@article{DieringerRenzLindeletal.2011, author = {Dieringer, Matthias A. and Renz, Wolfgang and Lindel, Tomasz Dawid and Seifert, Frank and Frauenrath, Tobias and von Knobelsdorf-Brenkenhoff, Florian and Waiczies, Helmar and Hoffmann, Werner and Rieger, Jan and Pfeiffer, Harald and Ittermann, Bernd and Schulz-Menger, Jeanette and Niendorf, Thoralf}, title = {Design and application of a four-channel transmit/receive surface coil for functional cardiac imaging at 7T}, series = {Journal of Magnetic Resonance Imaging}, volume = {33}, journal = {Journal of Magnetic Resonance Imaging}, number = {3}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2586}, doi = {10.1002/jmri.22451}, pages = {736 -- 741}, year = {2011}, abstract = {Purpose To design and evaluate a four-channel cardiac transceiver coil array for functional cardiac imaging at 7T. Materials and Methods A four-element cardiac transceiver surface coil array was developed with two rectangular loops mounted on an anterior former and two rectangular loops on a posterior former. specific absorption rate (SAR) simulations were performed and a Burn:x-wiley:10531807:media:JMRI22451:tex2gif-stack-1 calibration method was applied prior to obtain 2D FLASH CINE (mSENSE, R = 2) images from nine healthy volunteers with a spatial resolution of up to 1 × 1 × 2.5 mm3. Results Tuning and matching was found to be better than 10 dB for all subjects. The decoupling (S21) was measured to be >18 dB between neighboring loops, >20 dB for opposite loops, and >30 dB for other loop combinations. SAR values were well within the limits provided by the IEC. Imaging provided clinically acceptable signal homogeneity with an excellent blood-myocardium contrast applying the Burn:x-wiley:10531807:media:JMRI22451:tex2gif-stack-2 calibration approach. Conclusion A four-channel cardiac transceiver coil array for 7T was built, allowing for cardiac imaging with clinically acceptable signal homogeneity and an excellent blood-myocardium contrast. Minor anatomic structures, such as pericardium, mitral, and tricuspid valves and their apparatus, as well as trabeculae, were accurately delineated.}, language = {en} } @article{KobFrauenrath2009, author = {Kob, Malte and Frauenrath, Tobias}, title = {A system for parallel measurement of glottis opening and larynx position}, series = {Biomedical Signal Processing and Control}, volume = {4}, journal = {Biomedical Signal Processing and Control}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1746-8108}, doi = {10.1016/j.bspc.2009.03.004}, pages = {221 -- 228}, year = {2009}, abstract = {The simultaneous assessment of glottal dynamics and larynx position can be beneficial for the diagnosis of disordered voice or speech production and swallowing. Up to now, methods either concentrate on assessment of the glottis opening using optical, acoustical or electrical (electroglottography, EGG) methods, or on visualisation of the larynx position using ultrasound, computer tomography or magnetic resonance imaging techniques. The method presented here makes use of a time-multiplex measurement approach of space-resolved transfer impedances through the larynx. The fast sequence of measurements allows a quasi simultaneous assessment of both larynx position and EGG signal using up to 32 transmit-receive signal paths. The system assesses the dynamic opening status of the glottis as well as the vertical and back/forward motion of the larynx. Two electrode-arrays are used for the measurement of the electrical transfer impedance through the neck in different directions. From the acquired data the global and individual conductivity is calculated as well as a 2D point spatial representation of the minimum impedance. The position information is shown together with classical EGG signals allowing a synchronous visual assessment of glottal area and larynx position. A first application to singing voice analysis is presented that indicate a high potential of the method for use as a non-invasive tool in the diagnosis of voice, speech, and swallowing disorders.}, language = {en} } @article{SchulteTiggesFoersterNikolovskietal.2022, author = {Schulte-Tigges, Joschua and F{\"o}rster, Marco and Nikolovski, Gjorgji and Reke, Michael and Ferrein, Alexander and Kaszner, Daniel and Matheis, Dominik and Walter, Thomas}, title = {Benchmarking of various LiDAR sensors for use in self-driving vehicles in real-world environments}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s22197146}, pages = {20 Seiten}, year = {2022}, abstract = {Abstract In this paper, we report on our benchmark results of the LiDAR sensors Livox Horizon, Robosense M1, Blickfeld Cube, Blickfeld Cube Range, Velodyne Velarray H800, and Innoviz Pro. The idea was to test the sensors in different typical scenarios that were defined with real-world use cases in mind, in order to find a sensor that meet the requirements of self-driving vehicles. For this, we defined static and dynamic benchmark scenarios. In the static scenarios, both LiDAR and the detection target do not move during the measurement. In dynamic scenarios, the LiDAR sensor was mounted on the vehicle which was driving toward the detection target. We tested all mentioned LiDAR sensors in both scenarios, show the results regarding the detection accuracy of the targets, and discuss their usefulness for deployment in self-driving cars.}, language = {en} } @article{HeinrichsUttingFrauenrathetal.2009, author = {Heinrichs, Uwe and Utting, Jane F. and Frauenrath, Tobias and Hezel, Fabian and Krombach, Gabriele A. and Hodenius, Michael A. J. and Kozerke, Sebastian and Niendorf, Thoralf}, title = {Myocardial T2 mapping free of distortion using susceptibility-weighted fast spin-echo imaging: A feasibility study at 1.5 T and 3.0 T}, series = {Magnetic Resonance in Medicine}, volume = {62}, journal = {Magnetic Resonance in Medicine}, number = {3}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2594}, doi = {10.1002/mrm.22054}, pages = {822 -- 828}, year = {2009}, abstract = {This study demonstrates the feasibility of applying free-breathing, cardiac-gated, susceptibility-weighted fast spin-echo imaging together with black blood preparation and navigator-gated respiratory motion compensation for anatomically accurate T₂ mapping of the heart. First, T₂ maps are presented for oil phantoms without and with respiratory motion emulation (T₂ = (22.1 ± 1.7) ms at 1.5 T and T₂ = (22.65 ± 0.89) ms at 3.0 T). T₂ relaxometry of a ferrofluid revealed relaxivities of R2 = (477.9 ± 17) mM⁻¹s⁻¹ and R2 = (449.6 ± 13) mM⁻¹s⁻¹ for UFLARE and multiecho gradient-echo imaging at 1.5 T. For inferoseptal myocardial regions mean T₂ values of 29.9 ± 6.6 ms (1.5 T) and 22.3 ± 4.8 ms (3.0 T) were estimated. For posterior myocardial areas close to the vena cava T₂-values of 24.0 ± 6.4 ms (1.5 T) and 15.4 ± 1.8 ms (3.0 T) were observed. The merits and limitations of the proposed approach are discussed and its implications for cardiac and vascular T₂-mapping are considered.}, language = {en} } @article{OrzadaFiedlerBitzetal.2020, author = {Orzada, Stephan and Fiedler, Thomas M. and Bitz, Andreas and Ladd, Mark E. and Quick, Harald H.}, title = {Local SAR compression with overestimation control to reduce maximum relative SAR overestimation and improve multi-channel RF array performance}, series = {Magnetic Resonance Materials in Physics, Biology and Medicine}, journal = {Magnetic Resonance Materials in Physics, Biology and Medicine}, number = {34 (2021)}, publisher = {Springer}, address = {Heidelberg}, isbn = {1352-8661}, doi = {10.1007/s10334-020-00890-0}, pages = {153 -- 164}, year = {2020}, abstract = {Objective In local SAR compression algorithms, the overestimation is generally not linearly dependent on actual local SAR. This can lead to large relative overestimation at low actual SAR values, unnecessarily constraining transmit array performance. Method Two strategies are proposed to reduce maximum relative overestimation for a given number of VOPs. The first strategy uses an overestimation matrix that roughly approximates actual local SAR; the second strategy uses a small set of pre-calculated VOPs as the overestimation term for the compression. Result Comparison with a previous method shows that for a given maximum relative overestimation the number of VOPs can be reduced by around 20\% at the cost of a higher absolute overestimation at high actual local SAR values. Conclusion The proposed strategies outperform a previously published strategy and can improve the SAR compression where maximum relative overestimation constrains the performance of parallel transmission.}, language = {en} } @article{FiedlerLaddBitz2017, author = {Fiedler, Thomas M. and Ladd, Mark E. and Bitz, Andreas}, title = {SAR Simulations \& Safety}, series = {NeuroImage}, journal = {NeuroImage}, number = {Epub ahead of print}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1053-8119}, doi = {10.1016/j.neuroimage.2017.03.035}, year = {2017}, language = {en} } @article{SchifferFerreinLakemeyer2012, author = {Schiffer, Stefan and Ferrein, Alexander and Lakemeyer, Gerhard}, title = {Caesar: an intelligent domestic service robot}, series = {Intelligent service robotics}, volume = {5}, journal = {Intelligent service robotics}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1861-2776}, doi = {10.1007/s11370-012-0118-y}, pages = {259 -- 276}, year = {2012}, abstract = {In this paper we present CAESAR, an intelligent domestic service robot. In domestic settings for service robots complex tasks have to be accomplished. Those tasks benefit from deliberation, from robust action execution and from flexible methods for human-robot interaction that account for qualitative notions used in natural language as well as human fallibility. Our robot CAESAR deploys AI techniques on several levels of its system architecture. On the low-level side, system modules for localization or navigation make, for instance, use of path-planning methods, heuristic search, and Bayesian filters. For face recognition and human-machine interaction, random trees and well-known methods from natural language processing are deployed. For deliberation, we use the robot programming and plan language READYLOG, which was developed for the high-level control of agents and robots; it allows combining programming the behaviour using planning to find a course of action. READYLOG is a variant of the robot programming language Golog. We extended READYLOG to be able to cope with qualitative notions of space frequently used by humans, such as "near" and "far". This facilitates human-robot interaction by bridging the gap between human natural language and the numerical values needed by the robot. Further, we use READYLOG to increase the flexible interpretation of human commands with decision-theoretic planning. We give an overview of the different methods deployed in CAESAR and show the applicability of a system equipped with these AI techniques in domestic service robotics}, language = {en} } @article{LagemaatBreukelsVosetal.2016, author = {Lagemaat, Miriam W. and Breukels, Vincent and Vos, Eline K. and Kerr, Adam B. and Uden, Mark J. van and Orzada, Stephan and Bitz, Andreas and Maas, Marnix C. and Scheenen, Tom W. J.}, title = {¹H MR spectroscopic imaging of the prostate at 7T using spectral-spatial pulses}, series = {Magnetic Resonance in Medicine}, volume = {75}, journal = {Magnetic Resonance in Medicine}, number = {3}, publisher = {International Society for Magnetic Resonance in Medicine}, issn = {1522-2594}, doi = {10.1002/mrm.25569}, pages = {933 -- 945}, year = {2016}, abstract = {Purpose To assess the feasibility of prostate ¹H MR spectroscopic imaging (MRSI) using low-power spectral-spatial (SPSP) pulses at 7T, exploiting accurate spectral selection and spatial selectivity simultaneously. Methods A double spin-echo sequence was equipped with SPSP refocusing pulses with a spectral selectivity of 1 ppm. Three-dimensional prostate ¹H-MRSI at 7T was performed with the SPSP-MRSI sequence using an 8-channel transmit array coil and an endorectal receive coil in three patients with prostate cancer and in one healthy subject. No additional water or lipid suppression pulses were used. Results Prostate ¹H-MRSI could be obtained well within specific absorption rate (SAR) limits in a clinically feasible time (10 min). Next to the common citrate signals, the prostate spectra exhibited high spermine signals concealing creatine and sometimes also choline. Residual lipid signals were observed at the edges of the prostate because of limitations in spectral and spatial selectivity. Conclusion It is possible to perform prostate ¹H-MRSI at 7T with a SPSP-MRSI sequence while using separate transmit and receive coils. This low-SAR MRSI concept provides the opportunity to increase spatial resolution of MRSI within reasonable scan times.}, language = {en} } @article{FerreinSteinbauerVassos2012, author = {Ferrein, Alexander and Steinbauer, Gerald and Vassos, Stavros}, title = {Action-Based Imperative Programming with YAGI}, series = {AAAI Technical Report}, journal = {AAAI Technical Report}, publisher = {AAAI}, address = {Menlo Park}, pages = {24 -- 31}, year = {2012}, abstract = {Many tasks for autonomous agents or robots are best described by a specification of the environment and a specification of the available actions the agent or robot can perform. Combining such a specification with the possibility to imperatively program a robot or agent is what we call the actionbased imperative programming. One of the most successful such approaches is Golog. In this paper, we draft a proposal for a new robot programming language YAGI, which is based on the action-based imperative programming paradigm. Our goal is to design a small, portable stand-alone YAGI interpreter. We combine the benefits of a principled domain specification with a clean, small and simple programming language, which does not exploit any side-effects from the implementation language. We discuss general requirements of action-based programming languages and outline YAGI, our action-based language approach which particularly aims at embeddability.}, language = {en} } @article{HagemannBachmannLadeetal.1995, author = {Hagemann, Hans-J{\"u}rgen and Bachmann, Peter K. and Lade, H. and Leers, D. and Wiechert, Detlef U. and Wilson, H. and Fournier, D. and Plamann, Karsten}, title = {Thermal properties of C/H-, C/H/O-, C/H/N- and C/H/X-grown polycrystalline CVD diamond. P. K. Bachmann, H. J. Hagemann, H. Lade, ...}, series = {Diamond and Related Material. Vol 4. (1995), H. Issue 5-6}, journal = {Diamond and Related Material. Vol 4. (1995), H. Issue 5-6}, publisher = {Elsevier Science}, address = {New York, NY [u.a.]}, pages = {820 -- 826}, year = {1995}, language = {en} } @article{HagemannBachmannLadeetal.1994, author = {Hagemann, Hans-J{\"u}rgen and Bachmann, Peter K. and Lade, H. and Leers, D.}, title = {CVD Diamond Growth: Gas Compositions and Film Properties / P.K. Bachmann, H.J. Hagemann, H. Lade, D. Leers, D.U. Wiechert and H. Wilson}, series = {Advanced materials '94 : proceedings of the NIRIM International Symposium on Advanced Materials '94, Tsukuba, Japan, March 13 - 17, 1994 / National Institute for Research in Inorganic Materials. Ed. by M. Kamo ...}, journal = {Advanced materials '94 : proceedings of the NIRIM International Symposium on Advanced Materials '94, Tsukuba, Japan, March 13 - 17, 1994 / National Institute for Research in Inorganic Materials. Ed. by M. Kamo ...}, publisher = {International Communications Specialists}, address = {Tokyo}, pages = {115 -- 120}, year = {1994}, language = {en} } @article{HagemannBachmannLadeetal.1994, author = {Hagemann, Hans-J{\"u}rgen and Bachmann, Peter K. and Lade, H. and Leers, D.}, title = {Influence of the gas phase on diamond deposition and diamond properties. Bachmann, P. K.; Hagemann, H.J.; Lade, H.; Leers, D.; Picht, F.; Wiechert, D. U.}, series = {Advanced materials '94 : proceedings of the NIRIM International Symposium on Advanced Materials '94, Tsukuba, Japan, March 13 - 17, 1994 / National Institute for Research in Inorganic Materials. Ed. by M. Kamo}, journal = {Advanced materials '94 : proceedings of the NIRIM International Symposium on Advanced Materials '94, Tsukuba, Japan, March 13 - 17, 1994 / National Institute for Research in Inorganic Materials. Ed. by M. Kamo}, publisher = {International Communications Specialists, Inc.}, address = {Tokyo}, pages = {115 -- 120}, year = {1994}, language = {en} } @article{Ferrein2010, author = {Ferrein, Alexander}, title = {Robot controllers for highly dynamic environments with real-time constraints}, series = {K{\"u}nstliche Intelligenz : KI}, volume = {24}, journal = {K{\"u}nstliche Intelligenz : KI}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {1610-1987}, doi = {10.1007/s13218-010-0041-3}, pages = {175 -- 178}, year = {2010}, abstract = {In this extended abstract we describe the robot programming and planning language READYLOG, a GOLOG dialect which was developed to support the decision making of robots acting in dynamic real-time domains like robotic soccer. The formal framework of READYLOG, which is based on the situation calculus, features imperative control structures like loops and procedures, allows for decision-theoretic planning, and accounts for a continuously changing world. We developed high-level controllers in READYLOG for our soccer robots in RoboCup's Middle-size league, but also for service robots and for autonomous agents in interactive computer games.}, language = {en} } @article{Ferrein2010, author = {Ferrein, Alexander}, title = {golog.lua: Towards a Non-Prolog Implementation of Golog for Embedded Systems}, publisher = {AAAI}, address = {Menlo Park}, pages = {20 -- 28}, year = {2010}, language = {en} } @article{HagemannBachmannLadeetal.1994, author = {Hagemann, Hans-J{\"u}rgen and Bachmann, Peter K. and Lade, H. and Leers, D.}, title = {Diamond chemical vapor deposition: gas compositions and film properties / Bachmann, P.K.; Hagemann, H.-J.; Lade, H; Leers, D.; Picht, F.; Wiechert, D.U.; Wilson, H.}, series = {Diamond, SiC and nitride wide bandgap semiconductors : symposium held April 4 - 8, 1994, San Francisco, California, U.S.A. / ed.: Calvin H. Carter, Jr. ...}, journal = {Diamond, SiC and nitride wide bandgap semiconductors : symposium held April 4 - 8, 1994, San Francisco, California, U.S.A. / ed.: Calvin H. Carter, Jr. ...}, address = {Pittsburgh, Penn.}, isbn = {1-55899-239-1}, pages = {267 -- 277}, year = {1994}, language = {en} } @article{FerreinSiebelSteinbauer2010, author = {Ferrein, Alexander and Siebel, Nils T. and Steinbauer, Gerald}, title = {Hybrid control for autonomous systems — Integrating learning, deliberation and reactive control}, series = {Robotics and Autonomous Systems}, volume = {58}, journal = {Robotics and Autonomous Systems}, number = {9}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8890}, doi = {10.1016/j.robot.2010.06.003}, pages = {1037 -- 1038}, year = {2010}, language = {en} } @article{MartinFrauenrathOezerdemetal.2011, author = {Martin, Conrad and Frauenrath, Tobias and {\"O}zerdem, Celal and Renz, Wolfgang and Niendorf, Thoralf}, title = {Development and evaluation of a small and mobile Magneto Alert Sensor (MALSE) to support safety requirements for magnetic resonance imaging}, series = {European Radiology}, volume = {21}, journal = {European Radiology}, publisher = {Springer}, address = {Berlin, Heidelberg}, issn = {1432-1084}, doi = {10.1007/s00330-011-2153-z}, pages = {2187 -- 2192}, year = {2011}, abstract = {Objective The purpose of this study is to (i) design a small and mobile Magnetic field ALert SEnsor (MALSE), (ii) to carefully evaluate its sensors to their consistency of activation/deactivation and sensitivity to magnetic fields, and (iii) to demonstrate the applicability of MALSE in 1.5 T, 3.0 T and 7.0 T MR fringe field environments. Methods MALSE comprises a set of reed sensors, which activate in response to their exposure to a magnetic field. The activation/deactivation of reed sensors was examined by moving them in/out of the fringe field generated by 7TMR. Results The consistency with which individual reed sensors would activate at the same field strength was found to be 100\% for the setup used. All of the reed switches investigated required a substantial drop in ambient magnetic field strength before they deactivated. Conclusions MALSE is a simple concept for alerting MRI staff to a ferromagnetic object being brought into fringe magnetic fields which exceeds MALSEs activation magnetic field. MALSE can easily be attached to ferromagnetic objects within the vicinity of a scanner, thus creating a barrier for hazardous situations induced by ferromagnetic parts which should not enter the vicinity of an MR-system to occur.}, language = {en} } @article{FrauenrathFuchsDieringeretal.2012, author = {Frauenrath, Tobias and Fuchs, Katharina and Dieringer, Matthias A. and {\"O}zerdem, Celal and Patel, Nishan and Renz, Wolfgang and Greiser, Andreas and Elgeti, Thomas and Niendorf, Thoralf}, title = {Detailing the use of magnetohydrodynamic effects for synchronization of MRI with the cardiac cycle: A feasibility study}, series = {Journal of Magnetic Resonance Imaging}, volume = {36}, journal = {Journal of Magnetic Resonance Imaging}, number = {2}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2586}, doi = {10.1002/jmri.23634}, pages = {364 -- 372}, year = {2012}, abstract = {Purpose: To investigate the feasibility of using magnetohydrodynamic (MHD) effects for synchronization of magnetic resonance imaging (MRI) with the cardiac cycle. Materials and Methods: The MHD effect was scrutinized using a pulsatile flow phantom at B0 = 7.0 T. MHD effects were examined in vivo in healthy volunteers (n = 10) for B0 ranging from 0.05-7.0 T. Noncontrast-enhanced MR angiography (MRA) of the carotids was performed using a gated steady-state free-precession (SSFP) imaging technique in conjunction with electrocardiogram (ECG) and MHD synchronization. Results: The MHD potential correlates with flow velocities derived from phase contrast MRI. MHD voltages depend on the orientation between B0 and the flow of a conductive fluid. An increase in the interelectrode spacing along the flow increases the MHD potential. In vivo measurement of the MHD effect provides peak voltages of 1.5 mV for surface areas close to the common carotid artery at B0 = 7.0 T. Synchronization of MRI with the cardiac cycle using MHD triggering is feasible. MHD triggered MRA of the carotids at 3.0 T showed an overall image quality and richness of anatomic detail, which is comparable to ECG-triggered MRAs. Conclusion: This feasibility study demonstrates the use of MHD effects for synchronization of MR acquisitions with the cardiac cycle. J. Magn. Reson. Imaging 2012;36:364-372. © 2012 Wiley Periodicals, Inc.}, language = {en} } @article{vonKnobelsdorfBrenkenhoffFrauenrathProthmannetal.2010, author = {von Knobelsdorf-Brenkenhoff, Florian and Frauenrath, Tobias and Prothmann, Marcel and Dieringer, Matthias A. and Hezel, Fabian and Renz, Wolfgang and Kretschel, Kerstin and Niendorf, Thoralf and Schulz-Menger, Jeanette}, title = {Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla—a pilot study}, volume = {20}, publisher = {Springer}, address = {Berlin, Heidelberg}, issn = {0938-7994}, doi = {10.1007/s00330-010-1888-2}, pages = {2844 -- 2852}, year = {2010}, abstract = {Objectives Interest in cardiovascular magnetic resonance (CMR) at 7 T is motivated by the expected increase in spatial and temporal resolution, but the method is technically challenging. We examined the feasibility of cardiac chamber quantification at 7 T. Methods A stack of short axes covering the left ventricle was obtained in nine healthy male volunteers. At 1.5 T, steady-state free precession (SSFP) and fast gradient echo (FGRE) cine imaging with 7 mm slice thickness (STH) were used. At 7 T, FGRE with 7 mm and 4 mm STH were applied. End-diastolic volume, end-systolic volume, ejection fraction and mass were calculated. Results All 7 T examinations provided excellent blood/myocardium contrast for all slice directions. No significant difference was found regarding ejection fraction and cardiac volumes between SSFP at 1.5 T and FGRE at 7 T, while volumes obtained from FGRE at 1.5 T were underestimated. Cardiac mass derived from FGRE at 1.5 and 7 T was larger than obtained from SSFP at 1.5 T. Agreement of volumes and mass between SSFP at 1.5 T and FGRE improved for FGRE at 7 T when combined with an STH reduction to 4 mm. Conclusions This pilot study demonstrates that cardiac chamber quantification at 7 T using FGRE is feasible and agrees closely with SSFP at 1.5 T.}, language = {en} } @article{GraesslRenzHezeletal.2013, author = {Gr{\"a}ßl, Andreas and Renz, Wolfgang and Hezel, Fabian and Dieringer, Matthias A. and Winter, Lukas and {\"O}zerdem, Celal and Rieger, Jan and Kellmann, Peter and Santoro, Davide and Lindel, Tomasz Dawid and Frauenrath, Tobias and Pfeiffer, Harald and Niendorf, Thoralf}, title = {Modular 32-channel transceiver coil array for cardiac MRI at 7.0T}, series = {Magnetic Resonance in Medicine}, volume = {72}, journal = {Magnetic Resonance in Medicine}, number = {1}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2594}, doi = {10.1002/mrm.24903}, pages = {276 -- 290}, year = {2013}, abstract = {Purpose To design and evaluate a modular transceiver coil array with 32 independent channels for cardiac MRI at 7.0T. Methods The modular coil array comprises eight independent building blocks, each containing four transceiver loop elements. Numerical simulations were used for B1+ field homogenization and radiofrequency (RF) safety validation. RF characteristics were examined in a phantom study. The array's suitability for accelerated high spatial resolution two-dimensional (2D) FLASH CINE imaging of the heart was examined in a volunteer study. Results Transmission field adjustments and RF characteristics were found to be suitable for the volunteer study. The signal-to-noise intrinsic to 7.0T together with the coil performance afforded a spatial resolution of 1.1 × 1.1 × 2.5 mm3 for 2D CINE FLASH MRI, which is by a factor of 6 superior to standardized CINE protocols used in clinical practice at 1.5T. The 32-channel transceiver array supports one-dimensional acceleration factors of up to R = 4 without impairing image quality significantly. Conclusion The modular 32-channel transceiver cardiac array supports accelerated and high spatial resolution cardiac MRI. The array is compatible with multichannel transmission and provides a technological basis for future clinical assessment of parallel transmission techniques at 7.0T.}, language = {en} }