@inproceedings{TamaldinEschTonolietal.2020, author = {Tamaldin, Noreffendy and Esch, Thomas and Tonoli, Andrea and Reisinger, Karl Heinz and Sprenger, Hanna and Razuli, Hisham}, title = {ERASMUS+ United CBHE Automotive International Collaboration from European to South East Asia}, series = {Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management}, booktitle = {Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management}, publisher = {IEOM Society International}, address = {Southfield}, isbn = {978-1-7923-6123-4}, issn = {2169-8767}, pages = {2970 -- 2972}, year = {2020}, abstract = {The industrial revolution especially in the IR4.0 era have driven many states of the art technologies to be introduced. The automotive industry as well as many other key industries have also been greatly influenced. The rapid development of automotive industries in Europe have created wide industry gap between European Union (EU) and developing countries such as in South East Asia (SEA). Indulging this situation, FH JOANNEUM, Austria together with European partners from FH Aachen, Germany and Politecnico di Torino, Italy are taking initiative to close down the gap utilizing the Erasmus+ United Capacity Building in Higher Education grant from EU. A consortium was founded to engage with automotive technology transfer using the European framework to Malaysian, Indonesian and Thailand Higher Education Institutions (HEI) as well as automotive industries in respective countries. This could be achieved by establishing Engineering Knowledge Transfer Unit (EKTU) in respective SEA institutions guided by the industry partners in their respective countries. This EKTU could offer updated, innovative and high-quality training courses to increase graduate's employability in higher education institutions and strengthen relations between HEI and the wider economic and social environment by addressing University-industry cooperation which is the regional priority for Asia. It is expected that, the Capacity Building Initiative would improve the quality of higher education and enhancing its relevance for the labor market and society in the SEA partners. The outcome of this project would greatly benefit the partners in strong and complementary partnership targeting the automotive industry and enhanced larger scale international cooperation between the European and SEA partners. It would also prepare the SEA HEI in sustainable partnership with Automotive industry in the region as a mean of income generation in the future.}, language = {en} } @inproceedings{KreyerEsch2017, author = {Kreyer, J{\"o}rg and Esch, Thomas}, title = {Simulation Tool for Predictive Control Strategies for an ORCSystem in Heavy Duty Vehicles}, series = {European GT Conference 2017}, booktitle = {European GT Conference 2017}, pages = {16 Seiten}, year = {2017}, abstract = {Scientific questions - How can a non-stationary heat offering in the commercial vehicle be used to reduce fuel consumption? - Which potentials offer route and environmental information among with predicted speed and load trajectories to increase the efficiency of a ORC-System? Methods - Desktop bound holistic simulation model for a heavy duty truck incl. an ORC System - Prediction of massflows, temperatures and mixture quality (AFR) of exhaust gas}, language = {en} } @techreport{EschFunkeRoosen2010, author = {Esch, Thomas and Funke, Harald and Roosen, Petra}, title = {SIoBiA - Safety Implications of Biofuels in Aviation}, publisher = {EASA}, address = {K{\"o}ln}, pages = {279 Seiten}, year = {2010}, abstract = {Biofuels potentially interesting also for aviation purposes are predominantly liquid fuels produced from biomass. The most common biofuels today are biodiesel and bioethanol. Since diesel engines are rather rare in aviation this survey is focusing on ethanol admixed to gasoline products. The Directive 2003/30/EC of the European Parliament and the Council of May 8th 2003 on the promotion of the use of biofuels or other renewable fuels for transport encourage a growing admixture of biogenic fuel components to fossil automotive gasoline. Some aircraft models equipped with spark ignited piston engines are approved for operation with automotive gasoline, frequently called "MOGAS" (motor gasoline). The majority of those approvals is limited to MOGAS compositions that do not contain methanol or ethanol beyond negligible amounts. In the past years (bio-)MTBE or (bio-)ETBE have been widely used as blending component of automotive gasoline whilst the usage of low-molecular alcohols like methanol or ethanol has been avoided due to the handling problems especially with regard to the strong affinity for water. With rising mandatory bio-admixtures the conversion of the basic biogenic ethanol to ETBE, causing a reduction of energetic payoff, becomes more and more unattractive. Therefore the direct ethanol admixture is accordingly favoured. Due to the national enforcements of the directive 2003/30/EC more oxygenates produced from organic materials like bioethanol have started to appear in automotive gasolines already. The current fuel specification EN 228 already allows up to 3 \% volume per volume (v/v) (bio-)methanol or up to 5 \% v/v (bio-)ethanol as fuel components. This is also roughly the amount of biogenic components to comply with the legal requirements to avoid monetary penalties for producers and distributors of fuels. Since automotive fuel is cheaper than the common aviation gasoline (AVGAS), creates less problems with lead deposits in the engine, and in general produces less pollutants it is strongly favoured by pilots. But being designed for a different set of usage scenarios the use of automotive fuel with low molecular alcohols for aircraft operation may have adverse effects in aviation operation. Increasing amounts of ethanol admixtures impose various changes in the gasoline's chemical and physical properties, some of them rather unexpected and not within the range of flight experiences even of long-term pilots.}, language = {en} } @article{Esch2010, author = {Esch, Thomas}, title = {Trends in commercial vehicle powertrains}, series = {ATZautotechnology}, volume = {2010}, journal = {ATZautotechnology}, number = {10}, publisher = {Vieweg \& Sohn}, address = {Wiesbaden}, issn = {2192-886X}, doi = {10.1007/BF03247185}, pages = {26 -- 31}, year = {2010}, abstract = {Low emission zones and truck bans, the rising price of diesel and increases in road tolls: all of these factors are putting serious pressure on the transport industry. Commercial vehicle manufacturers and their suppliers are in the process of identifying new solutions to these challenges as part of their efforts to meet the EEV (enhanced environmentally friendly vehicle) limits, which are currently the most robust European exhaust and emissions standards for trucks and buses.}, language = {en} } @inproceedings{KemperHellenbroichEsch2009, author = {Kemper, Hans and Hellenbroich, Gereon and Esch, Thomas}, title = {Concept of an innovative passenger-car hybrid drive for European driving conditions}, series = {Hybrid vehicles and energy management : 6th symposium ; 18th and 19th February 2009, Stadthalle Braunschweig}, booktitle = {Hybrid vehicles and energy management : 6th symposium ; 18th and 19th February 2009, Stadthalle Braunschweig}, publisher = {Gesamtzentrum f{\"u}r Verkehr (GZVB)}, address = {Braunschweig}, isbn = {978-3-937655-20-8}, pages = {264 -- 287}, year = {2009}, abstract = {The downsizing of spark ignition engines in conjunction with turbocharging is considered to be a promising method for reducing CO₂ emissions. Using this concept, FEV has developed a new, highly efficient drivetrain to demonstrate fuel consumption reduction and drivability in a vehicle based on the Ford Focus ST. The newly designed 1.8L turbocharged gasoline engine incorporates infinitely variable intake and outlet control timing and direct fuel injection utilizing piezo injectors centrally located. In addition, this engine uses a prototype FEV engine control system, with software that was developed and adapted entirely by FEV. The vehicle features a 160 kW engine with a maximum mean effective pressure of 22.4 bar and 34 \% savings in simulated fuel consumption. During the first stage, a new electrohydraulically actuated hybrid transmission with seven forward gears and one reverse gear and a single dry starting clutch will be integrated. The electric motor of the hybrid is directly connected to the gear set of the transmission. Utilizing the special gear set layout, the electric motor can provide boost during a change of gears, so that there is no interruption in traction. Therefore, the transmission system combines the advantages of a double clutch controlled gear change (gear change without an interruption in traction) with the efficient, cost-effective design of an automated manual transmission system. Additionally, the transmission provides a purely electric drive system and the operation of an air-conditioning compressor during the engine stop phases. One other alternative is through the use of CAI (Controlled Auto Ignition), which incorporates a process developed by FEV for controlled compression ignition.}, language = {en} } @inproceedings{FunkeEschRoosen2009, author = {Funke, Harald and Esch, Thomas and Roosen, Peter}, title = {Using motor gasoline for aircrafts - coping with growing bio-fuel-caused risks by understanding cause-effect relationship}, series = {Fuels 2009 : mineral oil based and alternative fuels ; 7th international colloquium ; January 14 - 15, 2009}, booktitle = {Fuels 2009 : mineral oil based and alternative fuels ; 7th international colloquium ; January 14 - 15, 2009}, editor = {Bartz, Wilfried J.}, publisher = {Technische Akademie Esslingen (TAE)}, address = {Ostfildern}, isbn = {978-3-924813-75-8}, pages = {237 -- 244}, year = {2009}, abstract = {The utilisation of vehicle-oriented gasoline in general aviation is very desirable for both ecological and economical reasons, as well as for general considerations of availability. As of today vehicle fuels may be used if the respective engine and cell are certified for such an operation. For older planes a supplementary technical certificate is provided for gasoline mixtures with less than 1 \% v/v ethanol only, though. Larger admixtures of ethanol may lead to sudden engine malfunction and should be considered as considerable security risks. Major problems are caused by the partially ethanol non-withstanding materials, a necessarily changed stochiometric adjustment of the engine for varying ethanol shares and the tendency for phase separation in the presence of absorbed water. The concepts of the flexible fuel vehicles are only partially applicable in the view of air security.}, language = {en} } @inproceedings{WeissAbanteribaEsch2007, author = {Weiss, Alexander and Abanteriba, Sylvester and Esch, Thomas}, title = {Investigation of Flow Separation Inside a Conical Rocket Nozzle With the Aid of an Annular Cross Flow}, series = {Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 1: Symposia, Parts A and B}, booktitle = {Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 1: Symposia, Parts A and B}, publisher = {American Society of Mechanical Engineers (ASME)}, address = {New York}, isbn = {0-7918-4288-6}, doi = {10.1115/FEDSM2007-37387}, pages = {1861 -- 1871}, year = {2007}, abstract = {Flow separation is a phenomenon that occurs in all kinds of supersonic nozzles sometimes during run-up and shut-down operations. Especially in expansion nozzles of rocket engines with large area ratio, flow separation can trigger strong side loads that can damage the structure of the nozzle. The investigation presented in this paper seeks to establish measures that may be applied to alter the point of flow separation. In order to achieve this, a supersonic nozzle was placed at the exit plane of the conical nozzle. This resulted in the generation of cross flow surrounding the core jet flow from the conical nozzle. Due to the entrainment of the gas stream from the conical nozzle the pressure in its exit plane was found to be lower than that of the ambient. A Cold gas instead of hot combustion gases was used as the working fluid. A mathematical simulation of the concept was validated by experiment. Measurements confirmed the simulation results that due to the introduction of a second nozzle the pressure in the separated region of the conical nozzle was significantly reduced. It was also established that the boundary layer separation inside the conical nozzle was delayed thus allowing an increased degree of overexpansion. The condition established by the pressure measurements was also demonstrated qualitatively using transparent nozzle configurations.}, language = {en} } @misc{PischingerEschDuesmann2006, author = {Pischinger, Martin and Esch, Thomas and Duesmann, Klaus}, title = {Elektromagnetischer Aktuator mit gelenkig abgest{\"u}tzter R{\"u}ckstellfeder}, year = {2006}, abstract = {Die Erfindung betrifft einen elektromagnetischen Aktuator zur Bet{\"a}tigung eines Stellgliedes (7) mit wenigstens einem gesteuert bestrombaren Elektromagneten (1, 2) und einem mit dem Stellglied (7) in Wirkverbindung stehenden Anker (5), der bei Bestromung des Elektromagneten (1, 2) gegen die Kraft wenigstens einer an einem Geh{\"a}use (12) abgest{\"u}tzten R{\"u}ckstellfeder (10) an der Polfl{\"a}che (3, 4) des Elektromagneten (1, 2) zur Anlage kommt, und daß zumindest der Anker (5) {\"u}ber eine sph{\"a}rische Gelenkanordnung (11) auf der R{\"u}ckstellfeder (10) abgest{\"u}tzt ist.}, language = {de} } @inproceedings{HuthElsenHartwigetal.2006, author = {Huth, Thomas and Elsen, Olaf and Hartwig, Christoph and Esch, Thomas}, title = {Innovative modular valve trains for 2015 - logistic benefits by EMVT}, series = {IFAC Proceedings Volumes, Volume 39, Issue 3}, booktitle = {IFAC Proceedings Volumes, Volume 39, Issue 3}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.3182/20060517-3-FR-2903.00172}, pages = {315 -- 320}, year = {2006}, abstract = {In this paper the way to a 5-day-car with respect to a modular valve train systems for spark ignited combustion engines is shown. The necessary product diversity is shift from mechanical or physical components to software components. Therefore, significant improvements of logistic indicators are expected and shown. The working principle of a camless cylinder head with respect to an electromagnetical valve train (EMVT) is explained and it is demonstrated that shifting physical diversity to software is feasible. The future design of combustion engine systems including customisation can be supported by a set of assistance tools which is shown exemplary.}, language = {en} } @article{FunkeEschRoosen2022, author = {Funke, Harald and Esch, Thomas and Roosen, Petra}, title = {Antriebssystemanpassungen zur Verwendung von LPG als Flugkraftstoff}, series = {Motortechnische Zeitschrift (MTZ)}, volume = {2022}, journal = {Motortechnische Zeitschrift (MTZ)}, number = {83}, publisher = {Springer Nature}, address = {Basel}, doi = {10.1007/s35146-021-0778-2}, pages = {58 -- 62}, year = {2022}, abstract = {Auch in der allgemeinen Luftfahrt w{\"a}re es w{\"u}nschenswert, die bereits vorhandenen Verbrennungsmotoren mit weniger CO₂-tr{\"a}chtigen Kraftstoffen als dem heute weit verbreiteten Avgas 100LL betreiben zu k{\"o}nnen. Es ist anzunehmen, dass im Vergleich die unter Normalbedingungen gasf{\"o}rmigen Kraftstoffe CNG, LPG oder LNG deutlich weniger Emissionen produzieren. Erforderliche Antriebssystemanpassungen wurden im Rahmen eines Forschungsprojekts an der FH Aachen untersucht.}, language = {de} } @article{FayyaziSardarThomasetal.2023, author = {Fayyazi, Mojgan and Sardar, Paramjotsingh and Thomas, Sumit Infent and Daghigh, Roonak and Jamali, Ali and Esch, Thomas and Kemper, Hans and Langari, Reza and Khayyam, Hamid}, title = {Artificial intelligence/machine learning in energy management systems, control, and optimization of hydrogen fuel cell vehicles}, volume = {15}, number = {6}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/su15065249}, pages = {38}, year = {2023}, abstract = {Environmental emissions, global warming, and energy-related concerns have accelerated the advancements in conventional vehicles that primarily use internal combustion engines. Among the existing technologies, hydrogen fuel cell electric vehicles and fuel cell hybrid electric vehicles may have minimal contributions to greenhouse gas emissions and thus are the prime choices for environmental concerns. However, energy management in fuel cell electric vehicles and fuel cell hybrid electric vehicles is a major challenge. Appropriate control strategies should be used for effective energy management in these vehicles. On the other hand, there has been significant progress in artificial intelligence, machine learning, and designing data-driven intelligent controllers. These techniques have found much attention within the community, and state-of-the-art energy management technologies have been developed based on them. This manuscript reviews the application of machine learning and intelligent controllers for prediction, control, energy management, and vehicle to everything (V2X) in hydrogen fuel cell vehicles. The effectiveness of data-driven control and optimization systems are investigated to evolve, classify, and compare, and future trends and directions for sustainability are discussed.}, language = {en} } @book{JanserHavermannHoeveleretal.2023, author = {Janser, Frank and Havermann, Marc and Hoeveler, Bastian and Hertz, Cyril and Bergmann, Ole}, title = {Str{\"o}mungslehre und Aerodynamik : inkompressible Profile und Tragfl{\"u}gelaerodynamik, Band 2}, edition = {4. Auflage}, publisher = {Mainz}, address = {Aachen}, isbn = {978-3-8107-0261-6}, pages = {XIII, 211 Seiten}, year = {2023}, abstract = {Das vorliegende Buch dient als Grundlage f{\"u}r die Bachelor- und Master-Ausbildung von Studierenden im Fachgebiet Str{\"o}mungslehre und Aerodynamik. Im hier behandelten Teilbereich der inkompressiblen Profile und Tragfl{\"u}gelaerodynamik werden schwerpunktm{\"a}ßig die folgenden Themen besprochen: - Profilaerodynamik - Tragfl{\"u}gelaerodynamik - Flugzeugpolare - Methoden zur Flugbereichserweiterung - Schwebeschub und Schwebeleistung - Propellerblattaerodynamik - Numerische Methoden zur Tragfl{\"u}gelberechnung}, language = {de} } @incollection{DachwaldUlamecKowalskietal.2023, author = {Dachwald, Bernd and Ulamec, Stephan and Kowalski, Julia and Boxberg, Marc S. and Baader, Fabian and Biele, Jens and K{\"o}mle, Norbert}, title = {Ice melting probes}, series = {Handbook of Space Resources}, booktitle = {Handbook of Space Resources}, editor = {Badescu, Viorel and Zacny, Kris and Bar-Cohen, Yoseph}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-97912-6 (Print)}, doi = {10.1007/978-3-030-97913-3_29}, pages = {955 -- 996}, year = {2023}, abstract = {The exploration of icy environments in the solar system, such as the poles of Mars and the icy moons (a.k.a. ocean worlds), is a key aspect for understanding their astrobiological potential as well as for extraterrestrial resource inspection. On these worlds, ice melting probes are considered to be well suited for the robotic clean execution of such missions. In this chapter, we describe ice melting probes and their applications, the physics of ice melting and how the melting behavior can be modeled and simulated numerically, the challenges for ice melting, and the required key technologies to deal with those challenges. We also give an overview of existing ice melting probes and report some results and lessons learned from laboratory and field tests.}, language = {en} } @article{ThomaThomessenGardietal.2023, author = {Thoma, Andreas and Thomessen, Karolin and Gardi, Alessandro and Fisher, A. and Braun, Carsten}, title = {Prioritising paths: An improved cost function for local path planning for UAV in medical applications}, series = {The Aeronautical Journal}, journal = {The Aeronautical Journal}, number = {First View}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {0001-9240 (Print)}, doi = {10.1017/aer.2023.68}, pages = {1 -- 18}, year = {2023}, abstract = {Even the shortest flight through unknown, cluttered environments requires reliable local path planning algorithms to avoid unforeseen obstacles. The algorithm must evaluate alternative flight paths and identify the best path if an obstacle blocks its way. Commonly, weighted sums are used here. This work shows that weighted Chebyshev distances and factorial achievement scalarising functions are suitable alternatives to weighted sums if combined with the 3DVFH* local path planning algorithm. Both methods considerably reduce the failure probability of simulated flights in various environments. The standard 3DVFH* uses a weighted sum and has a failure probability of 50\% in the test environments. A factorial achievement scalarising function, which minimises the worst combination of two out of four objective functions, reaches a failure probability of 26\%; A weighted Chebyshev distance, which optimises the worst objective, has a failure probability of 30\%. These results show promise for further enhancements and to support broader applicability.}, language = {en} } @incollection{HeimesKampkerKehreretal.2023, author = {Heimes, Heiner Hans and Kampker, Achim and Kehrer, Mario and D{\"u}nnwald, Simon and Heetfeld, Lennart and Polzenberg, Jens and Budde, Lucas and Keusen, Maximilian and Pandey, Rahul and R{\"o}th, Thilo}, title = {Fahrzeugstruktur}, series = {Elektromobilit{\"a}t: Grundlagen einer Fortschrittstechnologie}, booktitle = {Elektromobilit{\"a}t: Grundlagen einer Fortschrittstechnologie}, editor = {Kampker, Achim and Heimes, Heiner Hans}, publisher = {Springer Vieweg}, address = {Berlin}, isbn = {978-3-662-65811-6 (Print)}, doi = {10.1007/978-3-662-65812-3_5}, pages = {69 -- 106}, year = {2023}, abstract = {Um sowohl Treibhausgas-Emissionen zu verringern als auch Kraftstoffressourcen zu schonen, wird zunehmend an einer Transformation konventionell angetriebener Kraftfahrzeuge hin zu elektrifizierten Antriebskonzepten gearbeitet. Basierend auf herk{\"o}mmlichen Fahrzeugen mit Verbrennungsmotor wurde eine Vielzahl neuer Antriebssysteme mit verschiedenem Elektrifizierungsgrad entwickelt. Mitte der 1990er-Jahre kamen erste Fahrzeuge mit einem Hybridantrieb auf den Markt. Die Kombination aus Verbrennungs- und Elektromotor erlaubt eine Verbrauchsreduktion und Bremsenergier{\"u}ckgewinnung sowie lokal emissionsfreies Fahren.}, language = {de} } @incollection{HeimesKampkerDornetal.2023, author = {Heimes, Heiner Hans and Kampker, Achim and Dorn, Benjamin and Kehrer, Mario and D{\"u}nnwald, Simon and Badura, Dennis and Terren, Maximilian and R{\"o}th, Thilo}, title = {Produktionsprozesse der Fahrzeugstruktur}, series = {Elektromobilit{\"a}t: Grundlagen einer Fortschrittstechnologie}, booktitle = {Elektromobilit{\"a}t: Grundlagen einer Fortschrittstechnologie}, editor = {Kampker, Achim and Heimes, Heiner Hans}, publisher = {Springer Vieweg}, address = {Berlin}, isbn = {978-3-662-65811-6 (Print)}, doi = {10.1007/978-3-662-65812-3_13}, pages = {227 -- 247}, year = {2023}, language = {de} } @article{BaaderBoxbergChenetal.2023, author = {Baader, Fabian and Boxberg, Marc S. and Chen, Qian and F{\"o}rstner, Roger and Kowalski, Julia and Dachwald, Bernd}, title = {Field-test performance of an ice-melting probe in a terrestrial analogue environment}, series = {Icarus}, journal = {Icarus}, number = {409}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.icarus.2023.115852}, pages = {Artikel 115852}, year = {2023}, abstract = {Melting probes are a proven tool for the exploration of thick ice layers and clean sampling of subglacial water on Earth. Their compact size and ease of operation also make them a key technology for the future exploration of icy moons in our Solar System, most prominently Europa and Enceladus. For both mission planning and hardware engineering, metrics such as efficiency and expected performance in terms of achievable speed, power requirements, and necessary heating power have to be known. Theoretical studies aim at describing thermal losses on the one hand, while laboratory experiments and field tests allow an empirical investigation of the true performance on the other hand. To investigate the practical value of a performance model for the operational performance in extraterrestrial environments, we first contrast measured data from terrestrial field tests on temperate and polythermal glaciers with results from basic heat loss models and a melt trajectory model. For this purpose, we propose conventions for the determination of two different efficiencies that can be applied to both measured data and models. One definition of efficiency is related to the melting head only, while the other definition considers the melting probe as a whole. We also present methods to combine several sources of heat loss for probes with a circular cross-section, and to translate the geometry of probes with a non-circular cross-section to analyse them in the same way. The models were selected in a way that minimizes the need to make assumptions about unknown parameters of the probe or the ice environment. The results indicate that currently used models do not yet reliably reproduce the performance of a probe under realistic conditions. Melting velocities and efficiencies are constantly overestimated by 15 to 50 \% in the models, but qualitatively agree with the field test data. Hence, losses are observed, that are not yet covered and quantified by the available loss models. We find that the deviation increases with decreasing ice temperature. We suspect that this mismatch is mainly due to the too restrictive idealization of the probe model and the fact that the probe was not operated in an efficiency-optimized manner during the field tests. With respect to space mission engineering, we find that performance and efficiency models must be used with caution in unknown ice environments, as various ice parameters have a significant effect on the melting process. Some of these are difficult to estimate from afar.}, language = {en} } @misc{FeldmannFranckeEspeetal.2022, author = {Feldmann, Marco and Francke, Gero and Espe, Clemes and Chen, Qian and Baader, Fabian and Boxberg, Marc S. and Sustrate, Anna-Marie and Kowalski, Julia and Dachwald, Bernd}, title = {Performance data of an ice-melting probe from field tests in two different ice environments}, doi = {10.5281/zenodo.6094866}, year = {2022}, abstract = {This dataset was acquired at field tests of the steerable ice-melting probe "EnEx-IceMole" (Dachwald et al., 2014). A field test in summer 2014 was used to test the melting probe's system, before the probe was shipped to Antarctica, where, in international cooperation with the MIDGE project, the objective of a sampling mission in the southern hemisphere summer 2014/2015 was to return a clean englacial sample from the subglacial brine reservoir supplying the Blood Falls at Taylor Glacier (Badgeley et al., 2017, German et al., 2021). The standardized log-files generated by the IceMole during melting operation include more than 100 operational parameters, housekeeping information, and error states, which are reported to the base station in intervals of 4 s. Occasional packet loss in data transmission resulted in a sparse number of increased sampling intervals, which where compensated for by linear interpolation during post processing. The presented dataset is based on a subset of this data: The penetration distance is calculated based on the ice screw drive encoder signal, providing the rate of rotation, and the screw's thread pitch. The melting speed is calculated from the same data, assuming the rate of rotation to be constant over one sampling interval. The contact force is calculated from the longitudinal screw force, which es measured by strain gauges. The used heating power is calculated from binary states of all heating elements, which can only be either switched on or off. Temperatures are measured at each heating element and averaged for three zones (melting head, side-wall heaters and back-plate heaters).}, language = {en} } @article{UlmerBraunChengetal.2023, author = {Ulmer, Jessica and Braun, Carsten and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {A human factors-aware assistance system in manufacturing based on gamification and hardware modularisation}, series = {International Journal of Production Research}, journal = {International Journal of Production Research}, publisher = {Taylor \& Francis}, issn = {0020-7543 (Print)}, doi = {10.1080/00207543.2023.2166140}, year = {2023}, abstract = {Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers' cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines.}, language = {en} } @article{BoehnischBraunMuscarelloetal.2024, author = {B{\"o}hnisch, Nils and Braun, Carsten and Muscarello, Vincenzo and Marzocca, Pier}, title = {About the wing and whirl flutter of a slender wing-propeller system}, series = {Journal of Aircraft}, journal = {Journal of Aircraft}, publisher = {American Institute of Aeronautics and Astronautics}, issn = {1533-3868}, doi = {10.2514/1.C037542}, pages = {1 -- 14}, year = {2024}, abstract = {Next-generation aircraft designs often incorporate multiple large propellers attached along the wingspan (distributed electric propulsion), leading to highly flexible dynamic systems that can exhibit aeroelastic instabilities. This paper introduces a validated methodology to investigate the aeroelastic instabilities of wing-propeller systems and to understand the dynamic mechanism leading to wing and whirl flutter and transition from one to the other. Factors such as nacelle positions along the wing span and chord and its propulsion system mounting stiffness are considered. Additionally, preliminary design guidelines are proposed for flutter-free wing-propeller systems applicable to novel aircraft designs. The study demonstrates how the critical speed of the wing-propeller systems is influenced by the mounting stiffness and propeller position. Weak mounting stiffnesses result in whirl flutter, while hard mounting stiffnesses lead to wing flutter. For the latter, the position of the propeller along the wing span may change the wing mode shapes and thus the flutter mechanism. Propeller positions closer to the wing tip enhance stability, but pusher configurations are more critical due to the mass distribution behind the elastic axis.}, language = {en} }