@article{KuropkaMuellerHoeckeretal.1989, author = {Kuropka, Rolf and M{\"u}ller, Bettina and H{\"o}cker, Hartwig and Berndt, Heinz}, title = {Chiral stationary phases via hydrosilylation reaction of N-acryloylamino acids : I. Stationary phase with one chiral centre for high-performance liquid chromatography and development of a new derivatization pattern for amino acid enantiomers}, series = {Journal of chromatography A}, journal = {Journal of chromatography A}, number = {481}, isbn = {0021-9673}, pages = {380 -- 386}, year = {1989}, language = {en} } @article{NokiharaBerndt1978, author = {Nokihara, Kiyoshi and Berndt, Heinz}, title = {Studies on sulfur-containing peptides : tert-butyloxycarbonylsulfenyl and benzyloxycarbonylsulfenyl derivatives as protecting groups for cysteine}, series = {The journal of organic chemistry}, volume = {43}, journal = {The journal of organic chemistry}, number = {25}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/jo00419a046}, pages = {4893 -- 4895}, year = {1978}, language = {en} } @article{KalbeHoeckerBerndt1989, author = {Kalbe, Jochen and H{\"o}cker, Hartwig and Berndt, Heinz}, title = {Design of enzyme reactors as chromatographic columns for racemic resolution of amino acid esters}, series = {Chromatographia}, volume = {28}, journal = {Chromatographia}, number = {3-4}, isbn = {0009-5893}, doi = {10.1007/BF02319646}, pages = {193 -- 196}, year = {1989}, language = {en} } @article{TurckBerndt1981, author = {Turck, Christoph W. and Berndt, Heinz}, title = {Synthese definierter Peptid-Derivate durch Aminolyse von 3-(Nα-Acyl-peptidyloxy)-2-hydroxy-N-alkylbenzamiden bei erh{\"o}hten Temperaturen, I : Synthese des Modellpeptid-Derivates Z-Ala-Phe-Gly-N(Et)2}, series = {Hoppe-Seyler´s Zeitschrift f{\"u}r physiologische Chemie}, volume = {362}, journal = {Hoppe-Seyler´s Zeitschrift f{\"u}r physiologische Chemie}, number = {1}, issn = {1437-4315}, doi = {10.1515/bchm2.1981.362.1.821}, pages = {821 -- 828}, year = {1981}, language = {de} } @article{DanhoNaithaniSasakietal.1980, author = {Danho, Waleed and Naithani, Vinod K. and Sasaki, Andr{\´e} N. and F{\"o}hles, Joseph and Berndt, Heinz and B{\"u}llesbach, Erika E. and Zahn, H.}, title = {Human proinsulin, VII : synthesis of two protected peptides corresponding to the sequences 1—45 and 46—86 of the prohormone}, series = {Hoppe-Seyler's Zeitschrift f{\"u}r physiologische Chemie}, volume = {361}, journal = {Hoppe-Seyler's Zeitschrift f{\"u}r physiologische Chemie}, number = {1}, issn = {1437-4315}, doi = {10.1515/bchm2.1980.361.1.857}, pages = {857 -- 863}, year = {1980}, language = {en} } @article{KalbeKuropkaMeyerStorketal.1988, author = {Kalbe, Jochen and Kuropka, Rolf and Meyer-Stork, L. Sebastian and Berndt, Heinz and Sauter, Sybille L. and Loss, Peter and Hendo, Karsten and Riesner, Detlev and H{\"o}cker, Hartwig}, title = {Isolation and characterization of high-molecular mass DNA from hair shafts}, series = {Biological chemistry}, volume = {369}, journal = {Biological chemistry}, number = {1}, isbn = {0177-3593}, doi = {10.1515/bchm3.1988.369.1.413}, pages = {413 -- 416}, year = {1988}, language = {en} } @article{BaumannTillmannAletsee1989, author = {Baumann, Marcus and Tillmann, Urban and Aletsee, Ludwig}, title = {Distribution of Carbon Among Photosynthetic End Products in the Bloom-Forming Arctic Diatom Thalassiosira antarctica COMBER / Tillmann, U. ; Baumann, M.E.M. ; Aletsee, L.}, series = {Polar Biology. 10 (1989), H. 3}, journal = {Polar Biology. 10 (1989), H. 3}, isbn = {0722-4060}, pages = {231 -- 238}, year = {1989}, language = {en} } @inproceedings{AlKaidyUlberTippkoetter2014, author = {Al-Kaidy, Huschyar and Ulber, Roland and Tippk{\"o}tter, Nils}, title = {A platform technology for the automated reaction control in magnetizable micro-fluidic droplets}, series = {Biomaterials - made in bioreactors : book of abstracts, May 26 - 28, 2014, Radisson Blu Park Hotel and Conference Dentre, Radebeul, Germany}, booktitle = {Biomaterials - made in bioreactors : book of abstracts, May 26 - 28, 2014, Radisson Blu Park Hotel and Conference Dentre, Radebeul, Germany}, publisher = {DECHEMA}, address = {Frankfurt am Main}, pages = {21 -- 22}, year = {2014}, language = {en} } @misc{KowollikSchnitzlerBisellietal.2010, author = {Kowollik, Silvia and Schnitzler, Thomas and Biselli, Manfred and Krueger, R. and Zang, Werner and Peuscher, A. and Schillberg, S. and Fischer, R.}, title = {Die Rolle des Respirationsquotienten in der Zellkulturfermentation}, series = {Chemie Ingenieur Technik}, volume = {82}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, isbn = {Chemie Ingenieur Tec}, doi = {10.1002/cite.201050393}, pages = {1505 -- 1506}, year = {2010}, abstract = {In der biopharmazeutischen Industrie werden rekombinante Proteine und monoklonale Antik{\"o}rper in Zellkulturfermentationen produziert, da nur humane oder tierische Zelllinien {\"u}ber die F{\"a}higkeit der Glykosylierung verf{\"u}gen. Um hohe Produktausbeuten in ausgezeichneter Qualit{\"a}t zu erzielen, ist eine funktionst{\"u}chtige Prozesskontrolle unerl{\"a}sslich. Hierzu wurde in Kooperation mit der Firma Hitec Zang GmbH die HiSense� Pr{\"a}zisionsabgasanalytik entwickelt, die auf Basis der vollautomatischen Ermittlung des Respirationsquotienten (RQ; Verh{\"a}ltnis vonKohlendioxidbildungsrate (CER) zu Sauerstoffaufnahmerate (OTR)) einen Fermentationsprozess nicht-invasiv {\"u}berwacht. Der RQ kann in Hybridoma- und CHO-Zellen (s. Abb.) in sowohl serumhaltigen als auch serumfreien Medien erfolgreich ermittelt werden. Hier spiegeln die CER und die OTR das Wachstumsverhalten der kultivierten CHO-Zellen wider. Der RQ nimmt dabei Werte zwischen 0,9 und 1,2 an. Dies l{\"a}sst auf verschiedene Stoffwechselaktivit{\"a}ten schließen. Da die momentane industrielle Prozesskontrolle auf gemessenen Sauerstoffaufnahmeraten oder entsprechende Offline-Analytiken der Metaboliten basieren, soll durch die vollautomatische RQ-Ermittlung ein neues Verfahren zur Fermentations{\"u}berwachung etabliert werden. Bisher war diese, in bakteriellen Kultivierungen standardisierte Methode, aufgrund der schwierigen CER-Berechnung bei Zellkulturen keine ad{\"a}quate Alternative.}, language = {de} } @article{RibitschHeumannKarletal.2012, author = {Ribitsch, Doris and Heumann, Sonja and Karl, Wolfgang and Gerlach, Jochen and Leber, Regina and Birner-Gruenberger, Ruth and Gruber, Karl and Eiteljoerg, Inge and Remler, Peter and Siegert, Petra and Lange, Jennifer and Maurer, Karl-Heinz and Berg, Gabriele and Guebitz, G. M. and Schwab, H.}, title = {Extracellular serine proteases from Stenotrophomonas maltophilia: Screening, isolation and heterologous expression in E. coli}, series = {Journal of biotechnology}, volume = {157}, journal = {Journal of biotechnology}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4863 (E-Journal); 0168-1656 (Print)}, doi = {10.1016/j.jbiotec.2011.09.025}, pages = {140 -- 147}, year = {2012}, abstract = {A large strain collection comprising antagonistic bacteria was screened for novel detergent proteases. Several strains displayed protease activity on agar plates containing skim milk but were inactive in liquid media. Encapsulation of cells in alginate beads induced protease production. Stenotrophomonas maltophilia emerged as best performer under washing conditions. For identification of wash-active proteases, four extracellular serine proteases called StmPr1, StmPr2, StmPr3 and StmPr4 were cloned. StmPr2 and StmPr4 were sufficiently overexpressed in E. coli. Expression of StmPr1 and StmPr3 resulted in unprocessed, insoluble protein. Truncation of most of the C-terminal domain which has been identified by enzyme modeling succeeded in expression of soluble, active StmPr1 but failed in case of StmPr3. From laundry application tests StmPr2 turned out to be a highly wash-active protease at 45 °C. Specific activity of StmPr2 determined with suc-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide as the substrate was 17 ± 2 U/mg. In addition we determined the kinetic parameters and cleavage preferences of protease StmPr2.}, language = {en} } @article{SrivastavaSinghAggarwaletal.2010, author = {Srivastava, Alok and Singh, Virendra and Aggarwal, Pranav and Schneeweiss, F. and Scherer, Ulrich W. and Friedrich, W.}, title = {Optical studies of insulating polymers for radiation dose monitoring}, series = {Indian Journal of Pure and Applied Physics}, volume = {48}, journal = {Indian Journal of Pure and Applied Physics}, number = {11}, publisher = {Council Of Scientific And Industrial Research (CSIR), National Institute Of Science Communication and Policy Research (NIScPR)}, address = {New Delhi}, isbn = {0019-5596}, pages = {782 -- 786}, year = {2010}, abstract = {The optical study carried out on insulating polymers namely polyethyleneterephthalate (PET) and polyvinylchloride (PVC) has been described. The polymers are exposed to different radiation doses by exposing them to swift heavy ions of carbon (90 MeV), silicon (120 MeV) and nickel (100 MeV) which influence on their optical properties. The studies show that amongst the investigated polymers, PVC and PET have potential for application as dosimeter beyond a threshold dose which is strongly dependent on the nature of the material and the radiation type. The optical micrographs show a distinct change in colour of the sample with increase in radiation dose.}, language = {en} } @inproceedings{EngelThieringerTippkoetter2016, author = {Engel, Mareike and Thieringer, Julia and Tippk{\"o}tter, Nils}, title = {Linking bioprocess engineering and electrochemistry for sustainable biofuel production}, series = {Young Researchers Symposium, YRS 2016. Proceedings}, booktitle = {Young Researchers Symposium, YRS 2016. Proceedings}, publisher = {Fraunhofer Verlag}, address = {Karlsruhe}, pages = {49 -- 53}, year = {2016}, abstract = {Electromicrobial engineering is an emerging, highly interdisciplinary research area linking bioprocesses with electrochemistry. In this work, microbial electrosynthesis (MES) of biobutanol is carried out during acetone-butanol-ethanol (ABE) fermentations with Clostridium acetobutylicum. A constant electric potential of -600mV (vs. Ag/AgCl) with simultaneous addition of the soluble redox mediator neutral red is used in order to study the electron transfer between the working electrode and the bacterial cells. The results show an earlier initiation of solvent production for all fermentations with applied potential compared to the conventional ABE fermentation. The f inal butanol concentration can be more than doubled by the application of a negative potential combined with addition of neutral red. Moreover a higher biofilm formation on the working electrode compared to control cultivations has been observed. In contrast to previous studies, our results also indicate that direct electron transfer (DET) might be possible with C. acetobutylicum. The presented results make microbial butanol production economically attractive and therefore support the development of sustainable production processes in the chemical industry aspired by the "Centre for resource-efficient chemistry and raw material change" as well as the the project "NanoKat" working on nanostructured catalysts in Kaiserslautern.}, language = {en} } @article{OehlenschlaegerVolkmarStiefelmaieretal.2024, author = {Oehlenschl{\"a}ger, Katharina and Volkmar, Marianne and Stiefelmaier, Judith and Langsdorf, Alexander and Holtmann, Dirk and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {New insights into the influence of pre-culture on robust solvent production of C. acetobutylicum}, series = {Applied Microbiology and Biotechnology}, volume = {108}, journal = {Applied Microbiology and Biotechnology}, publisher = {Springer}, address = {Berlin, Heidelberg}, issn = {1432-0614}, doi = {10.1007/s00253-023-12981-8}, pages = {10 Seiten}, year = {2024}, abstract = {Clostridia are known for their solvent production, especially the production of butanol. Concerning the projected depletion of fossil fuels, this is of great interest. The cultivation of clostridia is known to be challenging, and it is difficult to achieve reproducible results and robust processes. However, existing publications usually concentrate on the cultivation conditions of the main culture. In this paper, the influence of cryo-conservation and pre-culture on growth and solvent production in the resulting main cultivation are examined. A protocol was developed that leads to reproducible cultivations of Clostridium acetobutylicum. Detailed investigation of the cell conservation in cryo-cultures ensured reliable cell growth in the pre-culture. Moreover, a reason for the acid crash in the main culture was found, based on the cultivation conditions of the pre-culture. The critical parameter to avoid the acid crash and accomplish the shift to the solventogenesis of clostridia is the metabolic phase in which the cells of the pre-culture were at the time of inoculation of the main culture; this depends on the cultivation time of the pre-culture. Using cells from the exponential growth phase to inoculate the main culture leads to an acid crash. To achieve the solventogenic phase with butanol production, the inoculum should consist of older cells which are in the stationary growth phase. Considering these parameters, which affect the entire cultivation process, reproducible results and reliable solvent production are ensured.}, language = {en} } @article{HengsbachEngelCwienczeketal.2023, author = {Hengsbach, Jan-Niklas and Engel, Mareike and Cwienczek, Marcel and Stiefelmaier, Judith and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Scalable unseparated bioelectrochemical reactors by using a carbon fiber brush as stirrer and working electrode}, series = {ChemElectroChem}, volume = {10}, journal = {ChemElectroChem}, number = {21}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2196-0216}, doi = {10.1002/celc.202300440}, pages = {9 Seiten}, year = {2023}, abstract = {The concept of energy conversion into platform chemicals using bioelectrochemical systems (BES) has gained increasing attention in recent years, as the technology simultaneously provides an opportunity for sustainable chemical production and tackles the challenge of Power-to-X technologies. There are many approaches to realize the industrial scale of BES. One concept is to equip standard bioreactors with static electrodes. However, large installations resulted in a negative influence on various reactor parameters. In this study, we present a new single-chamber BES based on a stirred tank reactor in which the stirrer was replaced by a carbon fiber brush, performing the functions of the working electrode and the stirrer. The reactor is characterized in abiotic studies and electro-fermentations with Clostridium acetobutylicum. Compared to standard reactors an increase in butanol production of 20.14±3.66 \% shows that the new BES can be efficiently used for bioelectrochemical processes.}, language = {en} } @misc{DuweSchlegelTippkoetteretal.2014, author = {Duwe, A. and Schlegel, C. and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Sequentielle Extraktion von Cellulose zur effizienten Nutzung der Stoffstr{\"o}me in der Holzbioraffinerie}, series = {Chemie Ingenieur Technik}, volume = {86}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201450308}, pages = {1400}, year = {2014}, abstract = {In der Reihe der nachwachsenden Rohstoffe besitzt Holz als erneuerbare und umweltfreundliche Ressource ein großes Potenzial. {\"U}ber 11 Mio. ha Holz, das laut der Fachagentur f{\"u}r nachwachsende Rohstoffe (FNR) auch f{\"u}r industrielle Zwecke genutzt werden kann, wuchsen im Jahr 2013 allein auf bundesdeutscher Fl{\"a}che. 56,8 Mio. m³ j{\"a}hrlicher Holzeinschlag in den letzten zehn Jahren wurde zu knapp der H{\"a}lfte stofflich und der Rest energetisch verwertet. Im Rahmen dieser Arbeit konnte auf der Basis vom Holz der Buche, die nach Fichte und Kiefer die dritth{\"a}ufigste Baumart in Deutschland ist und 15\% der deutschen Waldfl{\"a}che ausmacht, die Fraktionierung der polymeren Hauptbestandteile mit niedrigem energetischen Einsatz erreicht werden. Hierbei werden in einem nachgeschalteten Extraktionsprozess die beiden Komponenten Hemicellulose und Lignin in fl{\"u}ssiger Form von der finalen festen Cellulosefraktion abgetrennt. Die Extraktion der Hemicellulose erfolgt durch eine Liquid Hot Water (LHW)-Behandlung. Untersucht wird der katalytische Zusatz anorganischer S{\"a}uren wie H₃PO₄ und H₂SO₄. Im Hinblick auf die weitere Verwertung von Lignin zu aromatischen Synthesebausteinen kommt die Organosolv-Extraktion mit einem Ethanol/Wasser-Gemisch zum Einsatz. Von Vorteil ist die weitere Verwendung beider Stoffstr{\"o}me ohne F{\"a}llungsschritt und nachteiliger Verd{\"u}nnung der Hemicellulose.}, language = {en} } @misc{MoehringWulfhorstCapitainetal.2016, author = {M{\"o}hring, S. and Wulfhorst, H. and Capitain, C. and Roth, J. and Tippk{\"o}tter, Nils}, title = {Fractioning of lignocellulosic biomass: Scale-down and automation of thermal pretreatment for parameter optimization}, series = {Chemie Ingenieur Technik}, volume = {88}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201650288}, pages = {1229}, year = {2016}, abstract = {In order to efficiently convert lignocellulose, it is often necessary to conduct a pretreatment. The biomass considered in this study typically comprises of agricultural and horticultural residues, as well as beechwood. A very environmentally friendly method, namely, fungal pretreatment using white-rot fungi, leads to an enhanced enzymatic hydrolysis. In contrast to other processes presented, the energy input is extremely low. However, the fungal growth on the lignocellulosic substrates takes several weeks at least in order to be effective. Thus, the reduction of chemicals and energy for thermal processing is a target of our current research. Liquid hot water (LHW) and solvent-based pretreatment (OrganoSolv) require more complex equipment, as they depend on high temperatures (160 - 180 °C) and enhanced pressure (up to 20 bar). However, they prove to be promising processes in regard to the fractioning of lignocellulose. For optimal lignin recovery the parameters differ from those established in cellulose extraction. A novel screening system scaled down to a reaction volume of 100 mL has been developed and successfully tested for this purpose.}, language = {en} } @article{WeldenSeverinsPoghossianetal.2022, author = {Welden, Melanie and Severins, Robin and Poghossian, Arshak and Wege, Christina and Bongaerts, Johannes and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of acetoin and diacetyl by a tobacco mosaic virus-assisted field-effect biosensor}, series = {Chemosensors}, volume = {10}, journal = {Chemosensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors10060218}, pages = {Artikel 218}, year = {2022}, abstract = {Acetoin and diacetyl have a major impact on the flavor of alcoholic beverages such as wine or beer. Therefore, their measurement is important during the fermentation process. Until now, gas chromatographic techniques have typically been applied; however, these require expensive laboratory equipment and trained staff, and do not allow for online monitoring. In this work, a capacitive electrolyte-insulator-semiconductor sensor modified with tobacco mosaic virus (TMV) particles as enzyme nanocarriers for the detection of acetoin and diacetyl is presented. The enzyme acetoin reductase from Alkalihalobacillus clausii DSM 8716ᵀ is immobilized via biotin-streptavidin affinity, binding to the surface of the TMV particles. The TMV-assisted biosensor is electrochemically characterized by means of leakage-current, capacitance-voltage, and constant capacitance measurements. In this paper, the novel biosensor is studied regarding its sensitivity and long-term stability in buffer solution. Moreover, the TMV-assisted capacitive field-effect sensor is applied for the detection of diacetyl for the first time. The measurement of acetoin and diacetyl with the same sensor setup is demonstrated. Finally, the successive detection of acetoin and diacetyl in buffer and in diluted beer is studied by tuning the sensitivity of the biosensor using the pH value of the measurement solution.}, language = {en} } @article{WeldenJablonskiWegeetal.2021, author = {Welden, Rene and Jablonski, Melanie and Wege, Christina and Keusgen, Michael and Wagner, Patrick Hermann and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Light-Addressable Actuator-Sensor Platform for Monitoring and Manipulation of pH Gradients in Microfluidics: A Case Study with the Enzyme Penicillinase}, series = {Biosensors}, volume = {11}, journal = {Biosensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios11060171}, pages = {Artikel 171}, year = {2021}, abstract = {The feasibility of light-addressed detection and manipulation of pH gradients inside an electrochemical microfluidic cell was studied. Local pH changes, induced by a light-addressable electrode (LAE), were detected using a light-addressable potentiometric sensor (LAPS) with different measurement modes representing an actuator-sensor system. Biosensor functionality was examined depending on locally induced pH gradients with the help of the model enzyme penicillinase, which had been immobilized in the microfluidic channel. The surface morphology of the LAE and enzyme-functionalized LAPS was studied by scanning electron microscopy. Furthermore, the penicillin sensitivity of the LAPS inside the microfluidic channel was determined with regard to the analyte's pH influence on the enzymatic reaction rate. In a final experiment, the LAE-controlled pH inhibition of the enzyme activity was monitored by the LAPS.}, language = {en} } @article{WeldenPoghossianVahidpouretal.2022, author = {Welden, Melanie and Poghossian, Arshak and Vahidpour, Farnoosh and Wendlandt, Tim and Keusgen, Michael and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Towards multi-analyte detection with field-effect capacitors modified with tobacco mosaic virus bioparticles as enzyme nanocarriers}, series = {Biosensors}, volume = {12}, journal = {Biosensors}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios12010043}, pages = {Artikel 43}, year = {2022}, abstract = {Utilizing an appropriate enzyme immobilization strategy is crucial for designing enzyme-based biosensors. Plant virus-like particles represent ideal nanoscaffolds for an extremely dense and precise immobilization of enzymes, due to their regular shape, high surface-to-volume ratio and high density of surface binding sites. In the present work, tobacco mosaic virus (TMV) particles were applied for the co-immobilization of penicillinase and urease onto the gate surface of a field-effect electrolyte-insulator-semiconductor capacitor (EISCAP) with a p-Si-SiO₂-Ta₂O₅ layer structure for the sequential detection of penicillin and urea. The TMV-assisted bi-enzyme EISCAP biosensor exhibited a high urea and penicillin sensitivity of 54 and 85 mV/dec, respectively, in the concentration range of 0.1-3 mM. For comparison, the characteristics of single-enzyme EISCAP biosensors modified with TMV particles immobilized with either penicillinase or urease were also investigated. The surface morphology of the TMV-modified Ta₂O₅-gate was analyzed by scanning electron microscopy. Additionally, the bi-enzyme EISCAP was applied to mimic an XOR (Exclusive OR) enzyme logic gate.}, language = {en} } @article{ZhantlessovaSavitskayaKistaubayevaetal.2022, author = {Zhantlessova, Sirina and Savitskaya, Irina and Kistaubayeva, Aida and Ignatova, Ludmila and Talipova, Aizhan and Pogrebnjak, Alexander and Digel, Ilya}, title = {Advanced "Green" prebiotic composite of bacterial cellulose/pullulan based on synthetic biology-powered microbial coculture strategy}, series = {Polymers}, volume = {14}, journal = {Polymers}, number = {15}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym14153224}, pages = {Artikel 3224}, year = {2022}, abstract = {Bacterial cellulose (BC) is a biopolymer produced by different microorganisms, but in biotechnological practice, Komagataeibacter xylinus is used. The micro- and nanofibrillar structure of BC, which forms many different-sized pores, creates prerequisites for the introduction of other polymers into it, including those synthesized by other microorganisms. The study aims to develop a cocultivation system of BC and prebiotic producers to obtain BC-based composite material with prebiotic activity. In this study, pullulan (PUL) was found to stimulate the growth of the probiotic strain Lactobacillus rhamnosus GG better than the other microbial polysaccharides gellan and xanthan. BC/PUL biocomposite with prebiotic properties was obtained by cocultivation of Komagataeibacter xylinus and Aureobasidium pullulans, BC and PUL producers respectively, on molasses medium. The inclusion of PUL in BC is proved gravimetrically by scanning electron microscopy and by Fourier transformed infrared spectroscopy. Cocultivation demonstrated a composite effect on the aggregation and binding of BC fibers, which led to a significant improvement in mechanical properties. The developed approach for "grafting" of prebiotic activity on BC allows preparation of environmentally friendly composites of better quality.}, language = {en} }