenz, Imke-Sophie and Altherr, Lena and Pelz, Peter F.}, title = {Assessing and Optimizing the Resilience of Water Distribution Systems Using Graph-Theoretical Metrics}, series = {Operations Research Proceedings 2019}, booktitle = {Operations Research Proceedings 2019}, editor = {Neufeld, Janis S. and Buscher, Udo and Lasch, Rainer and M{\"o}st, Dominik and Sch{\"o}nberger, J{\"o}rn}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-48439-2}, doi = {10.1007/978-3-030-48439-2_63}, pages = {521 -- 527}, year = {2020}, abstract = {Water distribution systems are an essential supply infrastructure for cities. Given that climatic and demographic influences will pose further challenges for these infrastructures in the future, the resilience of water supply systems, i.e. their ability to withstand and recover from disruptions, has recently become a subject of research. To assess the resilience of a WDS, different graph-theoretical approaches exist. Next to general metrics characterizing the network topology, also hydraulic and technical restrictions have to be taken into account. In this work, the resilience of an exemplary water distribution network of a major German city is assessed, and a Mixed-Integer Program is presented which allows to assess the impact of capacity adaptations on its resilience.}, language = {en} } @inproceedings{LeiseSimonAltherr2020, author = {Leise, Philipp and Simon, Nicolai and Altherr, Lena}, title = {Comparison of Piecewise Linearization Techniques to Model Electric Motor Efficiency Maps: A Computational Study}, series = {Operations Research Proceedings 2019}, booktitle = {Operations Research Proceedings 2019}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-48439-2}, doi = {10.1007/978-3-030-48439-2_55}, pages = {457 -- 463}, year = {2020}, abstract = {To maximize the travel distances of battery electric vehicles such as cars or buses for a given amount of stored energy, their powertrains are optimized energetically. One key part within optimization models for electric powertrains is the efficiency map of the electric motor. The underlying function is usually highly nonlinear and nonconvex and leads to major challenges within a global optimization process. To enable faster solution times, one possibility is the usage of piecewise linearization techniques to approximate the nonlinear efficiency map with linear constraints. Therefore, we evaluate the influence of different piecewise linearization modeling techniques on the overall solution process and compare the solution time and accuracy for methods with and without explicitly used binary variables.}, language = {en} }