@article{ArreolaKeusgenSchoening2019, author = {Arreola, Julio and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Toward an immobilization method for spore-based biosensors in oxidative environment}, series = {Electrochimica Acta}, volume = {302}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.electacta.2019.01.148}, pages = {394 -- 401}, year = {2019}, language = {en} } @article{OberlaenderBrommWendeleretal.2015, author = {Oberl{\"a}nder, Jan and Bromm, Alexander and Wendeler, Luisa and Iken, Heiko and Palomar Duran, Marlena and Greeff, Anton and Kirchner, Patrick and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Towards a biosensor to monitor the sterilisation efficiency of aseptic filling machines}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431900}, pages = {1299 -- 1305}, year = {2015}, abstract = {Sterilisation processes are compulsory in medicine, pharmacy, and food industries to prevent infections of consumers and microbiological contaminations of products. Monitoring the sterilisation by conventional microbiological methods is time- and lab-consuming. To overcome this problem, in this work a novel biosensor has been proposed. The sensor enables a fast method to evaluate sterilisation processes. By means of thin-film technology the sensor's transducer structures in form of IDEs (interdigitated electrodes) have been fabricated on a silicon substrate. Physical characterisation of the developed sensor was done by AFM, SEM, and profilometry. Impedance analyses were conducted for the electrical characterisation. As microbiological layer spores of B. atrophaeus have been immobilised on the sensing structure; spores of this type are a well-known sterilisation test organism. Impedance measurements at a fixed frequency over time were performed to monitor the immobilisation process. A sterilisation process according to aseptic filling machines was applied to demonstrate the sensor functionality. After both, immobilisation and sterilisation, a change in impedance could successfully be detected.}, language = {en} } @article{KirchnerOberlaenderSusoetal.2013, author = {Kirchner, Patrick and Oberl{\"a}nder, Jan and Suso, Henri-Pierre and Rysstad, Gunnar and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Towards a wireless sensor system for real-time H2O2 monitoring in aseptic food processes}, series = {Physica status solidi (a)}, volume = {210}, journal = {Physica status solidi (a)}, number = {5}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201200920}, pages = {877 -- 883}, year = {2013}, abstract = {A wireless sensor system based on the industrial ZigBee standard for low-rate wireless networking was developed that enables real-time monitoring of gaseous H2O2 during the package sterilization in aseptic food processes. The sensor system consists of a remote unit connected to a calorimetric gas sensor, which was already established in former works, and an external base unit connected to a laptop computer. The remote unit was built up by an XBee radio frequency (RF) module for data communication and a programmable system-on-chip controller to read out the sensor signal and process the sensor data, whereas the base unit is a second XBee RF module. For the rapid H2O2 detection on various locations inside the package that has to be sterilized, a novel read-out strategy of the calorimetric gas sensor was established, wherein the sensor response is measured within the short sterilization time and correlated with the present H2O2 concentration. In an exemplary measurement application in an aseptic filling machinery, the suitability of the new, wireless sensor system was demonstrated, wherein the influence of the gas velocity on the H2O2 distribution inside a package was determined and verified with microbiological tests.}, language = {en} } @article{MolinnusSorichBartzetal.2016, author = {Molinnus, Denise and Sorich, Maren and Bartz, Alexander and Siegert, Petra and Willenberg, Holger S. and Lisdat, Fred and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Towards an adrenaline biosensor based on substrate recycling amplification in combination with an enzyme logic gate}, series = {Sensors and Actuators B: Chemical}, volume = {237}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.06.064}, pages = {190 -- 195}, year = {2016}, abstract = {An amperometric biosensor using a substrate recycling principle was realized for the detection of low adrenaline concentrations (1 nM) by measurements in phosphate buffer and Ringer's solution at pH 6.5 and pH 7.4, respectively. In proof-of-concept experiments, a Boolean logic-gate principle has been applied to develop a digital adrenaline biosensor based on an enzyme AND logic gate. The obtained results demonstrate that the developed digital biosensor is capable for a rapid qualitative determination of the presence/absence of adrenaline in a YES/NO statement. Such digital biosensor could be used in clinical diagnostics for the control of a correct insertion of a catheter in the adrenal veins during adrenal venous-sampling procedure.}, language = {en} } @article{WeldenPoghossianVahidpouretal.2022, author = {Welden, Melanie and Poghossian, Arshak and Vahidpour, Farnoosh and Wendlandt, Tim and Keusgen, Michael and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Towards multi-analyte detection with field-effect capacitors modified with tobacco mosaic virus bioparticles as enzyme nanocarriers}, series = {Biosensors}, volume = {12}, journal = {Biosensors}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios12010043}, pages = {Artikel 43}, year = {2022}, abstract = {Utilizing an appropriate enzyme immobilization strategy is crucial for designing enzyme-based biosensors. Plant virus-like particles represent ideal nanoscaffolds for an extremely dense and precise immobilization of enzymes, due to their regular shape, high surface-to-volume ratio and high density of surface binding sites. In the present work, tobacco mosaic virus (TMV) particles were applied for the co-immobilization of penicillinase and urease onto the gate surface of a field-effect electrolyte-insulator-semiconductor capacitor (EISCAP) with a p-Si-SiO₂-Ta₂O₅ layer structure for the sequential detection of penicillin and urea. The TMV-assisted bi-enzyme EISCAP biosensor exhibited a high urea and penicillin sensitivity of 54 and 85 mV/dec, respectively, in the concentration range of 0.1-3 mM. For comparison, the characteristics of single-enzyme EISCAP biosensors modified with TMV particles immobilized with either penicillinase or urease were also investigated. The surface morphology of the TMV-modified Ta₂O₅-gate was analyzed by scanning electron microscopy. Additionally, the bi-enzyme EISCAP was applied to mimic an XOR (Exclusive OR) enzyme logic gate.}, language = {en} }