@article{FalkenbergBottBongaertsetal.2022, author = {Falkenberg, Fabian and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {Phylogenetic survey of the subtilase family and a data-mining-based search for new subtilisins from Bacillaceae}, series = {Frontiers in Microbiology}, volume = {2022}, journal = {Frontiers in Microbiology}, number = {13}, publisher = {Frontiers}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2022.1017978}, pages = {Artikel 13:1017978}, year = {2022}, abstract = {The subtilase family (S8), a member of the clan SB of serine proteases are ubiquitous in all kingdoms of life and fulfil different physiological functions. Subtilases are divided in several groups and especially subtilisins are of interest as they are used in various industrial sectors. Therefore, we searched for new subtilisin sequences of the family Bacillaceae using a data mining approach. The obtained 1,400 sequences were phylogenetically classified in the context of the subtilase family. This required an updated comprehensive overview of the different groups within this family. To fill this gap, we conducted a phylogenetic survey of the S8 family with characterised holotypes derived from the MEROPS database. The analysis revealed the presence of eight previously uncharacterised groups and 13 subgroups within the S8 family. The sequences that emerged from the data mining with the set filter parameters were mainly assigned to the subtilisin subgroups of true subtilisins, high-alkaline subtilisins, and phylogenetically intermediate subtilisins and represent an excellent source for new subtilisin candidates.}, language = {en} } @article{WeldenSeverinsPoghossianetal.2022, author = {Welden, Melanie and Severins, Robin and Poghossian, Arshak and Wege, Christina and Bongaerts, Johannes and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of acetoin and diacetyl by a tobacco mosaic virus-assisted field-effect biosensor}, series = {Chemosensors}, volume = {10}, journal = {Chemosensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors10060218}, pages = {Artikel 218}, year = {2022}, abstract = {Acetoin and diacetyl have a major impact on the flavor of alcoholic beverages such as wine or beer. Therefore, their measurement is important during the fermentation process. Until now, gas chromatographic techniques have typically been applied; however, these require expensive laboratory equipment and trained staff, and do not allow for online monitoring. In this work, a capacitive electrolyte-insulator-semiconductor sensor modified with tobacco mosaic virus (TMV) particles as enzyme nanocarriers for the detection of acetoin and diacetyl is presented. The enzyme acetoin reductase from Alkalihalobacillus clausii DSM 8716ᵀ is immobilized via biotin-streptavidin affinity, binding to the surface of the TMV particles. The TMV-assisted biosensor is electrochemically characterized by means of leakage-current, capacitance-voltage, and constant capacitance measurements. In this paper, the novel biosensor is studied regarding its sensitivity and long-term stability in buffer solution. Moreover, the TMV-assisted capacitive field-effect sensor is applied for the detection of diacetyl for the first time. The measurement of acetoin and diacetyl with the same sensor setup is demonstrated. Finally, the successive detection of acetoin and diacetyl in buffer and in diluted beer is studied by tuning the sensitivity of the biosensor using the pH value of the measurement solution.}, language = {en} } @article{UysalFiratCreutzetal.2022, author = {Uysal, Karya and Firat, Ipek Serat and Creutz, Till and Aydin, Inci Cansu and Artmann, Gerhard and Teusch, Nicole and Temiz Artmann, Ayseg{\"u}l}, title = {A novel in vitro wound healing assay using free-standing, ultra-thin PDMS membranes}, series = {membranes}, volume = {2023}, journal = {membranes}, number = {13(1)}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/membranes13010022}, pages = {Artikel 22}, year = {2022}, abstract = {Advances in polymer science have significantly increased polymer applications in life sciences. We report the use of free-standing, ultra-thin polydimethylsiloxane (PDMS) membranes, called CellDrum, as cell culture substrates for an in vitro wound model. Dermal fibroblast monolayers from 28- and 88-year-old donors were cultured on CellDrums. By using stainless steel balls, circular cell-free areas were created in the cell layer (wounding). Sinusoidal strain of 1 Hz, 5\% strain, was applied to membranes for 30 min in 4 sessions. The gap circumference and closure rate of un-stretched samples (controls) and stretched samples were monitored over 4 days to investigate the effects of donor age and mechanical strain on wound closure. A significant decrease in gap circumference and an increase in gap closure rate were observed in trained samples from younger donors and control samples from older donors. In contrast, a significant decrease in gap closure rate and an increase in wound circumference were observed in the trained samples from older donors. Through these results, we propose the model of a cell monolayer on stretchable CellDrums as a practical tool for wound healing research. The combination of biomechanical cell loading in conjunction with analyses such as gene/protein expression seems promising beyond the scope published here.}, language = {en} } @article{OjovanSteinmetz2022, author = {Ojovan, Michael I. and Steinmetz, Hans-J{\"u}rgen}, title = {Approaches to Disposal of Nuclear Waste}, series = {Energies}, volume = {15}, journal = {Energies}, number = {20}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en15207804}, pages = {Artikel 7804}, year = {2022}, abstract = {We present a concise mini overview on the approaches to the disposal of nuclear waste currently used or deployed. The disposal of nuclear waste is the end point of nuclear waste management (NWM) activities and is the emplacement of waste in an appropriate facility without the intention to retrieve it. The IAEA has developed an internationally accepted classification scheme based on the end points of NWM, which is used as guidance. Retention times needed for safe isolation of waste radionuclides are estimated based on the radiotoxicity of nuclear waste. Disposal facilities usually rely on a multi-barrier defence system to isolate the waste from the biosphere, which comprises the natural geological barrier and the engineered barrier system. Disposal facilities could be of a trench type, vaults, tunnels, shafts, boreholes, or mined repositories. A graded approach relates the depth of the disposal facilities' location with the level of hazard. Disposal practices demonstrate the reliability of nuclear waste disposal with minimal expected impacts on the environment and humans.}, language = {en} } @misc{BraunKrafftTippkoetter2022, author = {Braun, Lena and Krafft, Simone and Tippk{\"o}tter, Nils}, title = {Combined supercritical carbon dioxide extraction and chromatography of the algae fatty linoleic and linolenic acid}, series = {Chemie Ingenieur Technik}, volume = {94}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.202255308}, pages = {1304}, year = {2022}, abstract = {A method for the integrated extraction and separation of fatty acids from algae using supercritical CO2 is presented. Desmodesmus obliquus and Chlorella sorokiniana were used as algae. First, a method for chromatographic separation of fatty acids of different degrees of saturation was established and optimized. Then, an integrated method for supercritical extraction was developed for both algal species. It was also verified whether prior cell disruption was beneficial for extraction. In developing the method for chromatographic separation, statistical experimental design was used to determine the optimal parameter settings. The methanol content in the mobile phase proved to be the most important parameter for successful separation of the three unsaturated fatty acids oleic acid, linoleic acid, and linolenic acid. Supercritical extraction with dried algae showed that about four times more fatty acids can be extracted from C. sorokiniana relative to the dry mass used.}, language = {en} } @misc{WiegnerVolkerMainzetal.2022, author = {Wiegner, J. and Volker, H. and Mainz, F. and Backes, A. and L{\"o}ken, M. and H{\"u}ning, Felix}, title = {Wiegand-Effect-Powered Wireless IT Sensor Node}, year = {2022}, abstract = {With the growing interest in small distributed sensors for the "Internet of Things", more attention is being paid to energy harvesting techologies. Reducing or eliminating the need for external power sources or batteries make devices more self-sufficient, more reliable, and reduces maintenance requirements. The Wiegand effect is a proven technology for harvesting small amounts of electrical power from mechanical motion.}, language = {en} } @misc{FeldmannFranckeEspeetal.2022, author = {Feldmann, Marco and Francke, Gero and Espe, Clemes and Chen, Qian and Baader, Fabian and Boxberg, Marc S. and Sustrate, Anna-Marie and Kowalski, Julia and Dachwald, Bernd}, title = {Performance data of an ice-melting probe from field tests in two different ice environments}, doi = {10.5281/zenodo.6094866}, year = {2022}, abstract = {This dataset was acquired at field tests of the steerable ice-melting probe "EnEx-IceMole" (Dachwald et al., 2014). A field test in summer 2014 was used to test the melting probe's system, before the probe was shipped to Antarctica, where, in international cooperation with the MIDGE project, the objective of a sampling mission in the southern hemisphere summer 2014/2015 was to return a clean englacial sample from the subglacial brine reservoir supplying the Blood Falls at Taylor Glacier (Badgeley et al., 2017, German et al., 2021). The standardized log-files generated by the IceMole during melting operation include more than 100 operational parameters, housekeeping information, and error states, which are reported to the base station in intervals of 4 s. Occasional packet loss in data transmission resulted in a sparse number of increased sampling intervals, which where compensated for by linear interpolation during post processing. The presented dataset is based on a subset of this data: The penetration distance is calculated based on the ice screw drive encoder signal, providing the rate of rotation, and the screw's thread pitch. The melting speed is calculated from the same data, assuming the rate of rotation to be constant over one sampling interval. The contact force is calculated from the longitudinal screw force, which es measured by strain gauges. The used heating power is calculated from binary states of all heating elements, which can only be either switched on or off. Temperatures are measured at each heating element and averaged for three zones (melting head, side-wall heaters and back-plate heaters).}, language = {en} } @inproceedings{MayntzKeimerDahmannetal.2022, author = {Mayntz, Joscha and Keimer, Jona and Dahmann, Peter and Hille, Sebastian and Stumpf, Eike and Fisher, Alex and Dorrington, Graham}, title = {Electrical Drive and Regeneration in General Aviation Flight with Propellers}, series = {Deutscher Luft- und Raumfahrtkongress 2020}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2020}, publisher = {DGLR}, address = {Bonn}, doi = {10.25967/530100}, pages = {8 Seiten}, year = {2022}, abstract = {Electric flight has the potential for a more sustainable and energy-saving way of aviation compared to fossil fuel aviation. The electric motor can be used as a generator inflight to regenerate energy during descent. Three different approaches to regenerating with electric propeller powertrains are proposed in this paper. The powertrain is to be set up in a wind tunnel to determine the propeller efficiency in both working modes as well as the noise emissions. Furthermore, the planned flight tests are discussed. In preparation for these tests, a yaw stability analysis is performed with the result that the aeroplane is controllable during flight and in the most critical failure case. The paper shows the potential for inflight regeneration and addresses the research gaps in the dual role of electric powertrains for propulsion and regeneration of general aviation aircraft.}, language = {en} } @article{PennerUsherovichNiedermeieretal.2022, author = {Penner, Crystal and Usherovich, Samuel and Niedermeier, Jana and B{\´e}langer-Champagne, Camille and Trinczek, Michael and Paulßen, Elisabeth and Hoehr, Cornelia}, title = {Organic Scintillator-Fibre Sensors for Proton Therapy Dosimetry: SCSF-3HF and EJ-260}, series = {electronics}, volume = {12}, journal = {electronics}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2079-9292}, doi = {10.3390/electronics12010011}, pages = {12 Seiten}, year = {2022}, abstract = {In proton therapy, the dose from secondary neutrons to the patient can contribute to side effects and the creation of secondary cancer. A simple and fast detection system to distinguish between dose from protons and neutrons both in pretreatment verification as well as potentially in vivo monitoring is needed to minimize dose from secondary neutrons. Two 3 mm long, 1 mm diameter organic scintillators were tested for candidacy to be used in a proton-neutron discrimination detector. The SCSF-3HF (1500) scintillating fibre (Kuraray Co. Chiyoda-ku, Tokyo, Japan) and EJ-260 plastic scintillator (Eljen Technology, Sweetwater, TX, USA) were irradiated at the TRIUMF Neutron Facility and the Proton Therapy Research Centre. In the proton beam, we compared the raw Bragg peak and spread-out Bragg peak response to the industry standard Markus chamber detector. Both scintillator sensors exhibited quenching at high LET in the Bragg peak, presenting a peak-to-entrance ratio of 2.59 for the EJ-260 and 2.63 for the SCSF-3HF fibre, compared to 3.70 for the Markus chamber. The SCSF-3HF sensor demonstrated 1.3 times the sensitivity to protons and 3 times the sensitivity to neutrons as compared to the EJ-260 sensor. Combined with our equations relating neutron and proton contributions to dose during proton irradiations, and the application of Birks' quenching correction, these fibres provide valid candidates for inexpensive and replicable proton-neutron discrimination detectors}, language = {en} } @article{VahidpourGuthmanArreolaetal.2022, author = {Vahidpour, Farnoosh and Guthman, Eric and Arreola, Julia and Alghazali, Yousef H. M. and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Assessment of Various Process Parameters for Optimized Sterilization Conditions Using a Multi-Sensing Platform}, series = {Foods}, volume = {11}, journal = {Foods}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2304-8158}, doi = {10.3390/foods11050660}, pages = {Artikel 660}, year = {2022}, abstract = {In this study, an online multi-sensing platform was engineered to simultaneously evaluate various process parameters of food package sterilization using gaseous hydrogen peroxide (H₂O₂). The platform enabled the validation of critical aseptic parameters. In parallel, one series of microbiological count reduction tests was performed using highly resistant spores of B. atrophaeus DSM 675 to act as the reference method for sterility validation. By means of the multi-sensing platform together with microbiological tests, we examined sterilization process parameters to define the most effective conditions with regards to the highest spore kill rate necessary for aseptic packaging. As these parameters are mutually associated, a correlation between different factors was elaborated. The resulting correlation indicated the need for specific conditions regarding the applied H₂O₂ gas temperature, the gas flow and concentration, the relative humidity and the exposure time. Finally, the novel multi-sensing platform together with the mobile electronic readout setup allowed for the online and on-site monitoring of the sterilization process, selecting the best conditions for sterility and, at the same time, reducing the use of the time-consuming and costly microbiological tests that are currently used in the food package industry.}, language = {en} } @article{PoghossianKarschuckWagneretal.2022, author = {Poghossian, Arshak and Karschuck, Tobias and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Field-Effect Capacitors Decorated with Ligand-Stabilized Gold Nanoparticles: Modeling and Experiments}, series = {Biosensors}, volume = {12}, journal = {Biosensors}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios12050334}, pages = {Artikel 334}, year = {2022}, abstract = {Nanoparticles are recognized as highly attractive tunable materials for designing field-effect biosensors with enhanced performance. In this work, we present a theoretical model for electrolyte-insulator-semiconductor capacitors (EISCAP) decorated with ligand-stabilized charged gold nanoparticles. The charged AuNPs are taken into account as additional, nanometer-sized local gates. The capacitance-voltage (C-V) curves and constant-capacitance (ConCap) signals of the AuNP-decorated EISCAPs have been simulated. The impact of the AuNP coverage on the shift of the C-V curves and the ConCap signals was also studied experimentally on Al-p-Si-SiO₂ EISCAPs decorated with positively charged aminooctanethiol-capped AuNPs. In addition, the surface of the EISCAPs, modified with AuNPs, was characterized by scanning electron microscopy for different immobilization times of the nanoparticles.}, language = {en} } @article{SchulteTiggesFoersterNikolovskietal.2022, author = {Schulte-Tigges, Joschua and F{\"o}rster, Marco and Nikolovski, Gjorgji and Reke, Michael and Ferrein, Alexander and Kaszner, Daniel and Matheis, Dominik and Walter, Thomas}, title = {Benchmarking of various LiDAR sensors for use in self-driving vehicles in real-world environments}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s22197146}, pages = {20 Seiten}, year = {2022}, abstract = {Abstract In this paper, we report on our benchmark results of the LiDAR sensors Livox Horizon, Robosense M1, Blickfeld Cube, Blickfeld Cube Range, Velodyne Velarray H800, and Innoviz Pro. The idea was to test the sensors in different typical scenarios that were defined with real-world use cases in mind, in order to find a sensor that meet the requirements of self-driving vehicles. For this, we defined static and dynamic benchmark scenarios. In the static scenarios, both LiDAR and the detection target do not move during the measurement. In dynamic scenarios, the LiDAR sensor was mounted on the vehicle which was driving toward the detection target. We tested all mentioned LiDAR sensors in both scenarios, show the results regarding the detection accuracy of the targets, and discuss their usefulness for deployment in self-driving cars.}, language = {en} } @misc{RothkranzKrafftTippkoetter2022, author = {Rothkranz, Berit and Krafft, Simone and Tippk{\"o}tter, Nils}, title = {Media optimization for sustainable fuel production: How to produce biohydrogen from renewable resources with Thermotoga neapolitana}, series = {Chemie Ingenieur Technik}, volume = {94}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.202255305}, pages = {1298 -- 1299}, year = {2022}, abstract = {Hydrogen is playing an increasingly important role in research and politics as an energy carrier of the future. Since hydrogen has commonly been produced from methane by steam reforming, the need for climate-friendly, alternative production routes is emerging. In addition to electrolysis, fermentative routes for the production of so-called biohydrogen are "green" alternatives. The application of microorganisms offers the advantage of sustainable production from renewable resources using easily manageable technologies. In this project, the hyperthermophilic, anaerobic microorganism Thermotoga neapolitana is used for the productio nof biohydrogen from renewable resources. The enzymatically hydrolyzed resources were used in fermentation leading to yield coefficients of 1.8 mole H₂ per mole glucose when using hydrolyzed straw and ryegrass supplemented with medium, respectively. These results are similar to the hydrogen yields when using Thermotoga basal medium with glucose (TBGY) as control group. In order to minimize the supplementation of the hydrolysate and thus increase the economic efficiency of the process, the essential media components were identified. The experiments revealed NaCl, KCl, and glucose as essential components for cell growth as well as biohydrogen production. When excluding NaCl, a decrease of 96\% in hydrogen production occured.}, language = {en} } @misc{VarrialeKukaTippkoetteretal.2022, author = {Varriale, Ludovica and Kuka, Katrin and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Use of a green biomass in a biorefinery platform}, series = {Chemie Ingenieur Technik}, volume = {94}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.202255095}, pages = {1299}, year = {2022}, abstract = {The emerging environmental issues due to the use of fossil resources are encouraging the exploration of new renewable resources. Biomasses are attracting more interest due to the low environmental impacts, low costs, and high availability on earth. In this scenario, green biorefineries are a promising platform in which green biomasses are used as feedstock. Grasses are mainly composed of cellulose and hemicellulose, and lignin is available in a small amount. In this work, a perennial ryegrass was used as feedstock to develop a green bio-refinery platform. Firstly, the grass was mechanically pretreated, thus obtaining a press juice and a press cake fraction. The press juice has high nutritional values and can be employed as part of fermentation media. The press cake can be employed as a substrate either in enzymatic hydrolysis or in solid-state fermentation. The overall aim of this work was to demonstrate different applications of both the liquid and the solid fractions. For this purpose, the filamentous fungus A. niger and the yeast Y. lipolythica were selected for their ability to produce citric acid. Finally, the possibility was assessed to use the press juice as part of fermentation media to cultivate S. cerevisiae and lactic acid bacteria for ethanol and lactic acid fermentation.}, language = {en} } @article{HoffmannUhlCeblinetal.2022, author = {Hoffmann, Andreas and Uhl, Matthias and Ceblin, Maximilian and Rohrbach, Felix and Bansmann, Joachim and Mallah, Marcel and Heuermann, Holger and Jacob, Timo and Kuehne, Alexander J.C.}, title = {Atmospheric pressure plasma-jet treatment of PAN-nonwovens—carbonization of nanofiber electrodes}, series = {C - Journal of Carbon Research}, volume = {8}, journal = {C - Journal of Carbon Research}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2311-5629}, doi = {10.3390/c8030033}, pages = {8 Seiten}, year = {2022}, abstract = {Carbon nanofibers are produced from dielectric polymer precursors such as polyacrylonitrile (PAN). Carbonized nanofiber nonwovens show high surface area and good electrical conductivity, rendering these fiber materials interesting for application as electrodes in batteries, fuel cells, and supercapacitors. However, thermal processing is slow and costly, which is why new processing techniques have been explored for carbon fiber tows. Alternatives for the conversion of PAN-precursors into carbon fiber nonwovens are scarce. Here, we utilize an atmospheric pressure plasma jet to conduct carbonization of stabilized PAN nanofiber nonwovens. We explore the influence of various processing parameters on the conductivity and degree of carbonization of the converted nanofiber material. The precursor fibers are converted by plasma-jet treatment to carbon fiber nonwovens within seconds, by which they develop a rough surface making subsequent surface activation processes obsolete. The resulting carbon nanofiber nonwovens are applied as supercapacitor electrodes and examined by cyclic voltammetry and impedance spectroscopy. Nonwovens that are carbonized within 60 s show capacitances of up to 5 F g⁻¹.}, language = {en} } @article{MuellerSeginWeigandetal.2022, author = {Mueller, Tobias and Segin, Alexander and Weigand, Christoph and Schmitt, Robert H.}, title = {Feature selection for measurement models}, series = {International journal of quality \& reliability management}, journal = {International journal of quality \& reliability management}, number = {Vol. ahead-of-print, No. ahead-of-print.}, publisher = {Emerald Group Publishing Limited}, address = {Bingley}, issn = {0265-671X}, doi = {10.1108/IJQRM-07-2021-0245}, year = {2022}, abstract = {Purpose In the determination of the measurement uncertainty, the GUM procedure requires the building of a measurement model that establishes a functional relationship between the measurand and all influencing quantities. Since the effort of modelling as well as quantifying the measurement uncertainties depend on the number of influencing quantities considered, the aim of this study is to determine relevant influencing quantities and to remove irrelevant ones from the dataset. Design/methodology/approach In this work, it was investigated whether the effort of modelling for the determination of measurement uncertainty can be reduced by the use of feature selection (FS) methods. For this purpose, 9 different FS methods were tested on 16 artificial test datasets, whose properties (number of data points, number of features, complexity, features with low influence and redundant features) were varied via a design of experiments. Findings Based on a success metric, the stability, universality and complexity of the method, two FS methods could be identified that reliably identify relevant and irrelevant influencing quantities for a measurement model. Originality/value For the first time, FS methods were applied to datasets with properties of classical measurement processes. The simulation-based results serve as a basis for further research in the field of FS for measurement models. The identified algorithms will be applied to real measurement processes in the future.}, language = {en} } @article{GaigallGerstenbergTrinh2022, author = {Gaigall, Daniel and Gerstenberg, Julian and Trinh, Thi Thu Ha}, title = {Empirical process of concomitants for partly categorial data and applications in statistics}, series = {Bernoulli}, volume = {28}, journal = {Bernoulli}, number = {2}, publisher = {International Statistical Institute}, address = {Den Haag, NL}, issn = {1573-9759}, doi = {10.3150/21-BEJ1367}, pages = {803 -- 829}, year = {2022}, abstract = {On the basis of independent and identically distributed bivariate random vectors, where the components are categorial and continuous variables, respectively, the related concomitants, also called induced order statistic, are considered. The main theoretical result is a functional central limit theorem for the empirical process of the concomitants in a triangular array setting. A natural application is hypothesis testing. An independence test and a two-sample test are investigated in detail. The fairly general setting enables limit results under local alternatives and bootstrap samples. For the comparison with existing tests from the literature simulation studies are conducted. The empirical results obtained confirm the theoretical findings.}, language = {en} } @article{FunkeEschRoosen2022, author = {Funke, Harald and Esch, Thomas and Roosen, Petra}, title = {Powertrain Adaptions for LPG Usage in General Aviation}, series = {MTZ worldwide}, volume = {2022}, journal = {MTZ worldwide}, number = {83}, publisher = {Springer Nature}, address = {Basel}, doi = {10.1007/s38313-021-0756-6}, pages = {58 -- 62}, year = {2022}, abstract = {In general aviation, too, it is desirable to be able to operate existing internal combustion engines with fuels that produce less CO₂ than Avgas 100LL being widely used today It can be assumed that, in comparison, the fuels CNG, LPG or LNG, which are gaseous under normal conditions, produce significantly lower emissions. Necessary propulsion system adaptations were investigated as part of a research project at Aachen University of Applied Sciences.}, language = {en} } @article{DitzhausGaigall2022, author = {Ditzhaus, Marc and Gaigall, Daniel}, title = {Testing marginal homogeneity in Hilbert spaces with applications to stock market returns}, series = {Test}, volume = {2022}, journal = {Test}, number = {31}, publisher = {Springer}, issn = {1863-8260}, doi = {10.1007/s11749-022-00802-5}, pages = {749 -- 770}, year = {2022}, abstract = {This paper considers a paired data framework and discusses the question of marginal homogeneity of bivariate high-dimensional or functional data. The related testing problem can be endowed into a more general setting for paired random variables taking values in a general Hilbert space. To address this problem, a Cram{\´e}r-von-Mises type test statistic is applied and a bootstrap procedure is suggested to obtain critical values and finally a consistent test. The desired properties of a bootstrap test can be derived that are asymptotic exactness under the null hypothesis and consistency under alternatives. Simulations show the quality of the test in the finite sample case. A possible application is the comparison of two possibly dependent stock market returns based on functional data. The approach is demonstrated based on historical data for different stock market indices.}, language = {en} } @article{ZhantlessovaSavitskayaKistaubayevaetal.2022, author = {Zhantlessova, Sirina and Savitskaya, Irina and Kistaubayeva, Aida and Ignatova, Ludmila and Talipova, Aizhan and Pogrebnjak, Alexander and Digel, Ilya}, title = {Advanced "Green" prebiotic composite of bacterial cellulose/pullulan based on synthetic biology-powered microbial coculture strategy}, series = {Polymers}, volume = {14}, journal = {Polymers}, number = {15}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym14153224}, pages = {Artikel 3224}, year = {2022}, abstract = {Bacterial cellulose (BC) is a biopolymer produced by different microorganisms, but in biotechnological practice, Komagataeibacter xylinus is used. The micro- and nanofibrillar structure of BC, which forms many different-sized pores, creates prerequisites for the introduction of other polymers into it, including those synthesized by other microorganisms. The study aims to develop a cocultivation system of BC and prebiotic producers to obtain BC-based composite material with prebiotic activity. In this study, pullulan (PUL) was found to stimulate the growth of the probiotic strain Lactobacillus rhamnosus GG better than the other microbial polysaccharides gellan and xanthan. BC/PUL biocomposite with prebiotic properties was obtained by cocultivation of Komagataeibacter xylinus and Aureobasidium pullulans, BC and PUL producers respectively, on molasses medium. The inclusion of PUL in BC is proved gravimetrically by scanning electron microscopy and by Fourier transformed infrared spectroscopy. Cocultivation demonstrated a composite effect on the aggregation and binding of BC fibers, which led to a significant improvement in mechanical properties. The developed approach for "grafting" of prebiotic activity on BC allows preparation of environmentally friendly composites of better quality.}, language = {en} }