@inproceedings{WalterElsenMuelleretal.1999, author = {Walter, Peter and Elsen, Ingo and M{\"u}ller, Holger and Kraiss, Karl-Friedrich}, title = {3D object recognition with a specialized mixtures of experts architecture}, series = {IJCNN'99. International Joint Conference on Neural Networks. Proceedings}, booktitle = {IJCNN'99. International Joint Conference on Neural Networks. Proceedings}, publisher = {IEEE}, address = {New York}, isbn = {0-7803-5529-6}, issn = {1098-7576}, doi = {10.1109/IJCNN.1999.836243}, pages = {3563 -- 3568}, year = {1999}, abstract = {Aim of the AXON2 project (Adaptive Expert System for Object Recogniton using Neuml Networks) is the development of an object recognition system (ORS) capable of recognizing isolated 3d objects from arbitrary views. Commonly, classification is based on a single feature extracted from the original image. Here we present an architecture adapted from the Mixtures of Eaqerts algorithm which uses multiple neuml networks to integmte different features. During tmining each neural network specializes in a subset of objects or object views appropriate to the properties of the corresponding feature space. In recognition mode the system dynamically chooses the most relevant features and combines them with maximum eficiency. The remaining less relevant features arz not computed and do therefore not decelerate the-recognition process. Thus, the algorithm is well suited for ml-time applications.}, language = {en} } @inproceedings{Elsen1998, author = {Elsen, Ingo}, title = {A pixel based approach to view based object recognition with self-organizing neural networks}, series = {IECON'98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society}, booktitle = {IECON'98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society}, publisher = {IEEE}, address = {New York}, isbn = {0-7803-4503-7}, doi = {10.1109/IECON.1998.724032}, pages = {2040 -- 2044}, year = {1998}, abstract = {This paper addresses the pixel based classification of three dimensional objects from arbitrary views. To perform this task a coding strategy, inspired by the biological model of human vision, for pixel data is described. The coding strategy ensures that the input data is invariant against shift, scale and rotation of the object in the input domain. The image data is used as input to a class of self organizing neural networks, the Kohonen-maps or self-organizing feature maps (SOFM). To verify this approach two test sets have been generated: the first set, consisting of artificially generated images, is used to examine the classification properties of the SOFMs; the second test set examines the clustering capabilities of the SOFM when real world image data is applied to the network after it has been preprocessed to be invariant against shift, scale and rotation. It is shown that the clustering capability of the SOFM is strongly dependant on the invariance coding of the images.}, language = {en} } @inproceedings{ElsenKraissKrumbiegel1997, author = {Elsen, Ingo and Kraiss, Karl-Friedrich and Krumbiegel, Dirk}, title = {Pixel based 3D object recognition with bidirectional associative memories}, series = {International Conference on Neural Networks 1997}, booktitle = {International Conference on Neural Networks 1997}, publisher = {IEEE}, address = {New York}, isbn = {0-7803-4122-8}, pages = {1679 -- 1684}, year = {1997}, abstract = {This paper addresses the pixel based recognition of 3D objects with bidirectional associative memories. Computational power and memory requirements for this approach are identified and compared to the performance of current computer architectures by benchmarking different processors. It is shown, that the performance of special purpose hardware, like neurocomputers, is between one and two orders of magnitude higher than the performance of mainstream hardware. On the other hand, the calculation of small neural networks is performed more efficiently on mainstream processors. Based on these results a novel concept is developed, which is tailored for the efficient calculation of bidirectional associative memories. The computational efficiency is further enhanced by the application of algorithms and storage techniques which are matched to characteristics of the application at hand.}, language = {en} } @inproceedings{KoenigWolf2018, author = {K{\"o}nig, Johannes Alexander and Wolf, Martin R.}, title = {Cybersecurity awareness training provided by the competence developing game GHOST}, series = {ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions}, booktitle = {ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions}, isbn = {978-1-61208-616-3}, pages = {81 -- 87}, year = {2018}, abstract = {This paper introduces a Competence Developing Game (CDG) for the purpose of a cybersecurity awareness training for businesses. The target audience will be discussed in detail to understand their requirements. It will be explained why and how a mix of business simulation and serious game meets these stakeholder requirements. It will be shown that a tablet and touchscreen based approach is the most suitable solution. In addition, an empirical study will be briefly presented. The study was carried out to examine how an interaction system for a 3D-tablet based CDG has to be designed, to be manageable for non-game experienced employees. Furthermore, it will be explained which serious content is necessary for a Cybersecurity awareness training CDG and how this content is wrapped in the game}, language = {en} } @inproceedings{KoenigVoelkerWolf2018, author = {K{\"o}nig, Johannes Alexander and V{\"o}lker, Veronika and Wolf, Martin R.}, title = {The user-focused storybuilding framework for competence developing games - a design-framework considering the basics of an educational game's story}, series = {ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions}, booktitle = {ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions}, isbn = {978-1-61208-616-3}, pages = {98 -- 106}, year = {2018}, abstract = {During the development of a Competence Developing Game's (CDG) story it is indispensable to understand the target audience. Thereby, CDGs stories represent more than just the plot. The Story is about the Setting, the Characters and the Plot. As a toolkit to support the development of such a story, this paper introduces the UserFocused Storybuilding (short UFoS) Framework for CDGs. The Framework and its utilization will be explained, followed by a description of its development and derivation, including an empirical study. In addition, to simplify the Framework use regarding the CDG's target audience, a new concept of Nine Psychographic Player Types will be explained. This concept of Player Types provides an approach to handle the differences in between players during the UFoS Framework use. Thereby, this article presents a unique approach to the development of target group-differentiated CDGs stories.}, language = {en} } @inproceedings{ZaehlBiewendtWolfetal.2022, author = {Z{\"a}hl, Philipp M. and Biewendt, Marcel and Wolf, Martin R. and Eggert, Mathias}, title = {Requirements for competence developing games in the environment of SE Competence Development}, series = {AKWI-Tagungsband zur 35. AKWI-Jahrestagung}, booktitle = {AKWI-Tagungsband zur 35. AKWI-Jahrestagung}, publisher = {GITO}, address = {Berlin}, isbn = {978-3-95545-409-8}, doi = {10.30844/AKWI_2022_05}, pages = {73 -- 88}, year = {2022}, abstract = {Many of today's factors make software development more and more complex, such as time pressure, new technologies, IT security risks, et cetera. Thus, a good preparation of current as well as future software developers in terms of a good software engineering education becomes progressively important. As current research shows, Competence Developing Games (CDGs) and Serious Games can offer a potential solution. This paper identifies the necessary requirements for CDGs to be conducive in principle, but especially in software engineering (SE) education. For this purpose, the current state of research was summarized in the context of a literature review. Afterwards, some of the identified requirements as well as some additional requirements were evaluated by a survey in terms of subjective relevance.}, language = {en} } @inproceedings{ZaehlTheisWolfetal.2023, author = {Z{\"a}hl, Philipp M. and Theis, Sabine and Wolf, Martin R. and K{\"o}hler, Klemens}, title = {Teamwork in software development and what personality has to do with it - an overview}, series = {Virtual, Augmented and Mixed Reality}, booktitle = {Virtual, Augmented and Mixed Reality}, editor = {Chen, Jessie Y. C. and Fragomeni, Gino}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-35633-9 (Print)}, doi = {10.1007/978-3-031-35634-6_10}, pages = {130 -- 153}, year = {2023}, abstract = {Due to the increasing complexity of software projects, software development is becoming more and more dependent on teams. The quality of this teamwork can vary depending on the team composition, as teams are always a combination of different skills and personality types. This paper aims to answer the question of how to describe a software development team and what influence the personality of the team members has on the team dynamics. For this purpose, a systematic literature review (n=48) and a literature search with the AI research assistant Elicit (n=20) were conducted. Result: A person's personality significantly shapes his or her thinking and actions, which in turn influences his or her behavior in software development teams. It has been shown that team performance and satisfaction can be strongly influenced by personality. The quality of communication and the likelihood of conflict can also be attributed to personality.}, language = {en} } @inproceedings{FerreinMaierMuehlbacheretal.2016, author = {Ferrein, Alexander and Maier, Christopher and M{\"u}hlbacher, Clemens and Niem{\"u}ller, Tim and Steinbauer, Gerald and Vassos, Stravros}, title = {Controlling logistics robots with the action-based language YAGI}, series = {Intelligent Robotics and Applications: 9th International Conference, ICIRA 2016, Tokyo, Japan, August 22-24, 2016, Proceedings, Part I}, volume = {9834}, booktitle = {Intelligent Robotics and Applications: 9th International Conference, ICIRA 2016, Tokyo, Japan, August 22-24, 2016, Proceedings, Part I}, publisher = {Springer}, isbn = {978-3-319-43505-3 (Print)}, doi = {10.1007/978-3-319-43506-0_46}, pages = {525 -- 537}, year = {2016}, language = {en} } @inproceedings{EichenbaumNikolovskiMuelhensetal.2023, author = {Eichenbaum, Julian and Nikolovski, Gjorgji and M{\"u}lhens, Leon and Reke, Michael and Ferrein, Alexander and Scholl, Ingrid}, title = {Towards a lifelong mapping approach using Lanelet 2 for autonomous open-pit mine operations}, series = {2023 IEEE 19th International Conference on Automation Science and Engineering (CASE)}, booktitle = {2023 IEEE 19th International Conference on Automation Science and Engineering (CASE)}, publisher = {IEEE}, isbn = {979-8-3503-2069-5 (Online)}, doi = {10.1109/CASE56687.2023.10260526}, pages = {8 Seiten}, year = {2023}, abstract = {Autonomous agents require rich environment models for fulfilling their missions. High-definition maps are a well-established map format which allows for representing semantic information besides the usual geometric information of the environment. These are, for instance, road shapes, road markings, traffic signs or barriers. The geometric resolution of HD maps can be as precise as of centimetre level. In this paper, we report on our approach of using HD maps as a map representation for autonomous load-haul-dump vehicles in open-pit mining operations. As the mine undergoes constant change, we also need to constantly update the map. Therefore, we follow a lifelong mapping approach for updating the HD maps based on camera-based object detection and GPS data. We show our mapping algorithm based on the Lanelet 2 map format and show our integration with the navigation stack of the Robot Operating System. We present experimental results on our lifelong mapping approach from a real open-pit mine.}, language = {en} } @inproceedings{NiemuellerReuterEwertetal.2016, author = {Niemueller, Tim and Reuter, Sebastian and Ewert, Daniel and Ferrein, Alexander and Jeschke, Sabina and Lakemeyer, Gerhard}, title = {The Carologistics Approach to Cope with the Increased Complexity and New Challenges of the RoboCup Logistics League 2015}, series = {RoboCup 2015: Robot World Cup XIX}, booktitle = {RoboCup 2015: Robot World Cup XIX}, editor = {Almeida, Luis}, publisher = {Springer International Publishing}, address = {Cham}, isbn = {978-3-319-29339-4}, doi = {10.1007/978-3-319-29339-4_4}, pages = {47 -- 59}, year = {2016}, language = {en} } @inproceedings{DeyElsenFerreinetal.2021, author = {Dey, Thomas and Elsen, Ingo and Ferrein, Alexander and Frauenrath, Tobias and Reke, Michael and Schiffer, Stefan}, title = {CO2 Meter: a do-it-yourself carbon dioxide measuring device for the classroom}, series = {PETRA '21: Proceedings of the 14th Pervasive Technologies Related to Assistive Environments Conference}, booktitle = {PETRA '21: Proceedings of the 14th Pervasive Technologies Related to Assistive Environments Conference}, editor = {Makedon, Fillia}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {9781450387927}, doi = {10.1145/3453892.3462697}, pages = {292 -- 299}, year = {2021}, abstract = {In this paper we report on CO2 Meter, a do-it-yourself carbon dioxide measuring device for the classroom. Part of the current measures for dealing with the SARS-CoV-2 pandemic is proper ventilation in indoor settings. This is especially important in schools with students coming back to the classroom even with high incidents rates. Static ventilation patterns do not consider the individual situation for a particular class. Influencing factors like the type of activity, the physical structure or the room occupancy are not incorporated. Also, existing devices are rather expensive and often provide only limited information and only locally without any networking. This leaves the potential of analysing the situation across different settings untapped. Carbon dioxide level can be used as an indicator of air quality, in general, and of aerosol load in particular. Since, according to the latest findings, SARS-CoV-2 can be transmitted primarily in the form of aerosols, carbon dioxide may be used as a proxy for the risk of a virus infection. Hence, schools could improve the indoor air quality and potentially reduce the infection risk if they actually had measuring devices available in the classroom. Our device supports schools in ventilation and it allows for collecting data over the Internet to enable a detailed data analysis and model generation. First deployments in schools at different levels were received very positively. A pilot installation with a larger data collection and analysis is underway.}, language = {en} } @inproceedings{ChajanSchulteTiggesRekeetal.2021, author = {Chajan, Eduard and Schulte-Tigges, Joschua and Reke, Michael and Ferrein, Alexander and Matheis, Dominik and Walter, Thomas}, title = {GPU based model-predictive path control for self-driving vehicles}, series = {IEEE Intelligent Vehicles Symposium (IV)}, booktitle = {IEEE Intelligent Vehicles Symposium (IV)}, publisher = {IEEE}, address = {New York, NY}, isbn = {978-1-7281-5394-0}, doi = {10.1109/IV48863.2021.9575619}, pages = {1243 -- 1248}, year = {2021}, abstract = {One central challenge for self-driving cars is a proper path-planning. Once a trajectory has been found, the next challenge is to accurately and safely follow the precalculated path. The model-predictive controller (MPC) is a common approach for the lateral control of autonomous vehicles. The MPC uses a vehicle dynamics model to predict the future states of the vehicle for a given prediction horizon. However, in order to achieve real-time path control, the computational load is usually large, which leads to short prediction horizons. To deal with the computational load, the control algorithm can be parallelized on the graphics processing unit (GPU). In contrast to the widely used stochastic methods, in this paper we propose a deterministic approach based on grid search. Our approach focuses on systematically discovering the search area with different levels of granularity. To achieve this, we split the optimization algorithm into multiple iterations. The best sequence of each iteration is then used as an initial solution to the next iteration. The granularity increases, resulting in smooth and predictable steering angle sequences. We present a novel GPU-based algorithm and show its accuracy and realtime abilities with a number of real-world experiments.}, language = {en} } @inproceedings{ViehmannLimpertHofmannetal.2023, author = {Viehmann, Tarik and Limpert, Nicolas and Hofmann, Till and Henning, Mike and Ferrein, Alexander and Lakemeyer, Gerhard}, title = {Winning the RoboCup logistics league with visual servoing and centralized goal reasoning}, series = {RoboCup 2022: Robot World Cup XXV}, booktitle = {RoboCup 2022: Robot World Cup XXV}, editor = {Eguchi, Amy and Lau, Nuno and Paetzel-Pr{\"u}smann, Maike and Wanichanon, Thanapat}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-28468-7 (Print)}, doi = {https://doi.org/10.1007/978-3-031-28469-4_25}, pages = {300 -- 312}, year = {2023}, abstract = {The RoboCup Logistics League (RCLL) is a robotics competition in a production logistics scenario in the context of a Smart Factory. In the competition, a team of three robots needs to assemble products to fulfill various orders that are requested online during the game. This year, the Carologistics team was able to win the competition with a new approach to multi-agent coordination as well as significant changes to the robot's perception unit and a pragmatic network setup using the cellular network instead of WiFi. In this paper, we describe the major components of our approach with a focus on the changes compared to the last physical competition in 2019.}, language = {en} } @inproceedings{NikolovskiLimpertNessauetal.2023, author = {Nikolovski, Gjorgji and Limpert, Nicolas and Nessau, Hendrik and Reke, Michael and Ferrein, Alexander}, title = {Model-predictive control with parallelised optimisation for the navigation of autonomous mining vehicles}, series = {2023 IEEE Intelligent Vehicles Symposium (IV)}, booktitle = {2023 IEEE Intelligent Vehicles Symposium (IV)}, publisher = {IEEE}, isbn = {979-8-3503-4691-6 (Online)}, doi = {10.1109/IV55152.2023.10186806}, pages = {6 Seiten}, year = {2023}, abstract = {The work in modern open-pit and underground mines requires the transportation of large amounts of resources between fixed points. The navigation to these fixed points is a repetitive task that can be automated. The challenge in automating the navigation of vehicles commonly used in mines is the systemic properties of such vehicles. Many mining vehicles, such as the one we have used in the research for this paper, use steering systems with an articulated joint bending the vehicle's drive axis to change its course and a hydraulic drive system to actuate axial drive components or the movements of tippers if available. To address the difficulties of controlling such a vehicle, we present a model-predictive approach for controlling the vehicle. While the control optimisation based on a parallel error minimisation of the predicted state has already been established in the past, we provide insight into the design and implementation of an MPC for an articulated mining vehicle and show the results of real-world experiments in an open-pit mine environment.}, language = {en} } @inproceedings{FerreinMaierMuehlbacheretal.2015, author = {Ferrein, Alexander and Maier, Christopher and M{\"u}hlbacher, Clemens and Niemueller, Tim and Steinbauer, Gerald and Vassos, Stravros}, title = {Controlling Logistics Robots with the Action-based Language YAGI}, series = {Proceedings of the 2015 IROS Workshop on Workshop on Task Planning for Intelligent Robots in Service and Manufacturing}, booktitle = {Proceedings of the 2015 IROS Workshop on Workshop on Task Planning for Intelligent Robots in Service and Manufacturing}, year = {2015}, language = {en} } @inproceedings{FerreinMeessenLimpertetal.2021, author = {Ferrein, Alexander and Meeßen, Marcus and Limpert, Nicolas and Schiffer, Stefan}, title = {Compiling ROS schooling curricula via contentual taxonomies}, series = {Robotics in Education}, booktitle = {Robotics in Education}, editor = {Lepuschitz, Wilfried}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-67411-3}, doi = {10.1007/978-3-030-67411-3_5}, pages = {49 -- 60}, year = {2021}, abstract = {The Robot Operating System (ROS) is the current de-facto standard in robot middlewares. The steadily increasing size of the user base results in a greater demand for training as well. User groups range from students in academia to industry professionals with a broad spectrum of developers in between. To deliver high quality training and education to any of these audiences, educators need to tailor individual curricula for any such training. In this paper, we present an approach to ease compiling curricula for ROS trainings based on a taxonomy of the teaching contents. The instructor can select a set of dedicated learning units and the system will automatically compile the teaching material based on the dependencies of the units selected and a set of parameters for a particular training. We walk through an example training to illustrate our work.}, language = {en} } @inproceedings{HofmannMatareSchifferetal.2018, author = {Hofmann, Till and Matar{\´e}, Victor and Schiffer, Stefan and Ferrein, Alexander and Lakemeyer, Gerhard}, title = {Constraint-based online transformation of abstract plans into executable robot actions}, series = {Proceedings of the 2018 AAAI Spring Symposium on Integrating Representation, Reasoning, Learning, and Execution for Goal Directed Autonomy}, booktitle = {Proceedings of the 2018 AAAI Spring Symposium on Integrating Representation, Reasoning, Learning, and Execution for Goal Directed Autonomy}, pages = {549 -- 553}, year = {2018}, language = {en} } @inproceedings{StopforthDavrajhFerrein2017, author = {Stopforth, Riaan and Davrajh, Shaniel and Ferrein, Alexander}, title = {Design considerations of the duo fugam dual rotor UAV}, series = {2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech)}, booktitle = {2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech)}, isbn = {978-1-5386-2314-5}, doi = {10.1109/RoboMech.2017.8261115}, pages = {7 -- 13}, year = {2017}, language = {en} } @inproceedings{NiemuellerReuterFerreinetal.2016, author = {Niemueller, Tim and Reuter, Sebastian and Ferrein, Alexander and Jeschke, Sabina and Lakemeyer, Gerhard}, title = {Evaluation of the RoboCup Logistics League and Derived Criteria for Future Competitions}, series = {RoboCup 2015: Robot World Cup XIX}, booktitle = {RoboCup 2015: Robot World Cup XIX}, editor = {Almeida, Luis}, publisher = {Springer International Publishing}, address = {Cham}, isbn = {978-3-319-29339-4}, doi = {10.1007/978-3-319-29339-4_3}, pages = {31 -- 43}, year = {2016}, language = {en} } @inproceedings{NiemuellerNeumannHenkeetal.2017, author = {Niemueller, Tim and Neumann, Tobias and Henke, Christoph and Sch{\"o}nitz, Sebastian and Reuter, Sebastian and Ferrein, Alexander and Jeschke, Sabina and Lakemeyer, Gerhard}, title = {Improvements for a robust production in the RoboCup logistics league 2016}, series = {RoboCup 2016: Robot World Cup XX. RoboCup 2016.}, booktitle = {RoboCup 2016: Robot World Cup XX. RoboCup 2016.}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-68792-6}, doi = {10.1007/978-3-319-68792-6_49}, pages = {589 -- 600}, year = {2017}, language = {en} }