@article{SchmitzSchmittDammann1985, author = {Schmitz, G{\"u}nter and Schmitt, H.J. and Dammann, H.}, title = {Weakly Guiding Semileaky Isolator with a Form-Birefringent Top Layer}, series = {Conference on Lasers and Electro-Optics ; (5, 1985, Baltimore, Md.) ; Conference on Lasers and Electro-Optics (CLEO '85) ; (1985.05.21-24 ; Baltimore, Md.)}, journal = {Conference on Lasers and Electro-Optics ; (5, 1985, Baltimore, Md.) ; Conference on Lasers and Electro-Optics (CLEO '85) ; (1985.05.21-24 ; Baltimore, Md.)}, publisher = {Optical Society of America}, address = {Washington, DC}, pages = {260}, year = {1985}, language = {en} } @article{MalzahnWindmillerValdesRamirezetal.2011, author = {Malzahn, Kerstin and Windmiller, Joshua Ray and Vald{\´e}s-Ram{\´i}rez, Gabriela and Wang, Joseph and Sch{\"o}ning, Michael Josef}, title = {Wearable electrochemical sensors for in situ analysis in marine environments}, series = {Analyst. 136 (2011), H. 14}, journal = {Analyst. 136 (2011), H. 14}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, isbn = {0003-2654}, pages = {2912 -- 2917}, year = {2011}, language = {en} } @inproceedings{HellmannsBoehmDilger2008, author = {Hellmanns, Mark and B{\"o}hm, Stefan and Dilger, Klaus}, title = {Weight and noise reduction in power transmissions through epoxy resin foams}, series = {Proceedings of the 31st annual meeting of the Adhesion Society : 17. - 20.2.2008, Austin, Texas}, booktitle = {Proceedings of the 31st annual meeting of the Adhesion Society : 17. - 20.2.2008, Austin, Texas}, publisher = {Adhesion Society}, address = {Blacksburg}, organization = {Adhesion Society}, pages = {291 -- 293}, year = {2008}, language = {en} } @inproceedings{TullisCrookstonBung2019, author = {Tullis, Blake P. and Crookston, Brian M. and Bung, Daniel Bernhard}, title = {Weir head-discharge relationships: A multi-lab exercise}, series = {E-proceedings of the 38th IAHR World Congress September 1-6, 2019, Panama City, Panama}, booktitle = {E-proceedings of the 38th IAHR World Congress September 1-6, 2019, Panama City, Panama}, pages = {1 -- 15}, year = {2019}, language = {en} } @article{Fabo2002, author = {Fabo, Sabine}, title = {Welcome to the training: Actionist Respoke interaktiv by Michael Jonoschek und R{\"u}diger Schl{\"o}mer}, series = {Bilder-Codes : Internationaler Medienkunstpreis 2002}, journal = {Bilder-Codes : Internationaler Medienkunstpreis 2002}, editor = {K{\"o}nches, Barbara}, publisher = {ZKM}, address = {Karlsruhe}, isbn = {3-928201-28-X}, pages = {41 -- 48}, year = {2002}, language = {en} } @article{Starke1994, author = {Starke, G{\"u}nther}, title = {Welding in the century of information technology. Session 1}, series = {Welding in the World. 34 (1994), H. 9}, journal = {Welding in the World. 34 (1994), H. 9}, isbn = {0043-2288}, pages = {1 -- 20}, year = {1994}, language = {en} } @article{FoersterNovakMorvic1996, author = {F{\"o}rster, Arnold and Nov{\´a}k, J. and Morvic, M.}, title = {Wet chemical separation of low-temperature GaAs layers from their GaAs substrates / J. Nov{\´a}k ; M. Morvic ; J. Betko ; A. F{\"o}rster ...}, series = {Materials science and engineering / B, Solid state materials for advanced technology. 40 (1996), H. 1}, journal = {Materials science and engineering / B, Solid state materials for advanced technology. 40 (1996), H. 1}, isbn = {0921-5107}, pages = {58 -- 62}, year = {1996}, language = {en} } @inproceedings{AmirBauckhageChircuetal.2022, author = {Amir, Malik and Bauckhage, Christian and Chircu, Alina and Czarnecki, Christian and Knopf, Christian and Piatkowski, Nico and Sultanow, Eldar}, title = {What can we expect from quantum (digital) twins?}, series = {Wirtschaftsinformatik 2022 Proceedings}, booktitle = {Wirtschaftsinformatik 2022 Proceedings}, publisher = {AIS Electronic Library (AISeL)}, pages = {1 -- 14}, year = {2022}, abstract = {Digital twins enable the modeling and simulation of real-world entities (objects, processes or systems), resulting in improvements in the associated value chains. The emerging field of quantum computing holds tremendous promise forevolving this virtualization towards Quantum (Digital) Twins (QDT) and ultimately Quantum Twins (QT). The quantum (digital) twin concept is not a contradiction in terms - but instead describes a hybrid approach that can be implemented using the technologies available today by combining classicalcomputing and digital twin concepts with quantum processing. This paperpresents the status quo of research and practice on quantum (digital) twins. It alsodiscuses their potential to create competitive advantage through real-timesimulation of highly complex, interconnected entities that helps companies better address changes in their environment and differentiate their products andservices.}, language = {en} } @article{JanzGoedhuysMohnen2008, author = {Janz, Norbert and Goedhuys, Micheline and Mohnen, Pierre}, title = {What drives productivity in Tanzanian manufacturing firms: technology or business environment? / Goedhuys, Micheline ; Janz, Norbert ; Mohnen, Pierre}, series = {The European Journal of Development Research. 20 (2008), H. 2}, journal = {The European Journal of Development Research. 20 (2008), H. 2}, isbn = {1743-9728}, pages = {199 -- 218}, year = {2008}, language = {en} } @book{JanzGoedhuysMohnen2006, author = {Janz, Norbert and Goedhuys, Micheline and Mohnen, Pierre}, title = {What drives productivity in Tanzanian manufacturing firms: technology or institutions? / Goedhuys, Micheline ; Janz, Norbert ; Mohnen, Pierre}, publisher = {UnU-MERIT}, address = {Maastricht}, pages = {22 S.}, year = {2006}, language = {en} } @inproceedings{EggertWeber2023, author = {Eggert, Mathias and Weber, Jannik}, title = {What drives the purchase decision in Instagram stores?}, series = {ECIS 2023 Research Papers}, booktitle = {ECIS 2023 Research Papers}, pages = {1 -- 17}, year = {2023}, abstract = {The popularity of social media and particularly Instagram grows steadily. People use the different platforms to share pictures as well as videos and to communicate with friends. The potential of social media platforms is also being used for marketing purposes and for selling products. While for Facebook and other online social media platforms the purchase decision factors are investigated several times, Instagram stores remain mainly unattended so far. The present research work closes this gap and sheds light into decisive factors for purchasing products offered in Instagram stores. A theoretical research model, which contains selected constructs that are assumed to have a significant influence on Instagram user´s purchase intention, is developed. The hypotheses are evaluated by applying structural equation modelling on survey data containing 127 relevant participants. The results of the study reveal that 'trust', 'personal recommendation', and 'usability' significantly influences user's buying intention in Instagram stores.}, language = {en} } @article{EmhardtJarodzkaBrandGruweletal.2022, author = {Emhardt, Selina N. and Jarodzka, Halszka and Brand-Gruwel, Saskia and Drumm, Christian and Niehorster, Diederick C. and van Gog, Tamara}, title = {What is my teacher talking about? Effects of displaying the teacher's gaze and mouse cursor cues in video lectures on students' learning}, series = {Journal of Cognitive Psychology}, journal = {Journal of Cognitive Psychology}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {2044-5911}, doi = {10.1080/20445911.2022.2080831}, pages = {1 -- 19}, year = {2022}, abstract = {Eye movement modelling examples (EMME) are instructional videos that display a teacher's eye movements as "gaze cursor" (e.g. a moving dot) superimposed on the learning task. This study investigated if previous findings on the beneficial effects of EMME would extend to online lecture videos and compared the effects of displaying the teacher's gaze cursor with displaying the more traditional mouse cursor as a tool to guide learners' attention. Novices (N = 124) studied a pre-recorded video lecture on how to model business processes in a 2 (mouse cursor absent/present) × 2 (gaze cursor absent/present) between-subjects design. Unexpectedly, we did not find significant effects of the presence of gaze or mouse cursors on mental effort and learning. However, participants who watched videos with the gaze cursor found it easier to follow the teacher. Overall, participants responded positively to the gaze cursor, especially when the mouse cursor was not displayed in the video.}, language = {en} } @article{SchmidtLangenHerzogetal.1997, author = {Schmidt, Daniela and Langen, Karl-J. and Herzog, Hans and Wirths, Jochen and Holschbach, Markus and Kiwit, J{\"u}rgen C. W. and Ziemons, Karl and Coenen, Heinz-H. and M{\"u}ller-G{\"a}rtner, Hans-W.}, title = {Whole-body kinetics and dosimetry of L-3[123I]-iodo-α-methyltyrosine}, series = {European Journal of Nuclear Medicine}, volume = {24}, journal = {European Journal of Nuclear Medicine}, number = {9}, isbn = {1619-7089}, pages = {1162 -- 1166}, year = {1997}, language = {en} } @inproceedings{FredebeulKreinSteingroever2012, author = {Fredebeul-Krein, Markus and Steingr{\"o}ver, Markus}, title = {Wholesale Broadband Access to IPTV in an NGA environment : how to deal with it from a regulatory perspective?}, pages = {1 -- 16}, year = {2012}, language = {en} } @article{FredebeulKreinSteingroever2014, author = {Fredebeul-Krein, Markus and Steingr{\"o}ver, Markus}, title = {Wholesale broadband access to IPTV in an NGA environment : how to deal with it from a regulatory perspective?}, series = {Telecommunications Policy}, volume = {38}, journal = {Telecommunications Policy}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0308-5961 (Print)}, doi = {doi:10.1016/j.telpol.2013.04.002}, pages = {264 -- 277}, year = {2014}, language = {en} } @article{TemizArtmannKayser2008, author = {Temiz Artmann, Ayseg{\"u}l and Kayser, Peter}, title = {Why is Sepsis an Ongoing Clinical Challenge? Lipopolysaccharide Effects on Red Blood Cell Volume / Temiz, Ayseg{\"u}l ; Kayser, Peter}, series = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, journal = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-75408-4}, pages = {497 -- 508}, year = {2008}, language = {en} } @article{FerreinSchifferBooysenetal.2016, author = {Ferrein, Alexander and Schiffer, Stefan and Booysen, T. and Stopforth, R.}, title = {Why it is harder to run RoboCup in South Africa: Experiences from German South African collaborations}, series = {International Journal of Advanced Robotic Systems}, volume = {13}, journal = {International Journal of Advanced Robotic Systems}, number = {5}, issn = {1729-8806}, doi = {10.1177/1729881416662789}, pages = {1 -- 13}, year = {2016}, abstract = {Robots are widely used as a vehicle to spark interest in science and technology in learners. A number of initiatives focus on this issue, for instance, the Roberta Initiative, the FIRST Lego League, the World Robot Olympiad and RoboCup Junior. Robotic competitions are valuable not only for school learners but also for university students, as the RoboCup initiative shows. Besides technical skills, the students get some project exposure and experience what it means to finish their tasks on time. But qualifying students for future high-tech areas should not only be for students from developed countries. In this article, we present our experiences with research and education in robotics within the RoboCup initiative, in Germany and South Africa; we report on our experiences with trying to get the RoboCup initiative in South Africa going. RoboCup has a huge support base of academic institutions in Germany; this is not the case in South Africa. We present our 'north-south' collaboration initiatives in RoboCup between Germany and South Africa and discuss some of the reasons why we think it is harder to run RoboCup in South Africa.}, language = {en} } @article{Laack2013, author = {Laack, Walter van}, title = {Why natural constants are as they are}, series = {British journal of arts and social sciences}, volume = {Vol. 15}, journal = {British journal of arts and social sciences}, number = {Nr. 2}, publisher = {BritishJournal Publ. Inc}, address = {London}, issn = {2046-9578 (E-Journal)}, pages = {198 -- 203}, year = {2013}, language = {en} } @inproceedings{WiegnerVolkerMainzetal.2022, author = {Wiegner, Jonas and Volker, Hanno and Mainz, Fabian and Backes, Andreas and L{\"o}ken, Michael and H{\"u}ning, Felix}, title = {Wiegand-effect-powered wireless IoT sensor node}, series = {ITG-Fb. 303: Sensoren und Messsysteme}, booktitle = {ITG-Fb. 303: Sensoren und Messsysteme}, publisher = {VDE Verlag GmbH}, address = {Berlin}, isbn = {978-3-8007-5835-7}, pages = {255 -- 260}, year = {2022}, abstract = {In this article we describe an Internet-of-Things sensing device with a wireless interface which is powered by the oftenoverlooked harvesting method of the Wiegand effect. The sensor can determine position, temperature or other resistively measurable quantities and can transmit the data via an ultra-low power ultra-wideband (UWB) data transmitter. With this approach we can energy-self-sufficiently acquire, process, and wirelessly transmit data in a pulsed operation. A proof-of-concept system was built up to prove the feasibility of the approach. The energy consumption of the system is analyzed and traced back in detail to the individual components, compared to the generated energy and processed to identify further optimization options. Based on the proof-of-concept, an application demonstrator was developed. Finally, we point out possible use cases.}, language = {en} } @misc{WiegnerVolkerMainzetal.2022, author = {Wiegner, J. and Volker, H. and Mainz, F. and Backes, A. and L{\"o}ken, M. and H{\"u}ning, Felix}, title = {Wiegand-Effect-Powered Wireless IT Sensor Node}, year = {2022}, abstract = {With the growing interest in small distributed sensors for the "Internet of Things", more attention is being paid to energy harvesting techologies. Reducing or eliminating the need for external power sources or batteries make devices more self-sufficient, more reliable, and reduces maintenance requirements. The Wiegand effect is a proven technology for harvesting small amounts of electrical power from mechanical motion.}, language = {en} }