@article{PaulssenLeLengkeeketal.2013, author = {Paulßen, Elisabeth and Le, Van So and Lengkeek, Nigel and Pellegrini, Paul and Jackson, Tim and Greguric, Ivan and Weiner, Ron}, title = {Influence of Metal Ions on the 68Ga-labeling of DOTATATE}, series = {Applied Radiation and Isotopes}, volume = {82}, journal = {Applied Radiation and Isotopes}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1872-9800}, doi = {10.1016/j.apradiso.2013.08.010}, pages = {232 -- 238}, year = {2013}, language = {en} } @article{PaulssenKueckmannAbram2007, author = {Paulßen, Elisabeth and K{\"u}ckmann, Theresa and Abram, Ulrich}, title = {Silver(I) Complexes of 1,3-Dialkyl-4,5-dimethylimidazol-2-ylidenes and their Use as Precursors for the Synthesis of Rhenium(V) NHC Complexes}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie : ZAAC = Journal of inorganic and general chemistry}, volume = {633}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie : ZAAC = Journal of inorganic and general chemistry}, number = {5-6}, issn = {1521-3749}, doi = {10.1002/zaac.200700021}, pages = {830 -- 834}, year = {2007}, language = {en} } @article{PaulssenKongArciszewskietal.2012, author = {Paulßen, Elisabeth and Kong, Shushu and Arciszewski, Pawel and Wielbalck, Swantje and Abram, Ulrich}, title = {Aryl and NHC Compounds of Technetium and Rhenium}, series = {Journal of the American Chemical Society}, volume = {134}, journal = {Journal of the American Chemical Society}, number = {22}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {1520-5126}, doi = {10.1021/ja3033718}, pages = {9118 -- 9121}, year = {2012}, abstract = {Air- and water-stable phenyl complexes with nitridotechnetium(V) cores can be prepared by straightforward procedures. [TcNPh2(PPh3)2] is formed by the reaction of [TcNCl2(PPh3)2] with PhLi. The analogous N-heterocyclic carbene (NHC) compound [TcNPh2(HLPh)2], where HLPh is 1,3,4-triphenyl-1,2,4-triazol-5-ylidene, is available from (NBu4)[TcNCl4] and HLPh or its methoxo-protected form. The latter compound allows the comparison of different Tc-C bonds within one compound. Surprisingly, the Tc chemistry with such NHCs does not resemble that of corresponding Re complexes, where CH activation and orthometalation dominate.}, language = {en} } @article{PaulssenHoehrHouetal.2015, author = {Paulßen, Elisabeth and Hoehr, Cornelia and Hou, Xinchi and Hanemaayer, Victoire and Zeisler, Stefan and Adam, Michael J. and Ruth, Thomas J. and Celler, Anna and Buckley, Ken and Benard, Francois and Schaffer, Paul}, title = {Production of Y-86 and other radiometals for research purposes using a solution target system}, series = {Nuclear medicine and biology}, volume = {42}, journal = {Nuclear medicine and biology}, number = {11}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1872-9614}, doi = {10.1016/j.nucmedbio.2015.06.005}, pages = {842 -- 849}, year = {2015}, language = {en} } @article{PaulssenAlbertoAbram2010, author = {Paulßen, Elisabeth and Alberto, Roger and Abram, Ulrich}, title = {Synthesis, Characterization, and Structures of R3EOTcO3 Complexes (E = C, Si, Ge, Sn, Pb) and Related Compounds}, series = {Inorganic Chemistry}, volume = {49}, journal = {Inorganic Chemistry}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-510X}, doi = {10.1021/ic1001094}, pages = {3525 -- 3530}, year = {2010}, abstract = {AgTcO4 reacts with R3ECl compounds (E = C, Si, Ge, Sn, Pb; R = Me, iPr, tBu, Ph), tBu2SnCl2, or PhMgCl under formation of novel trioxotechnetium(VII) derivatives. The carbon and silicon derivatives readily undergo decomposition, which was proven by 99Tc NMR spectroscopy and the isolation of decomposition products such as [TcOCl3(THF)(OH2)]. Compounds [Ph3GeOTcO3], [(THF)Ph3SnOTcO3], [(O3TcO)SntBu2(OH)]2, and [(THF)4Mg(OTcO3)2] are more stable and were isolated in crystalline form and characterized by X-ray diffraction.}, language = {en} } @article{PasteurTippkoetterKampeisetal.2014, author = {Pasteur, Aline and Tippk{\"o}tter, Nils and Kampeis, Percy and Ulber, Roland}, title = {Optimization of high gradient magnetic separation filter units for the purification of fermentation products}, series = {IEEE TRANSACTIONS ON MAGNETICS}, volume = {50}, journal = {IEEE TRANSACTIONS ON MAGNETICS}, number = {10}, publisher = {IEEE}, address = {New York, NY}, issn = {0018-9464}, doi = {10.1109/TMAG.2014.2325535}, pages = {Artikel 5000607}, year = {2014}, abstract = {High gradient magnetic separation (HGMS) has been established since the early 1970s. A more recent application of these systems is the use in bioprocesses. To integrate the HGMS in a fermentation process, it is necessary to optimize the separation matrix with regard to the magnetic separation characteristics and permeability of the non-magnetizable components of the fermentation broth. As part of the work presented here, a combined fluidic and magnetic force finite element model simulation was created using the software COMSOL Multiphysics and compared with separation experiments. Finally, as optimal lattice orientation of the separation matrix, a transversal rhombohedral arrangement was defined. The high suitability of the new filter matrix has been verified by separation experiments.}, language = {en} } @article{OosterhuisOehlschlaegerBergetal.2011, author = {Oosterhuis, Koen and {\"O}hlschl{\"a}ger, Peter and Berg, Joost H. van den and Toebes, Mireille and Gomez, Raquel and Schumacher, Ton N. and Haanen, John B.}, title = {Preclinical development of highly effective and safe DNA vaccines directed against HPV 16 E6 and E7}, series = {International Journal of Cancer}, volume = {129}, journal = {International Journal of Cancer}, number = {2}, publisher = {Wiley}, address = {Weinheim}, isbn = {1097-0215}, pages = {397 -- 406}, year = {2011}, language = {en} } @article{OjovanSteinmetz2022, author = {Ojovan, Michael I. and Steinmetz, Hans-J{\"u}rgen}, title = {Approaches to Disposal of Nuclear Waste}, series = {Energies}, volume = {15}, journal = {Energies}, number = {20}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en15207804}, pages = {Artikel 7804}, year = {2022}, abstract = {We present a concise mini overview on the approaches to the disposal of nuclear waste currently used or deployed. The disposal of nuclear waste is the end point of nuclear waste management (NWM) activities and is the emplacement of waste in an appropriate facility without the intention to retrieve it. The IAEA has developed an internationally accepted classification scheme based on the end points of NWM, which is used as guidance. Retention times needed for safe isolation of waste radionuclides are estimated based on the radiotoxicity of nuclear waste. Disposal facilities usually rely on a multi-barrier defence system to isolate the waste from the biosphere, which comprises the natural geological barrier and the engineered barrier system. Disposal facilities could be of a trench type, vaults, tunnels, shafts, boreholes, or mined repositories. A graded approach relates the depth of the disposal facilities' location with the level of hazard. Disposal practices demonstrate the reliability of nuclear waste disposal with minimal expected impacts on the environment and humans.}, language = {en} } @misc{O'ConnellSiegertMaureretal.2010, author = {O'Connell, Timothy and Siegert, Petra and Maurer, Karl-Heinz and Schiedel, Marc-Steffen and Vockenroth, Inga Kerstin}, title = {Method for improving the cleaning action of a detergent or cleaning agent [Internationale Patentanmeldung]}, publisher = {WIPO}, address = {Genf}, pages = {1 -- 15}, year = {2010}, language = {en} } @article{NokiharaBerndt1978, author = {Nokihara, Kiyoshi and Berndt, Heinz}, title = {Synthesis of hapten-polypeptide conjugates as antigen models for the N-terminal region of the α-2-chain of rabbit skin collagen}, series = {Journal of the Royal Society of Chemistry: Perkin Transactions 1}, volume = {1978}, journal = {Journal of the Royal Society of Chemistry: Perkin Transactions 1}, number = {3}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1364-5463}, doi = {10.1039/P19780000260}, pages = {260 -- 263}, year = {1978}, abstract = {Synthesis of derivatives of the peptide sequence L-pyroglutamyl-L-phenylalanyl-L-aspartyl-glycyl-L-lysyl-glycyl-glycyl-glycine as the antigenic determinant representing the N-terminal non-helical region of the α-2-chain of rabbit skin collagen, and conjugation to two different polypeptide carriers, are described.}, language = {en} } @article{NokiharaBerndt1978, author = {Nokihara, Kiyoshi and Berndt, Heinz}, title = {Studies on sulfur-containing peptides : tert-butyloxycarbonylsulfenyl and benzyloxycarbonylsulfenyl derivatives as protecting groups for cysteine}, series = {The journal of organic chemistry}, volume = {43}, journal = {The journal of organic chemistry}, number = {25}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/jo00419a046}, pages = {4893 -- 4895}, year = {1978}, language = {en} } @article{NiehausGaborWielandetal.2011, author = {Niehaus, F. and Gabor, E. and Wieland, S. and Siegert, Petra and Maurer, Karl-Heinz and Eck, J.}, title = {Enzymes for the laundry industries: tapping the vast metagenomic pool of alkaline proteases}, series = {Microbial biotechnology}, volume = {Vol. 4}, journal = {Microbial biotechnology}, number = {Iss. 6}, publisher = {Springer}, address = {Berlin}, issn = {1432-0614 (E-Journal); 0171-1741 (Print); 0175-7598 (Print); 0340-2118 (Print)}, pages = {767 -- 776}, year = {2011}, language = {en} } @article{NiedermeyerZhouDursunetal.2016, author = {Niedermeyer, Angela and Zhou, Bei and Dursun, G{\"o}zde and Temiz Artmann, Ayseg{\"u}l and Markert, Bernd}, title = {An examination of tissue engineered scaffolds in a bioreactor}, series = {Proceedings in Applied Mathematics and Mechanics PAMM}, volume = {16}, journal = {Proceedings in Applied Mathematics and Mechanics PAMM}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1617-7061}, doi = {10.1002/pamm.201610038}, pages = {99 -- 100}, year = {2016}, abstract = {Replacement tissues, designed to fill in articular cartilage defects, should exhibit the same properties as the native material. The aim of this study is to foster the understanding of, firstly, the mechanical behavior of the material itself and, secondly, the influence of cultivation parameters on cell seeded implants as well as on cell migration into acellular implants. In this study, acellular cartilage replacement material is theoretically, numerically and experimentally investigated regarding its viscoelastic properties, where a phenomenological model for practical applications is developed. Furthermore, remodeling and cell migration are investigated.}, language = {en} } @article{NiedermeierPennerUsherovichetal.2023, author = {Niedermeier, Jana and Penner, Crystal and Usherovich, Samuel and B{\´e}langer-Champagne, Camille and Paulßen, Elisabeth and Cornelia, Hoehr}, title = {Optical Fibers as Dosimeter Detectors for Mixed Proton/Neutron Fields - A Biological Dosimeter}, series = {electronics}, volume = {12}, journal = {electronics}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2079-9292}, doi = {10.3390/electronics12020324}, pages = {11 Seiten}, year = {2023}, abstract = {In recent years, proton therapy has gained importance as a cancer treatment modality due to its conformality with the tumor and the sparing of healthy tissue. However, in the interaction of the protons with the beam line elements and patient tissues, potentially harmful secondary neutrons are always generated. To ensure that this neutron dose is as low as possible, treatment plans could be created to also account for and minimize the neutron dose. To monitor such a treatment plan, a compact, easy to use, and inexpensive dosimeter must be developed that not only measures the physical dose, but which can also distinguish between proton and neutron contributions. To that end, plastic optical fibers with scintillation materials (Gd₂O₂S:Tb, Gd₂O₂S:Eu, and YVO₄:Eu) were irradiated with protons and neutrons. It was confirmed that sensors with different scintillation materials have different sensitivities to protons and neutrons. A combination of these three scintillators can be used to build a detector array to create a biological dosimeter.}, language = {en} } @article{NaithaniKlostermeyerLangeetal.1971, author = {Naithani, V. K and Klostermeyer, Henning and Lange, H. R. and [u.a.], and Berndt, Heinz and [u.a.],}, title = {Preparation of peptide derivatives for porcine proinsulin-synthesis}, series = {Biological Chemistry}, volume = {352}, journal = {Biological Chemistry}, number = {1}, publisher = {De Gruyter}, issn = {1437-4315}, doi = {10.1515/bchm2.1971.352.1.1}, pages = {2 -- 3}, year = {1971}, language = {en} } @article{NachtrodtTietschMostaccietal.2014, author = {Nachtrodt, Frederik and Tietsch, Wolfgang and Mostacci, Domiziano and Scherer, Ulrich W.}, title = {Set-up and first operation of a plasma oven for treatment of low level radioactive wastes}, series = {Nuclear technology and radiation protection}, volume = {29}, journal = {Nuclear technology and radiation protection}, number = {Suppl.}, publisher = {VINČA Institute of Nuclear Sciences}, address = {Belgrad}, issn = {1451-3994}, doi = {10.2298/NTRP140SS47N}, pages = {47 -- 51}, year = {2014}, language = {en} } @article{MuellerBongaertsBovenbergetal.2001, author = {M{\"u}ller, Ulrike and Bongaerts, Johannes and Bovenberg, Roel and Jossek, Ralf and Kr{\"a}mer, Marco and Linnemann, J. and M{\"u}schen, S. and Ritterbecks, S. and Sprenger, G. and Wubbolts, Marcel}, title = {Metabolic engineering to produce fine chemicals in Escherichia coli}, series = {Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent}, volume = {66 (3a)}, journal = {Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent}, issn = {0035-533x}, pages = {215 -- 217}, year = {2001}, language = {en} } @article{MuellerBeckersMussmannetal.2018, author = {M{\"u}ller, Janina and Beckers, Mario and Mußmann, Nina and Bongaerts, Johannes and B{\"u}chs, Jochen}, title = {Elucidation of auxotrophic deficiencies of Bacillus pumilus DSM 18097 to develop a defined minimal medium}, series = {Microbial Cell Factories}, volume = {17}, journal = {Microbial Cell Factories}, number = {1}, publisher = {BioMed Central}, issn = {1475-2859}, doi = {10.1186/s12934-018-0956-1}, pages = {Article No. 106}, year = {2018}, abstract = {Background Culture media containing complex compounds like yeast extract or peptone show numerous disadvantages. The chemical composition of the complex compounds is prone to significant variations from batch to batch and quality control is difficult. Therefore, the use of chemically defined media receives more and more attention in commercial fermentations. This concept results in better reproducibility, it simplifies downstream processing of secreted products and enable rapid scale-up. Culturing bacteria with unknown auxotrophies in chemically defined media is challenging and often not possible without an extensive trial-and-error approach. In this study, a respiration activity monitoring system for shake flasks and its recent version for microtiter plates were used to clarify unknown auxotrophic deficiencies in the model organism Bacillus pumilus DSM 18097. Results Bacillus pumilus DSM 18097 was unable to grow in a mineral medium without the addition of complex compounds. Therefore, a rich chemically defined minimal medium was tested containing basically all vitamins, amino acids and nucleobases, which are essential ingredients of complex components. The strain was successfully cultivated in this medium. By monitoring of the respiration activity, nutrients were supplemented to and omitted from the rich chemically defined medium in a rational way, thus enabling a systematic and fast determination of the auxotrophic deficiencies. Experiments have shown that the investigated strain requires amino acids, especially cysteine or histidine and the vitamin biotin for growth. Conclusions The introduced method allows an efficient and rapid identification of unknown auxotrophic deficiencies and can be used to develop a simple chemically defined tailor-made medium. B. pumilus DSM 18097 was chosen as a model organism to demonstrate the method. However, the method is generally suitable for a wide range of microorganisms. By combining a systematic combinatorial approach based on monitoring the respiration activity with cultivation in microtiter plates, high throughput experiments with high information content can be conducted. This approach facilitates media development, strain characterization and cultivation of fastidious microorganisms in chemically defined minimal media while simultaneously reducing the experimental effort.}, language = {en} } @inproceedings{MoehringWulfhorstRothetal.2016, author = {M{\"o}hring, S. and Wulfhorst, H. and Roth, J. and Tippk{\"o}tter, Nils}, title = {Pretreatment strategies for lignocellulosic biomass}, series = {New frontiers of biotech-processes (Himmelfahrtstagung) : 02-04 May 2016, Rhein-Mosel-Halle, Koblenz/Germany}, booktitle = {New frontiers of biotech-processes (Himmelfahrtstagung) : 02-04 May 2016, Rhein-Mosel-Halle, Koblenz/Germany}, publisher = {DECHEMA}, address = {Frankfurt am Main}, pages = {131}, year = {2016}, language = {en} } @article{MuschallikMolinnusJablonskietal.2020, author = {Muschallik, Lukas and Molinnus, Denise and Jablonski, Melanie and Kipp, Carina Ronja and Bongaerts, Johannes and Pohl, Martina and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Selmer, Thorsten and Siegert, Petra}, title = {Synthesis of α-hydroxy ketones and vicinal (R, R)-diols by Bacillus clausii DSM 8716ᵀ butanediol dehydrogenase}, series = {RSC Advances}, volume = {10}, journal = {RSC Advances}, publisher = {Royal Society of Chemistry (RSC)}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/D0RA02066D}, pages = {12206 -- 12216}, year = {2020}, abstract = {α-hydroxy ketones (HK) and 1,2-diols are important building blocks for fine chemical synthesis. Here, we describe the R-selective 2,3-butanediol dehydrogenase from B. clausii DSM 8716ᵀ (BcBDH) that belongs to the metal-dependent medium chain dehydrogenases/reductases family (MDR) and catalyzes the selective asymmetric reduction of prochiral 1,2-diketones to the corresponding HK and, in some cases, the reduction of the same to the corresponding 1,2-diols. Aliphatic diketones, like 2,3-pentanedione, 2,3-hexanedione, 5-methyl-2,3-hexanedione, 3,4-hexanedione and 2,3-heptanedione are well transformed. In addition, surprisingly alkyl phenyl dicarbonyls, like 2-hydroxy-1-phenylpropan-1-one and phenylglyoxal are accepted, whereas their derivatives with two phenyl groups are not substrates. Supplementation of Mn²⁺ (1 mM) increases BcBDH's activity in biotransformations. Furthermore, the biocatalytic reduction of 5-methyl-2,3-hexanedione to mainly 5-methyl-3-hydroxy-2-hexanone with only small amounts of 5-methyl-2-hydroxy-3-hexanone within an enzyme membrane reactor is demonstrated.}, language = {en} }