@inproceedings{RauschLeiseEdereretal.2016, author = {Rausch, Lea and Leise, Philipp and Ederer, Thorsten and Altherr, Lena and Pelz, Peter F.}, title = {A comparison of MILP and MINLP solver performance on the example of a drinking water supply system design problem}, series = {ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering}, booktitle = {ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering}, editor = {Papadrakakis, M. and Ppadopoulos, V. and Stefanou, G. and Plevris, V.}, isbn = {978-618-82844-0-1}, pages = {8509 -- 8527}, year = {2016}, abstract = {Finding a good system topology with more than a handful of components is a highly non-trivial task. The system needs to be able to fulfil all expected load cases, but at the same time the components should interact in an energy-efficient way. An example for a system design problem is the layout of the drinking water supply of a residential building. It may be reasonable to choose a design of spatially distributed pumps which are connected by pipes in at least two dimensions. This leads to a large variety of possible system topologies. To solve such problems in a reasonable time frame, the nonlinear technical characteristics must be modelled as simple as possible, while still achieving a sufficiently good representation of reality. The aim of this paper is to compare the speed and reliability of a selection of leading mathematical programming solvers on a set of varying model formulations. This gives us empirical evidence on what combinations of model formulations and solver packages are the means of choice with the current state of the art.}, language = {en} } @article{RauschFriesenAltherretal.2018, author = {Rausch, Lea and Friesen, John and Altherr, Lena and Meck, Marvin and Pelz, Peter F.}, title = {A holistic concept to design optimal water supply infrastructures for informal settlements using remote sensing data}, series = {Remote Sensing}, volume = {10}, journal = {Remote Sensing}, number = {2}, publisher = {MDPI}, address = {Basel}, isbn = {2072-4292}, doi = {10.3390/rs10020216}, pages = {1 -- 23}, year = {2018}, abstract = {Ensuring access to water and sanitation for all is Goal No. 6 of the 17 UN Sustainability Development Goals to transform our world. As one step towards this goal, we present an approach that leverages remote sensing data to plan optimal water supply networks for informal urban settlements. The concept focuses on slums within large urban areas, which are often characterized by a lack of an appropriate water supply. We apply methods of mathematical optimization aiming to find a network describing the optimal supply infrastructure. Hereby, we choose between different decentral and central approaches combining supply by motorized vehicles with supply by pipe systems. For the purposes of illustration, we apply the approach to two small slum clusters in Dhaka and Dar es Salaam. We show our optimization results, which represent the lowest cost water supply systems possible. Additionally, we compare the optimal solutions of the two clusters (also for varying input parameters, such as population densities and slum size development over time) and describe how the result of the optimization depends on the entered remote sensing data.}, language = {en} } @incollection{AltherrDoerigEdereretal.2017, author = {Altherr, Lena and D{\"o}rig, Bastian and Ederer, Thorsten and Pelz, Peter Franz and Pfetsch, Marc and Wolf, Jan}, title = {A mixed-integer nonlinear program for the design of gearboxes}, series = {Operations Research Proceedings 2016}, booktitle = {Operations Research Proceedings 2016}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-55701-4}, doi = {10.1007/978-3-319-55702-1_31}, pages = {227 -- 233}, year = {2017}, abstract = {Gearboxes are mechanical transmission systems that provide speed and torque conversions from a rotating power source. Being a central element of the drive train, they are relevant for the efficiency and durability of motor vehicles. In this work, we present a new approach for gearbox design: Modeling the design problem as a mixed-integer nonlinear program (MINLP) allows us to create gearbox designs from scratch for arbitrary requirements and—given enough time—to compute provably globally optimal designs for a given objective. We show how different degrees of freedom influence the runtime and present an exemplary solution.}, language = {en} } @article{AltherrLeisePfetschetal.2018, author = {Altherr, Lena and Leise, Philipp and Pfetsch, Marc E. and Schmitt, Andreas}, title = {Algorithmic design and resilience assessment of energy efficient high-rise water supply systems}, series = {Applied Mechanics and Materials}, volume = {885}, journal = {Applied Mechanics and Materials}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, issn = {1662-7482}, doi = {10.4028/www.scientific.net/AMM.885.211}, pages = {211 -- 223}, year = {2018}, abstract = {High-rise water supply systems provide water flow and suitable pressure in all levels of tall buildings. To design such state-of-the-art systems, the consideration of energy efficiency and the anticipation of component failures are mandatory. In this paper, we use Mixed-Integer Nonlinear Programming to compute an optimal placement of pipes and pumps, as well as an optimal control strategy.Moreover, we consider the resilience of the system to pump failures. A resilient system is able to fulfill a predefined minimum functionality even though components fail or are restricted in their normal usage. We present models to measure and optimize the resilience. To demonstrate our approach, we design and analyze an optimal resilient decentralized water supply system inspired by a real-life hotel building.}, language = {en} } @book{Altherr2016, author = {Altherr, Lena}, title = {Algorithmic System Design under Consideration of Dynamic Processes}, publisher = {Shaker}, address = {Aachen}, isbn = {978-3-8440-4848-3}, pages = {94}, year = {2016}, abstract = {Nach Stand von Wissenschaft und Technik werden Komponenten hinsichtlich ihrer Eigenschaften, wie Lebensdauer oder Energieeffizienz, optimiert. Allerdings k{\"o}nnen selbst hervorragende Komponenten zu ineffizienten oder instabilen Systemen f{\"u}hren, wenn ihr Zusammenspiel nur unzureichend ber{\"u}cksichtigt wird. Eine Systembetrachtung schafft ein gr{\"o}ßeres Optimierungspotential - dem erh{\"o}hten Potential steht jedoch auch ein erh{\"o}hter Komplexit{\"a}tsgrad gegen{\"u}ber. Die vorliegende Arbeit ist im Rahmen des Sonderforschungsbereichs 805 entstanden, dessen Ziel die Beherrschung von Unsicherheit in Systemen des Maschinenbaus ist. Die Arbeit zeigt anhand eines realen Systems aus dem Bereich der Hydraulik, wie Unsicherheit in der Entwicklungsphase beherrscht werden kann. Hierbei ist neu, dass die durch den sp{\"a}teren Betrieb zu erwartende Systemdegradation eines jeden m{\"o}glichen Systemvorschlags antizipiert werden kann. Dadurch k{\"o}nnen Betriebs- und Wartungskosten vorausgesagt und minimiert werden und durch eine optimale Betriebs- und Wartungsstrategie die Verf{\"u}gbarkeit des Systems garantiert werden. Wesentliche Fragen bei der optimalen Auslegung des betrachteten hydrostatischen Getriebes sind dessen physikalische Modellierung, die Darstellung des Optimierungsproblems als gemischt-ganzzahliges lineares Programm, und dessen algorithmische Behandlung zur L{\"o}sungsfindung. Hierzu werden Heuristiken zum schnelleren Auffinden sinnvoller Systemtopologien vorgestellt und mittels mathematischer Dekomposition eine Bewertung des dynamischen Verschleiß- und Wartungsverlaufs m{\"o}glicher Systemvorschl{\"a}ge vorgenommen. Die Arbeit stellt die Optimierung technischer Systeme an der Schnittstelle von Mathematik, Informatik und Ingenieurwesen sowohl gr{\"u}ndlich als auch anschaulich und nachvollziehbar dar.}, language = {en} } @inproceedings{AltherrEdererSchaenzleetal.2017, author = {Altherr, Lena and Ederer, Thorsten and Sch{\"a}nzle, Christian and Lorenz, Ulf and Pelz, Peter F.}, title = {Algorithmic system design using scaling and affinity laws}, series = {Operations Research Proceedings 2015}, booktitle = {Operations Research Proceedings 2015}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-42901-4}, doi = {10.1007/978-3-319-42902-1}, pages = {605 -- 611}, year = {2017}, abstract = {Energy-efficient components do not automatically lead to energy-efficient systems. Technical Operations Research (TOR) shifts the focus from the single component to the system as a whole and finds its optimal topology and operating strategy simultaneously. In previous works, we provided a preselected construction kit of suitable components for the algorithm. This approach may give rise to a combinatorial explosion if the preselection cannot be cut down to a reasonable number by human intuition. To reduce the number of discrete decisions, we integrate laws derived from similarity theory into the optimization model. Since the physical characteristics of a production series are similar, it can be described by affinity and scaling laws. Making use of these laws, our construction kit can be modeled more efficiently: Instead of a preselection of components, it now encompasses whole model ranges. This allows us to significantly increase the number of possible set-ups in our model. In this paper, we present how to embed this new formulation into a mixed-integer program and assess the run time via benchmarks. We present our approach on the example of a ventilation system design problem.}, language = {en} } @inproceedings{AltherrEdererVergeetal.2015, author = {Altherr, Lena and Ederer, Thorsten and Verg{\´e}, Angela and Pelz, Peter F.}, title = {Algorithmische Struktursynthese eines hydrostatischen Getriebes}, series = {Antriebssysteme 2015 : Elektrik, Mechanik, Fluidtechnik in der Anwendung}, booktitle = {Antriebssysteme 2015 : Elektrik, Mechanik, Fluidtechnik in der Anwendung}, publisher = {VDI-Verlag}, address = {D{\"u}sseldorf}, isbn = {978-3-18-092268-3}, pages = {145 -- 155}, year = {2015}, language = {de} } @inproceedings{SchaenzleAltherrEdereretal.2015, author = {Sch{\"a}nzle, Christian and Altherr, Lena and Ederer, Thorsten and Lorenz, Ulf and Pelz, Peter F.}, title = {As good as it can be: Ventilation system design by a combined scaling and discrete optimization method}, series = {Proceedings of FAN 2015}, booktitle = {Proceedings of FAN 2015}, pages = {1 -- 11}, year = {2015}, abstract = {The understanding that optimized components do not automatically lead to energy-efficient systems sets the attention from the single component on the entire technical system. At TU Darmstadt, a new field of research named Technical Operations Research (TOR) has its origin. It combines mathematical and technical know-how for the optimal design of technical systems. We illustrate our optimization approach in a case study for the design of a ventilation system with the ambition to minimize the energy consumption for a temporal distribution of diverse load demands. By combining scaling laws with our optimization methods we find the optimal combination of fans and show the advantage of the use of multiple fans.}, language = {en} } @inproceedings{LorenzAltherrPelz2020, author = {Lorenz, Imke-Sophie and Altherr, Lena and Pelz, Peter F.}, title = {Assessing and Optimizing the Resilience of Water Distribution Systems Using Graph-Theoretical Metrics}, series = {Operations Research Proceedings 2019}, booktitle = {Operations Research Proceedings 2019}, editor = {Neufeld, Janis S. and Buscher, Udo and Lasch, Rainer and M{\"o}st, Dominik and Sch{\"o}nberger, J{\"o}rn}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-48439-2}, doi = {10.1007/978-3-030-48439-2_63}, pages = {521 -- 527}, year = {2020}, abstract = {Water distribution systems are an essential supply infrastructure for cities. Given that climatic and demographic influences will pose further challenges for these infrastructures in the future, the resilience of water supply systems, i.e. their ability to withstand and recover from disruptions, has recently become a subject of research. To assess the resilience of a WDS, different graph-theoretical approaches exist. Next to general metrics characterizing the network topology, also hydraulic and technical restrictions have to be taken into account. In this work, the resilience of an exemplary water distribution network of a major German city is assessed, and a Mixed-Integer Program is presented which allows to assess the impact of capacity adaptations on its resilience.}, language = {en} } @inproceedings{LeiseSimonAltherr2020, author = {Leise, Philipp and Simon, Nicolai and Altherr, Lena}, title = {Comparison of Piecewise Linearization Techniques to Model Electric Motor Efficiency Maps: A Computational Study}, series = {Operations Research Proceedings 2019}, booktitle = {Operations Research Proceedings 2019}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-48439-2}, doi = {10.1007/978-3-030-48439-2_55}, pages = {457 -- 463}, year = {2020}, abstract = {To maximize the travel distances of battery electric vehicles such as cars or buses for a given amount of stored energy, their powertrains are optimized energetically. One key part within optimization models for electric powertrains is the efficiency map of the electric motor. The underlying function is usually highly nonlinear and nonconvex and leads to major challenges within a global optimization process. To enable faster solution times, one possibility is the usage of piecewise linearization techniques to approximate the nonlinear efficiency map with linear constraints. Therefore, we evaluate the influence of different piecewise linearization modeling techniques on the overall solution process and compare the solution time and accuracy for methods with and without explicitly used binary variables.}, language = {en} } @incollection{AltherrEdererLorenzetal.2016, author = {Altherr, Lena and Ederer, Thorsten and Lorenz, Ulf and Pelz, Peter F. and P{\"o}ttgen, Philipp}, title = {Designing a feedback control system via mixed-integer programming}, series = {Operations Research Proceedings 2014: Selected Papers of the Annual International Conference of the German Operations Research}, booktitle = {Operations Research Proceedings 2014: Selected Papers of the Annual International Conference of the German Operations Research}, editor = {L{\"u}bbecke, Marco E. and Koster, Arie and Letmathe, Peter and Madlener, Reihard and Preis, Britta and Walther, Grit}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-28695-2}, doi = {10.1007/978-3-319-28697-6_18}, pages = {121 -- 127}, year = {2016}, abstract = {Pure analytical or experimental methods can only find a control strategy for technical systems with a fixed setup. In former contributions we presented an approach that simultaneously finds the optimal topology and the optimal open-loop control of a system via Mixed Integer Linear Programming (MILP). In order to extend this approach by a closed-loop control we present a Mixed Integer Program for a time discretized tank level control. This model is the basis for an extension by combinatorial decisions and thus for the variation of the network topology. Furthermore, one is able to appraise feasible solutions using the global optimality gap.}, language = {en} } @inproceedings{TischbeinKeanVertgewalletal.2023, author = {Tischbein, Franziska and Kean, Kilian and Vertgewall, Chris Martin and Ulbig, Andreas and Altherr, Lena}, title = {Determination of the topology of low-voltage distribution grids using cluster methods}, series = {27th International Conference on Electricity Distribution (CIRED 2023)}, booktitle = {27th International Conference on Electricity Distribution (CIRED 2023)}, publisher = {IEEE}, isbn = {978-1-83953-855-1}, doi = {10.1049/icp.2023.0478}, pages = {1 -- 5}, year = {2023}, abstract = {Due to the decarbonization of the energy sector, the electric distribution grids are undergoing a major transformation, which is expected to increase the load on the operating resources due to new electrical loads and distributed energy resources. Therefore, grid operators need to gradually move to active grid management in order to ensure safe and reliable grid operation. However, this requires knowledge of key grid variables, such as node voltages, which is why the mass integration of measurement technology (smart meters) is necessary. Another problem is the fact that a large part of the topology of the distribution grids is not sufficiently digitized and models are partly faulty, which means that active grid operation management today has to be carried out largely blindly. It is therefore part of current research to develop methods for determining unknown grid topologies based on measurement data. In this paper, different clustering algorithms are presented and their performance of topology detection of low voltage grids is compared. Furthermore, the influence of measurement uncertainties is investigated in the form of a sensitivity analysis.}, language = {en} } @inproceedings{GrundAltherr2023, author = {Grund, Raphael M. and Altherr, Lena}, title = {Development of an open source energy disaggregation tool for the home automation platform Home Assistant}, series = {Tagungsband AALE 2023 : mit Automatisierung gegen den Klimawandel}, booktitle = {Tagungsband AALE 2023 : mit Automatisierung gegen den Klimawandel}, editor = {Reiff-Stephan, J{\"o}rg and J{\"a}kel, Jens and Schwarz, Andr{\´e}}, publisher = {le-tex publishing services GmbH}, address = {Leipzig}, isbn = {978-3-910103-01-6}, doi = {10.33968/2023.02}, pages = {11 -- 20}, year = {2023}, abstract = {In order to reduce energy consumption of homes, it is important to make transparent which devices consume how much energy. However, power consumption is often only monitored aggregated at the house energy meter. Disaggregating this power consumption into the contributions of individual devices can be achieved using Machine Learning. Our work aims at making state of the art disaggregation algorithms accessibe for users of the open source home automation platform Home Assistant.}, language = {en} } @inproceedings{LeiseBreuerAltherretal.2020, author = {Leise, Philipp and Breuer, Tim and Altherr, Lena and Pelz, Peter F.}, title = {Development, validation and assessment of a resilient pumping system}, series = {Proceedings of the Joint International Resilience Conference, JIRC2020}, booktitle = {Proceedings of the Joint International Resilience Conference, JIRC2020}, isbn = {978-90-365-5095-6}, pages = {97 -- 100}, year = {2020}, abstract = {The development of resilient technical systems is a challenging task, as the system should adapt automatically to unknown disturbances and component failures. To evaluate different approaches for deriving resilient technical system designs, we developed a modular test rig that is based on a pumping system. On the basis of this example system, we present metrics to quantify resilience and an algorithmic approach to improve resilience. This approach enables the pumping system to automatically react on unknown disturbances and to reduce the impact of component failures. In this case, the system is able to automatically adapt its topology by activating additional valves. This enables the system to still reach a minimum performance, even in case of failures. Furthermore, timedependent disturbances are evaluated continuously, deviations from the original state are automatically detected and anticipated in the future. This allows to reduce the impact of future disturbances and leads to a more resilient system behaviour.}, language = {en} } @inproceedings{AltherrDoeringFrauenrathetal.2024, author = {Altherr, Lena and D{\"o}ring, Bernd and Frauenrath, Tobias and Groß, Rolf and Mohan, Nijanthan and Oyen, Marc and Schnittcher, Lukas and Voß, Norbert}, title = {DiggiTwin: ein interdisziplin{\"a}res Projekt zur Nutzung digitaler Zwillinge auf dem Weg zu einem klimaneutralen Geb{\"a}udebestand}, series = {Tagungsband AALE 2024 : Fit f{\"u}r die Zukunft: praktische L{\"o}sungen f{\"u}r die industrielle Automation}, booktitle = {Tagungsband AALE 2024 : Fit f{\"u}r die Zukunft: praktische L{\"o}sungen f{\"u}r die industrielle Automation}, editor = {Reiff-Stephan, J{\"o}rg and J{\"a}kel, Jens and Schwarz, Andr{\´e}}, publisher = {le-tex publishing services GmbH}, address = {Leipzig}, isbn = {978-3-910103-02-3}, doi = {10.33968/2024.67}, pages = {341 -- 346}, year = {2024}, abstract = {Im Hinblick auf die Klimaziele der Bundesrepublik Deutschland konzentriert sich das Projekt Diggi Twin auf die nachhaltige Geb{\"a}udeoptimierung. Grundlage f{\"u}r eine ganzheitliche Geb{\"a}ude{\"u}berwachung und -optimierung bildet dabei die Digitalisierung und Automation im Sinne eines Smart Buildings. Das interdisziplin{\"a}re Projekt der FH Aachen hat das Ziel, ein bestehendes Hochschulgeb{\"a}ude und einen Neubau an klimaneutrale Standards anzupassen. Im Rahmen des Projekts werden bekannte Verfahren, wie das Building Information Modeling (BIM), so erweitert, dass ein digitaler Geb{\"a}udezwilling entsteht. Dieser kann zur Optimierung des Geb{\"a}udebetriebs herangezogen werden, sowie als Basis f{\"u}r eine Erweiterung des Bewertungssystems Nachhaltiges Bauen (BNB) dienen. Mithilfe von Sensortechnologie und k{\"u}nstlicher Intelligenz kann so ein pr{\"a}zises Monitoring wichtiger Geb{\"a}udedaten erfolgen, um ungenutzte Energieeinsparpotenziale zu erkennen und zu nutzen. Das Projekt erforscht und setzt methodische Erkenntnisse zu BIM und digitalen Geb{\"a}udezwillingen praxisnah um, indem es spezifische Fragen zur Energie- und Ressourceneffizienz von Geb{\"a}uden untersucht und konkrete L{\"o}sungen f{\"u}r die Geb{\"a}udeoptimierung entwickelt.}, language = {de} } @incollection{LeiseAltherrPelz2018, author = {Leise, Philipp and Altherr, Lena and Pelz, Peter F.}, title = {Energy-Efficient design of a water supply system for skyscrapers by mixed-integer nonlinear programming}, series = {Operations Research Proceedings 2017}, booktitle = {Operations Research Proceedings 2017}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-89919-0}, doi = {10.1007/978-3-319-89920-6_63}, year = {2018}, abstract = {The energy-efficiency of technical systems can be improved by a systematic design approach. Technical Operations Research (TOR) employs methods known from Operations Research to find a global optimal layout and operation strategy of technical systems. We show the practical usage of this approach by the systematic design of a decentralized water supply system for skyscrapers. All possible network options and operation strategies are modeled by a Mixed-Integer Nonlinear Program. We present the optimal system found by our approach and highlight the energy savings compared to a conventional system design.}, language = {en} } @article{PoettgenEdererAltherretal.2015, author = {P{\"o}ttgen, Philipp and Ederer, Thorsten and Altherr, Lena and Lorenz, Ulf and Pelz, Peter F.}, title = {Examination and optimization of a heating circuit for energy-efficient buildings}, series = {Energy Technology}, volume = {4}, journal = {Energy Technology}, number = {1}, publisher = {WILEY-VCH Verlag}, address = {Weinheim}, isbn = {2194-4296}, doi = {10.1002/ente.201500252}, pages = {136 -- 144}, year = {2015}, abstract = {The conference center darmstadtium in Darmstadt is a prominent example of energy efficient buildings. Its heating system consists of different source and consumer circuits connected by a Zortstr{\"o}m reservoir. Our goal was to reduce the energy costs of the system as much as possible. Therefore, we analyzed its supply circuits. The first step towards optimization is a complete examination of the system: 1) Compilation of an object list for the system, 2) collection of the characteristic curves of the components, and 3) measurement of the load profiles of the heat and volume-flow demand. Instead of modifying the system manually and testing the solution by simulation, the second step was the creation of a global optimization program. The objective was to minimize the total energy costs for one year. We compare two different topologies and show opportunities for significant savings.}, language = {en} } @incollection{LeiseAltherr2021, author = {Leise, Philipp and Altherr, Lena}, title = {Experimental evaluation of resilience metrics in a fluid system}, series = {Mastering Uncertainty in Mechanical Engineering}, booktitle = {Mastering Uncertainty in Mechanical Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-78356-3}, pages = {442 -- 447}, year = {2021}, language = {en} } @article{AltherrEdererLorenzetal.2014, author = {Altherr, Lena and Ederer, Thorsten and Lorenz, Ulf and Pelz, Peter F. and P{\"o}ttgen, Philipp}, title = {Experimental validation of an enhanced system synthesis approach}, series = {Operations Research Proceedings 2014}, journal = {Operations Research Proceedings 2014}, editor = {L{\"u}bbecke, Marco and Koster, Arie and Letmathe, Peter and Madlener, Reihard and Peis, Britta and Walther, Grit}, publisher = {Springer}, address = {Basel}, isbn = {978-3-319-28695-2}, doi = {10.1007/978-3-319-28697-6_1}, pages = {6}, year = {2014}, abstract = {Planning the layout and operation of a technical system is a common task for an engineer. Typically, the workflow is divided into consecutive stages: First, the engineer designs the layout of the system, with the help of his experience or of heuristic methods. Secondly, he finds a control strategy which is often optimized by simulation. This usually results in a good operating of an unquestioned sys- tem topology. In contrast, we apply Operations Research (OR) methods to find a cost-optimal solution for both stages simultaneously via mixed integer program- ming (MILP). Technical Operations Research (TOR) allows one to find a provable global optimal solution within the model formulation. However, the modeling error due to the abstraction of physical reality remains unknown. We address this ubiq- uitous problem of OR methods by comparing our computational results with mea- surements in a test rig. For a practical test case we compute a topology and control strategy via MILP and verify that the objectives are met up to a deviation of 8.7\%.}, language = {en} } @incollection{LeiseAltherrSimonetal.2019, author = {Leise, Philipp and Altherr, Lena and Simon, Nicolai and Pelz, Peter F.}, title = {Finding global-optimal gearbox designs for battery electric vehicles}, series = {Optimization of complex systems - theory, models, algorithms and applications : WCGO 2019}, booktitle = {Optimization of complex systems - theory, models, algorithms and applications : WCGO 2019}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-21802-7}, doi = {10.1007/978-3-030-21803-4_91}, pages = {916 -- 925}, year = {2019}, abstract = {In order to maximize the possible travel distance of battery electric vehicles with one battery charge, it is mandatory to adjust all components of the powertrain carefully to each other. While current vehicle designs mostly simplify the powertrain rigorously and use an electric motor in combination with a gearbox with only one fixed transmission ratio, the use of multi-gear systems has great potential. First, a multi-speed system is able to improve the overall energy efficiency. Secondly, it is able to reduce the maximum momentum and therefore to reduce the maximum current provided by the traction battery, which results in a longer battery lifetime. In this paper, we present a systematic way to generate multi-gear gearbox designs that—combined with a certain electric motor—lead to the most efficient fulfillment of predefined load scenarios and are at the same time robust to uncertainties in the load. Therefore, we model the electric motor and the gearbox within a Mixed-Integer Nonlinear Program, and optimize the efficiency of the mechanical parts of the powertrain. By combining this mathematical optimization program with an unsupervised machine learning algorithm, we are able to derive global-optimal gearbox designs for practically relevant momentum and speed requirements.}, language = {en} }