@article{MaasVosLagemaatetal.2014, author = {Maas, Marnix C. and Vos, Eline K. and Lagemaat, Miriam W. and Bitz, Andreas and Orzada, Stephan and Kobus, Thiele and Kraff, Oliver and Maderwald, Stefan and Ladd, Mark E. and Scheenen, Tom W. J.}, title = {Feasibility of T₂-weighted turbo spin echo imaging of the human prostate at 7 tesla}, series = {Magnetic Resonance in Medicine}, volume = {71}, journal = {Magnetic Resonance in Medicine}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.24818}, pages = {1711 -- 1719}, year = {2014}, abstract = {Purpose To demonstrate that high quality T₂-weighted (T2w) turbo spin-echo (TSE) imaging of the complete prostate can be achieved routinely and within safety limits at 7 T, using an external transceive body array coil only. Methods Nine healthy volunteers and 12 prostate cancer patients were scanned on a 7 T whole-body system. Preparation consisted of B₀ and radiofrequency shimming and localized flip angle calibration. T₁ and T₂ relaxation times were measured and used to define the T2w-TSE protocol. T2w imaging was performed using a TSE sequence (pulse repetition time/echo time 3000-3640/71 ms) with prolonged excitation and refocusing pulses to reduce specific absorption rate. Results High quality T2w TSE imaging was performed in less than 2 min in all subjects. Tumors of patients with gold-standard tumor localization (MR-guided biopsy or prostatectomy) were well visualized on 7 T imaging (n = 3). The number of consecutive slices achievable within a 10-g averaged specific absorption rate limit of 10 W/kg was ≥28 in all subjects, sufficient for full prostate coverage with 3-mm slices in at least one direction. Conclusion High quality T2w TSE prostate imaging can be performed routinely and within specific absorption rate limits at 7 T with an external transceive body array.}, language = {en} } @article{UmutluKraffFischeretal.2013, author = {Umutlu, Lale and Kraff, Oliver and Fischer, Anja and Kinner, Sonja and Maderwald, Stefan and Nassenstein, Kai and Nensa, Felix and Gr{\"u}neisen, Johannes and Orzada, Stephan and Bitz, Andreas and Forsting, Michael and Ladd, Mark E. and Lauenstein, Thomas C.}, title = {Seven-Tesla MRI of the female pelvis}, series = {European Radiology}, volume = {23}, journal = {European Radiology}, number = {9}, publisher = {Springer}, address = {Berlin}, issn = {1432-1084}, doi = {10.1007/s00330-013-2868-0}, pages = {2364 -- 2373}, year = {2013}, language = {en} } @article{BitzFelderWittig2013, author = {Bitz, Andreas and Felder, Jorg and Wittig, Tilmann}, title = {Designing MRI Coils with Aid of Simulation}, series = {Microwaves \& RF}, volume = {52}, journal = {Microwaves \& RF}, number = {7}, publisher = {Penton}, address = {Cleveland, Ohio}, issn = {0745-2993}, pages = {56}, year = {2013}, language = {en} } @article{KraffWredeSchoembergetal.2013, author = {Kraff, Oliver and Wrede, Karsten H. and Schoemberg, Tobias and Dammann, Philipp and Noureddine, Yacine and Orzada, Stephan and Ladd, Mark E. and Bitz, Andreas}, title = {MR safety assessment of potential RF heating from cranial fixation plates at 7 T}, series = {Medical Physics}, volume = {40}, journal = {Medical Physics}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {2473-4209}, doi = {10.1118/1.4795347}, pages = {042302-1 -- 042302-10}, year = {2013}, language = {en} } @article{UmutluMaderwaldKinneretal.2013, author = {Umutlu, L. and Maderwald, S. and Kinner, S. and Kraff, O. and Bitz, Andreas and Orzada, S. and Johst, S. and Wrede, K. and Forsting, M. and Ladd, M. E. and Lauenstein, T. C. and Quick, H. H.}, title = {First-pass contrast-enhanced renal MRA at 7 Tesla: initial results}, series = {European Radiology}, volume = {23}, journal = {European Radiology}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1432-1084}, doi = {10.1007/s00330-012-2666-0}, pages = {1059 -- 1066}, year = {2013}, language = {en} } @article{UmutluOrzadaKinneretal.2011, author = {Umutlu, Lale and Orzada, Stephan and Kinner, Sonja and Maderwald, Stefan and Bronte, Irina and Bitz, Andreas and Kraff, Oliver and Ladd, Susanne C. and Antoch, Gerald and Ladd, Mark E. and Quick, Harald H. and Lauenstein, Thomas C.}, title = {Renal imaging at 7 Tesla: preliminary results}, series = {European Radiology}, volume = {21}, journal = {European Radiology}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1432-1084}, pages = {841 -- 849}, year = {2011}, abstract = {Objective To investigate the feasibility of 7T MR imaging of the kidneys utilising a custom-built 8-channel transmit/receive radiofrequency body coil. Methods In vivo unenhanced MR was performed in 8 healthy volunteers on a 7T whole-body MR system. After B0 shimming the following sequences were obtained: 1) 2D and 3D spoiled gradient-echo sequences (FLASH, VIBE), 2) T1-weighted 2D in and opposed phase 3) True-FISP imaging and 4) a T2-weighted turbo spin echo (TSE) sequence. Visual evaluation of the overall image quality was performed by two radiologists. Results Renal MRI at 7T was feasible in all eight subjects. Best image quality was found using T1-weighted gradient echo MRI, providing high anatomical details and excellent conspicuity of the non-enhanced vasculature. With successful shimming, B1 signal voids could be effectively reduced and/or shifted out of the region of interest in most sequence types. However, T2-weighted TSE imaging remained challenging and strongly impaired because of signal heterogeneities in three volunteers. Conclusion The results demonstrate the feasibility and diagnostic potential of dedicated 7T renal imaging. Further optimisation of imaging sequences and dedicated RF coil concepts are expected to improve the acquisition quality and ultimately provide high clinical diagnostic value.}, language = {en} } @article{OrzadaJohstMaderwaldetal.2013, author = {Orzada, Stephan and Johst, S{\"o}ren and Maderwald, Stefan and Bitz, Andreas and Solbach, Klaus and Ladd, Mark E.}, title = {Mitigation of B1(+) inhomogeneity on single-channel transmit systems with TIAMO}, series = {Magnetic Resonance in Medicine}, volume = {70}, journal = {Magnetic Resonance in Medicine}, number = {1}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.24453}, pages = {290 -- 294}, year = {2013}, language = {en} } @article{OrzadaMaderwaldPoseretal.2012, author = {Orzada, S. and Maderwald, S. and Poser, B. A. and Johst, S. and Kannengiesser, S. and Ladd, M. E. and Bitz, Andreas}, title = {Time-interleaved acquisition of modes: an analysis of SAR and image contrast implications}, series = {Magnetic Resonance in Medicine}, volume = {67}, journal = {Magnetic Resonance in Medicine}, number = {4}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2594}, doi = {10.1002/mrm.23081}, pages = {1033 -- 1041}, year = {2012}, abstract = {s the magnetic field strength and therefore the operational frequency in MRI are increased, the radiofrequency wavelength approaches the size of the human head/body, resulting in wave effects which cause signal decreases and dropouts. Especially, whole-body imaging at 7 T and higher is therefore challenging. Recently, an acquisition scheme called time-interleaved acquisition of modes has been proposed to tackle the inhomogeneity problems in high-field MRI. The basic premise is to excite two (or more) different Burn:x-wiley:07403194:media:MRM23081:tex2gif-stack-1 modes using static radiofrequency shimming in an interleaved acquisition, where the complementary radiofrequency patterns of the two modes can be exploited to improve overall signal homogeneity. In this work, the impact of time-interleaved acquisition of mode on image contrast as well as on time-averaged specific absorption rate is addressed in detail. Time-interleaved acquisition of mode is superior in Burn:x-wiley:07403194:media:MRM23081:tex2gif-stack-2 homogeneity compared with conventional radiofrequency shimming while being highly specific absorption rate efficient. Time-interleaved acquisition of modes can enable almost homogeneous high-field imaging throughout the entire field of view in PD, T2, and T2*-weighted imaging and, if a specified homogeneity criterion is met, in T1-weighted imaging as well.}, language = {en} } @inproceedings{GranatHoefkenSchuba2017, author = {Granat, Andreas and H{\"o}fken, Hans-Wilhelm and Schuba, Marko}, title = {Intrusion Detection of the ICS Protocol EtherCAT}, pages = {1 -- 5}, year = {2017}, abstract = {Control mechanisms like Industrial Controls Systems (ICS) and its subgroup SCADA (Supervisory Control and Data Acquisition) are a prerequisite to automate industrial processes. While protection of ICS on process management level is relatively straightforward - well known office IT security mechanisms can be used - protection on field bus level is harder to achieve as there are real-time and production requirements like 24x7 to consider. One option to improve security on field bus level is to introduce controls that help to detect and to react on attacks. This paper introduces an initial set of intrusion detection mechanisms for the field bus protocol EtherCAT. To this end existing Ethernet attack vectors including packet injection and man-in-the-middle attacks are tested in an EtherCAT environment, where they could interrupt the EtherCAT network and may even cause physical damage. Based on the signatures of such attacks, a preprocessor and new rule options are defined for the open source intrusion detection system Snort demonstrating the general feasibility of intrusion detection on field bus level.}, language = {en} } @inproceedings{BitzKlompLadd2009, author = {Bitz, Andreas and Klomp, D.W. and Ladd, M.E.}, title = {Experimental and numerical determination of SAR and temperature distribution of a human endorectal coil for MR imaging of the prostate at 7T (903.)}, series = {16th annual ISMRM scientific meeting and exhibition 2008 : Toronto, Ontario, Canada, 3 - 9 May 2008}, booktitle = {16th annual ISMRM scientific meeting and exhibition 2008 : Toronto, Ontario, Canada, 3 - 9 May 2008}, publisher = {Curran}, address = {Red Hook, NY}, isbn = {978-1-61567-196-0}, year = {2009}, language = {en} } @inproceedings{BitzElOuardiStreckertetal.2005, author = {Bitz, Andreas and El Ouardi, A. and Streckert, J. and Hansen, V.}, title = {Efficient calculation of human exposure in front of base station antennas by a combination of the FDTD and Hybrid(2)-method}, series = {Proceedings of the 16th International Zurich Symposium on Electromagnetic Compatibility, Topical Meeting on Biomedical EMC, Zurich, Switzerland, February 2005}, booktitle = {Proceedings of the 16th International Zurich Symposium on Electromagnetic Compatibility, Topical Meeting on Biomedical EMC, Zurich, Switzerland, February 2005}, publisher = {ETH Zentrum}, address = {Z{\"u}rich}, isbn = {3-9521199-9-7}, pages = {115 -- 118}, year = {2005}, language = {en} } @inproceedings{BitzAlaydrusStreckertetal.2002, author = {Bitz, Andreas and Alaydrus, M. and Streckert, J. and Hansen, V.}, title = {Combination of the hybrid/sup [2]/-method and the FDTD-method for solution of boundary value problems with electrically large and high-resolution bodies}, series = {IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313) 2002 : San Antonio, TX, USA, 16-21 June}, booktitle = {IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313) 2002 : San Antonio, TX, USA, 16-21 June}, publisher = {IEEE}, address = {Piscataway, NJ}, isbn = {0-7803-7330-8}, doi = {10.1109/APS.2002.1018209}, pages = {278 -- 281}, year = {2002}, language = {en} } @inproceedings{BitzAlaydrusStreckertetal.2002, author = {Bitz, Andreas and Alaydrus, M. and Streckert, J. and Hansen, V.W.}, title = {Absorption rates inside human body due to radiated electro-magnetic fields of multi-band base station antennas. Boundary value problems with electrically large and high-resolution bodies}, series = {24th BEMS Annual Meeting, Quebec City, Quebec, Canada, 23 - 27 June 2002}, booktitle = {24th BEMS Annual Meeting, Quebec City, Quebec, Canada, 23 - 27 June 2002}, publisher = {Bioelectromagnetics Society}, address = {Frederick, MD}, pages = {40 -- 41}, year = {2002}, language = {en} } @inproceedings{BitzAlaydrusStreckertetal.2001, author = {Bitz, Andreas and Alaydrus, M. and Streckert, J. and Hansen, V.W.}, title = {Base station antennas embedded in complex environments: rf exposure in controlled areas}, series = {23rd BEMS Annual Meeting, St. Paul, Minnesota, USA, 49-50, June 2001}, booktitle = {23rd BEMS Annual Meeting, St. Paul, Minnesota, USA, 49-50, June 2001}, publisher = {Bioelectromagnetics Society}, address = {Frederick, MD}, pages = {49 -- 50}, year = {2001}, language = {en} } @inproceedings{BitzStreckertHansenetal.2001, author = {Bitz, Andreas and Streckert, J. and Hansen, V.W. and Stogbauer, F.}, title = {Shielded RF-exposure system with an integrated LF-measuring system for in vitro experiments with cell-layers}, series = {Proceedings of the Ebea 2001 : 5th International Congress of the European Bioelectromagnetics Association (Ebea) ; 6-8 September 2001, Marina Congress Center, Helsinki, Finland}, booktitle = {Proceedings of the Ebea 2001 : 5th International Congress of the European Bioelectromagnetics Association (Ebea) ; 6-8 September 2001, Marina Congress Center, Helsinki, Finland}, editor = {Hietanen, Maila and Jokela, Kari and Juutilainen, Jukka and Työterveyslaitos,}, publisher = {Finnish Institute of Occupational Health}, address = {Helsinki}, isbn = {9789518024401}, pages = {67 -- 68}, year = {2001}, language = {en} } @inproceedings{BitzStreckertHansenetal.2000, author = {Bitz, Andreas and Streckert, J.R. and Hansen, V.W. and Lerchl, A.}, title = {Freely moving or restrained animals in bioelec-tromagnetic experiments - pros and cons}, series = {AP 2000 : Millennium Conference on Antennas \& Propagation, Davos, Switzerland, 9 - 14 April 2000}, booktitle = {AP 2000 : Millennium Conference on Antennas \& Propagation, Davos, Switzerland, 9 - 14 April 2000}, number = {Band 1}, editor = {Danesy, Dorothea}, publisher = {ESA Publications Division, ESTEC}, address = {Noordwijk}, pages = {489}, year = {2000}, language = {en} } @inproceedings{BitzStreckertHansenetal.2000, author = {Bitz, Andreas and Streckert, J. and Hansen, V.W. and Buschmann, J.}, title = {RF exposure of non restrained animals in an overmoded radial waveguide}, series = {22nd BEMS Annual Meeting, Munich, Germany, 2000}, booktitle = {22nd BEMS Annual Meeting, Munich, Germany, 2000}, publisher = {Bioelectromagnetics Society}, address = {Frederick, MD}, pages = {63}, year = {2000}, language = {en} } @article{KobusBitzUdenetal.2012, author = {Kobus, Thiele and Bitz, Andreas and Uden, Mark J. van and Lagemaat, Miram W. and Rothgang, Eva and Orzada, Stephan and Heerschap, Arend and Scheenen, Tom W. J.}, title = {In vivo 31P MR spectroscopic imaging of the human prostate at 7 T: safety and feasibility}, series = {Magnetic Resonance in Medicine}, volume = {68}, journal = {Magnetic Resonance in Medicine}, number = {6}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2594}, doi = {10.1002/mrm.24175}, pages = {1683 -- 1695}, year = {2012}, abstract = {31P MR spectroscopic imaging of the human prostate provides information about phosphorylated metabolites that could be used for prostate cancer characterization. The sensitivity of a magnetic field strength of 7 T might enable 3D 31P MR spectroscopic imaging with relevant spatial resolution in a clinically acceptable measurement time. To this end, a 31P endorectal coil was developed and combined with an eight-channel 1H body-array coil to relate metabolic information to anatomical location. An extensive safety validation was performed to evaluate the specific absorption rate, the radiofrequency field distribution, and the temperature distribution of both coils. This validation consisted of detailed Finite Integration Technique simulations, confirmed by MR thermometry and Burn:x-wiley:07403194:media:MRM24175:tex2gif-stack-1 measurements in a phantom and in vivo temperature measurements. The safety studies demonstrated that the presence of the 31P endorectal coil had no influence on the specific absorption rate levels and temperature distribution of the external eight-channel 1H array coil. To stay within a 10 g averaged local specific absorption rate of 10 W/kg, a maximum time-averaged input power of 33 W for the 1H array coil was allowed. For transmitting with the 31P endorectal coil, our safety limit of less than 1°C temperature increase in vivo during a 15-min MR spectroscopic imaging experiment was reached at a time-averaged input power of 1.9 W. With this power setting, a second in vivo measurement was performed on a healthy volunteer. Using adiabatic excitation, 3D 31P MR spectroscopic imaging produced spectra from the entire prostate in 18 min with a spatial resolution of 4 cm3. The spectral resolution enabled the separate detection of phosphocholine, phosphoethanolamine, inorganic phosphate, and other metabolites that could play an important role in the characterization of prostate cancer.}, language = {en} } @article{UmutluBitzMaderwaldetal.2013, author = {Umutlu, Lale and Bitz, Andreas and Maderwald, Stefan and Orzada, Stephan and Kinner, Sonja and Kraff, Oliver and Brote, Irina and Ladd, Susanne C. and Schroeder, Tobias and Forsting, Michael}, title = {Contrast-enhanced ultra-high-field liver MRI: a feasibility trial}, series = {European Journal of Radiology}, volume = {82}, journal = {European Journal of Radiology}, number = {5}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0720-048X}, doi = {10.1016/j.ejrad.2011.07.004}, pages = {760 -- 767}, year = {2013}, language = {en} } @article{YazdanbakhshSolbachBitz2012, author = {Yazdanbakhsh, Pedram and Solbach, Klaus and Bitz, Andreas}, title = {Variable power combiner for RF mode shimming in 7-T MR imaging}, series = {IEEE Transaction on Biomedical Engineering}, volume = {59}, journal = {IEEE Transaction on Biomedical Engineering}, number = {9}, publisher = {IEEE}, address = {New York}, issn = {1558-2531}, doi = {10.1109/TBME.2012.2205926}, pages = {2549 -- 2557}, year = {2012}, abstract = {This contribution discusses the utilization of RF power in an MRI system with RF mode shimming which enables the superposition of circularly polarized modes of a transmit RF coil array driven by a Butler matrix. Since the required power for the individual modes can vary widely, mode-shimming can result in a significant underutilization of the total available RF power. A variable power combiner (VPC) is proposed to improve the power utilization: it can be realized as a reconfiguration of the MRI transmit system by the inclusion of one additional matrix network which receives the power from all transmit amplifiers at its input ports and provides any desired (combined) power distribution at its output ports by controlling the phase and amplitude of the amplifiers' input signals. The power distribution at the output ports of the VPC is then fed into the "mode" ports of the coil array Butler matrix in order to superimpose the spatial modes at the highest achievable power utilization. The VPC configuration is compared to the standard configuration of the transmit chain of our MRI system with 8 transmit channels and 16 coils. In realistic scenarios, improved power utilization was achieved from 17\% to 60\% and from 14\% to 55\% for an elliptical phantom and a region of interest in the abdomen, respectively, and an increase of the power utilization of 1 dB for a region of interest in the upper leg. In general, it is found that the VPC allows significant improvement in power utilization when the shimming solution demands only a few modes to be energized, while the technique can yield loss in power utilization in cases with many modes required at high power level.}, language = {en} }