@article{HoffstadtPohenDickeetal.2020, author = {Hoffstadt, Kevin and Pohen, Gino D. and Dicke, Max D. and Paulsen, Svea and Krafft, Simone and Zang, Joachim W. and Fonseca-Zang, Warde A. da and Leite, Athaydes and Kuperjans, Isabel}, title = {Challenges and prospects of biogas from energy cane as supplement to bioethanol production}, series = {Agronomy}, volume = {10}, journal = {Agronomy}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2073-4395}, doi = {10.3390/agronomy10060821}, year = {2020}, abstract = {Innovative breeds of sugar cane yield up to 2.5 times as much organic matter as conventional breeds, resulting in a great potential for biogas production. The use of biogas production as a complementary solution to conventional and second-generation ethanol production in Brazil may increase the energy produced per hectare in the sugarcane sector. Herein, it was demonstrated that through ensiling, energy cane can be conserved for six months; the stored cane can then be fed into a continuous biogas process. This approach is necessary to achieve year-round biogas production at an industrial scale. Batch tests revealed specific biogas potentials between 400 and 600 LN/kgVS for both the ensiled and non-ensiled energy cane, and the specific biogas potential of a continuous biogas process fed with ensiled energy cane was in the same range. Peak biogas losses through ensiling of up to 27\% after six months were observed. Finally, compared with second-generation ethanol production using energy cane, the results indicated that biogas production from energy cane may lead to higher energy yields per hectare, with an average energy yield of up to 162 MWh/ha. Finally, the Farm²CBG concept is introduced, showing an approach for decentralized biogas production.}, language = {en} } @inproceedings{SattlerCaminosUerlingsetal.2020, author = {Sattler, Johannes, Christoph and Caminos, Ricardo Alexander Chico and {\"U}rlings, Nicolas and Dutta, Siddharth and Ruiz, Victor and Kalogirou, Soteris and Ktistis, Panayiotis and Agathokleous, Rafaela and Jung, Christian and Alexopoulos, Spiros and Atti, Vikrama Nagababu and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Operational experience and behaviour of a parabolic trough collector system with concrete thermal energy storage for process steam generation in Cyprus}, series = {AIP Conference Proceedings}, booktitle = {AIP Conference Proceedings}, number = {2303}, doi = {10.1063/5.0029278}, pages = {140004-1 -- 140004-10}, year = {2020}, abstract = {As part of the transnational research project EDITOR, a parabolic trough collector system (PTC) with concrete thermal energy storage (C-TES) was installed and commissioned in Limassol, Cyprus. The system is located on the premises of the beverage manufacturer KEAN Soft Drinks Ltd. and its function is to supply process steam for the factory's pasteurisation process [1]. Depending on the factory's seasonally varying capacity for beverage production, the solar system delivers between 5 and 25 \% of the total steam demand. In combination with the C-TES, the solar plant can supply process steam on demand before sunrise or after sunset. Furthermore, the C-TES compensates the PTC during the day in fluctuating weather conditions. The parabolic trough collector as well as the control and oil handling unit is designed and manufactured by Protarget AG, Germany. The C-TES is designed and produced by CADE Soluciones de Ingenier{\´i}a, S.L., Spain. In the focus of this paper is the description of the operational experience with the PTC, C-TES and boiler during the commissioning and operation phase. Additionally, innovative optimisation measures are presented.}, language = {en} } @inproceedings{RendonSchwagerGhiasietal.2020, author = {Rendon, Carlos and Schwager, Christian and Ghiasi, Mona and Schmitz, Pascal and Bohang, Fakhri and Caminos, Ricardo Alexander Chico and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Modeling and upscaling of a pilot bayonettube reactor for indirect solar mixed methane reforming}, series = {AIP Conference Proceedings}, booktitle = {AIP Conference Proceedings}, number = {2303}, doi = {10.1063/5.0029974}, pages = {170012-1 -- 170012-9}, year = {2020}, abstract = {A 16.77 kW thermal power bayonet-tube reactor for the mixed reforming of methane using solar energy has been designed and modeled. A test bench for the experimental tests has been installed at the Synlight facility in Juelich, Germany and has just been commissioned. This paper presents the solar-heated reactor design for a combined steam and dry reforming as well as a scaled-up process simulation of a solar reforming plant for methanol production. Solar power towers are capable of providing large amounts of heat to drive high-endothermic reactions, and their integration with thermochemical processes shows a promising future. In the designed bayonet-tube reactor, the conventional burner arrangement for the combustion of natural gas has been substituted by a continuous 930 °C hot air stream, provided by means of a solar heated air receiver, a ceramic thermal storage and an auxiliary firing system. Inside the solar-heated reactor, the heat is transferred by means of convective mechanism mainly; instead of radiation mechanism as typically prevailing in fossil-based industrial reforming processes. A scaled-up solar reforming plant of 50.5 MWth was designed and simulated in Dymola® and AspenPlus®. In comparison to a fossil-based industrial reforming process of the same thermal capacity, a solar reforming plant with thermal storage promises a reduction up to 57 \% of annual natural gas consumption in regions with annual DNI-value of 2349 kWh/m2. The benchmark solar reforming plant contributes to a CO2 avoidance of approx. 79 kilotons per year. This facility can produce a nominal output of 734.4 t of synthesis gas and out of this 530 t of methanol a day.}, language = {en} } @inproceedings{OetringerDuemmlerGoettsche2020, author = {Oetringer, Kerstin and D{\"u}mmler, Andreas and G{\"o}ttsche, Joachim}, title = {Neues Modell zur 1D-Simulation der indirekten Verdunstungsk{\"u}hlung}, series = {DKV-Tagung 2020, AA II.1}, booktitle = {DKV-Tagung 2020, AA II.1}, pages = {250 -- 262}, year = {2020}, abstract = {Im Projekt Coolplan- AIR geht es um die Fortentwicklung und Feld- Validierung eines Berechnungs- und Auslegungstools zur energieeffizienten K{\"u}hlung von Geb{\"a}uden mit luftgest{\"u}tzten Systemen. Neben dem Aufbau und der Weiterentwicklung von Simulationsmodellen erfolgen Vermessungen der Gesamtsysteme anhand von Praxisanlagen im Feld. Eine der betrachteten Anlagen arbeitet mit indirekter Verdunstung. Diese Ver{\"o}ffentlichung zeigt den Entwicklungsprozess und den Aufbau des Simulationsmodells zur Verdunstungsk{\"u}hlung in der Simulationsumgebung Matlab- Simulink mit der CARNOT- Toolbox. Das besondere Augenmerk liegt dabei auf dem physikalischen Modell des W{\"a}rme{\"u}bertragers, in dem die Verdunstung implementiert ist. Dem neuen Modellansatz liegt die Annahme einer aus der Enthalpie- Betrachtung hergeleiteten effektiven W{\"a}rmekapazit{\"a}t zugrunde. Des Weiteren wird der Befeuchtungsgrad als konstant angesehen und eine standardisierte Zunahme der W{\"a}rme{\"u}bertragung des feuchten gegen{\"u}ber dem trockenen W{\"a}rme{\"u}bertrager angenommen. Die Validierung des Modells erfolgte anhand von Literaturdaten. F{\"u}r den trockenen W{\"a}rmetauscher ist der maximale absolute Fehler der berechneten Austrittstemperatur (Zuluft) kleiner als ±0.1 K und f{\"u}r den nassen W{\"a}rmetauscher (K{\"u}hlfall) unter der Annahme eines konstanten Verdunstungsgrades kleiner als ±0.4 K.}, language = {de} } @inproceedings{DuemmlerOetringerGoettsche2020, author = {D{\"u}mmler, Andreas and Oetringer, Kerstin and G{\"o}ttsche, Joachim}, title = {Auslegungstool zur energieeffizienten K{\"u}hlung von Geb{\"a}uden}, series = {DKV-Tagung 2020, AA IV}, booktitle = {DKV-Tagung 2020, AA IV}, pages = {1109}, year = {2020}, abstract = {Thematisch widmet sich das Projekt Coolplan- AIR der Fortentwicklung und Feldvalidierung eines Berechnungs- und Auslegungstools zur energieeffizienten K{\"u}hlung von Geb{\"a}uden mit luftgest{\"u}tzten Systemen. Neben dem Aufbau und der Weiterentwicklung von Simulationsmodellen erfolgen Vermessungen der Gesamtsysteme anhand von Praxisanlagen im Feld. Der Schwerpunkt des Projekts liegt auf der Vermessung, Simulation und Integration rein luftgest{\"u}tzter K{\"u}hltechnologien. Im Bereich der K{\"a}lteerzeugung wurden Luft- Luft- W{\"a}rmepumpen, Anlagen zur adiabaten K{\"u}hlung bzw. offene K{\"u}hlt{\"u}rme und VRF- Multisplit- Systeme (Variable Refrigerant Flow) im Feld bzw. auf dem Teststand der HSD vermessen. Die Komponentenmodelle werden in die Matlab/Simulink- Toolbox CARNOT integriert und anschließend auf Basis der zuvor erhaltenen Messdaten validiert. Einerseits erlauben die Messungen das Betriebsverhalten von Anlagenkomponenten zu analysieren. Andererseits soll mit der Vermessung im Feld gepr{\"u}ft werden, inwieweit die Simulationsmodelle, welche im Vorg{\"a}ngerprojekt aus Pr{\"u}fstandmessungen entwickelt wurden, auch f{\"u}r gr{\"o}ßere Ger{\"a}teleistungen G{\"u}ltigkeit besitzen. Die entwickelten und implementierten Systeme, bestehend aus verschiedensten Anlagenmodellen und Regelungskomponenten, werden gepr{\"u}ft und dahingehend qualifiziert, dass sie in Standard- Auslegungstools zuverl{\"a}ssig verwendet werden k{\"o}nnen. Zus{\"a}tzlich wird ein energetisches Monitoring eines H{\"o}rsaalgeb{\"a}udes am Campus J{\"u}lich durchgef{\"u}hrt, das u. a. zur Validierung der K{\"u}hllastberechnungen in g{\"a}ngigen Simulationsmodelle genutzt werden kann.}, language = {de} } @inproceedings{TomicPennaDeJongetal.2020, author = {Tomic, Igor and Penna, Andrea and DeJong, Matthew and Butenweg, Christoph and Senaldi, Ilaria and Guerrini, Gabriele and Malomo, Daniele and Beyer, Katrin}, title = {Blind predictions of shake table testing of aggregate masonry buildings}, series = {Proceedings of the 17th World Conference on Earthquake Engineering}, booktitle = {Proceedings of the 17th World Conference on Earthquake Engineering}, year = {2020}, abstract = {In many historical centers in Europe, stone masonry is part of building aggregates, which developed when the layout of the city or village was densified. The analysis of such building aggregates is very challenging and modelling guidelines missing. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The SERA project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures) provides such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. With the aim to advance the modelling of unreinforced masonry aggregates, a blind prediction competition is organized before the experimental campaign. Each group has been provided a complete set of construction drawings, material properties, testing sequence and the list of measurements to be reported. The applied modelling approaches span from equivalent frame models to Finite Element models using shell elements and discrete element models with solid elements. This paper compares the first entries, regarding the modelling approaches, results in terms of base shear, roof displacements, interface openings, and the failure modes.}, language = {en} } @inproceedings{TomićPennaDeJongetal.2020, author = {Tomić, Igor and Penna, Andrea and DeJong, Matthew and Butenweg, Christoph and Correia, Ant{\´o}nio A. and Candeias, Paulo X. and Senaldi, Ilaria and Guerrini, Gabriele and Malomo, Daniele and Beyer, Katrin}, title = {Seismic testing of adjacent interacting masonry structures}, series = {12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020)}, booktitle = {12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020)}, doi = {10.23967/sahc.2021.234}, pages = {1 -- 12}, year = {2020}, abstract = {In many historical centres in Europe, stone masonry buildings are part of building aggregates, which developed when the layout of the city or village was densified. In these aggregates, adjacent buildings share structural walls to support floors and roofs. Meanwhile, the masonry walls of the fa{\c{c}}ades of adjacent buildings are often connected by dry joints since adjacent buildings were constructed at different times. Observations after for example the recent Central Italy earthquakes showed that the dry joints between the building units were often the first elements to be damaged. As a result, the joints opened up leading to pounding between the building units and a complicated interaction at floor and roof beam supports. The analysis of such building aggregates is very challenging and modelling guidelines do not exist. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The objective of the project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures), included in the H2020 project SERA, is to provide such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. The test unit is built at half-scale, with a two-storey building and a one-storey building. The buildings share one common wall while the fa{\c{c}}ade walls are connected by dry joints. The floors are at different heights leading to a complex dynamic response of this smallest possible building aggregate. The shake table test is conducted at the LNEC seismic testing facility. The testing sequence comprises four levels of shaking: 25\%, 50\%, 75\% and 100\% of nominal shaking table capacity. Extensive instrumentation, including accelerometers, displacement transducers and optical measurement systems, provides detailed information on the building aggregate response. Special attention is paid to the interface opening, the globa}, language = {en} } @inproceedings{MarinkovićButenweg2020, author = {Marinković, Marko and Butenweg, Christoph}, title = {Out-of-plane behavior of decoupled masonry infills under seismic loading}, series = {Proceedings of the 17th World Conference on Earthquake Engineering}, booktitle = {Proceedings of the 17th World Conference on Earthquake Engineering}, pages = {13 Seiten}, year = {2020}, abstract = {Masonry is used in many buildings not only for load-bearing walls, but also for non-load-bearing enclosure elements in the form of infill walls. Many studies confirmed that infill walls interact with the surrounding reinforced concrete frame, thus changing dynamic characteristics of the structure. Consequently, masonry infills cannot be neglected in the design process. However, although the relevant standards contain requirements for infill walls, they do not describe how these requirements are to be met concretely. This leads in practice to the fact that the infill walls are neither dimensioned nor constructed correctly. The evidence of this fact is confirmed by the recent earthquakes, which have led to enormous damages, sometimes followed by the total collapse of buildings and loss of human lives. Recently, the increasing effort has been dedicated to the approach of decoupling of masonry infills from the frame elements by introducing the gap in between. This helps in removing the interaction between infills and frame, but raises the question of out-of-plane stability of the panel. This paper presents the results of the experimental campaign showing the out-of-plane behavior of masonry infills decoupled with the system called INODIS (Innovative decoupled infill system), developed within the European project INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in Reinforced Concrete Buildings). Full scale specimens were subjected to the different loading conditions and combinations of in-plane and out-of-plane loading. Out-of-plane capacity of the masonry infills with the INODIS system is compared with traditionally constructed infills, showing that INODIS system provides reliable out-of-plane connection under various loading conditions. In contrast, traditional infills performed very poor in the case of combined and simultaneously applied in-plane and out-of-plane loading, experiencing brittle behavior under small in-plane drifts followed by high out-of-plane displacements. Decoupled infills with the INODIS system have remained stable under out-of-plane loads, even after reaching high in-plane drifts and being damaged.}, language = {en} } @inproceedings{MilkovaButenwegDumovaJovanoska2020, author = {Milkova, Kristina and Butenweg, Christoph and Dumova-Jovanoska, Elena}, title = {Methodology for development of seismic vulnerability curve for existing unreinforced Masonry buildings}, series = {Proceedings of the 17th World Conference on Earthquake Engineering}, booktitle = {Proceedings of the 17th World Conference on Earthquake Engineering}, pages = {13 Seiten}, year = {2020}, abstract = {Seismic behavior of an existing unreinforced masonry building built pre-modern code, located in the City of Ohrid, Republic of North Macedonia has been investigated in this paper. The analyzed school building is selected as an archetype in an ongoing project named "Seismic vulnerability assessment of existing masonry structures in Republic of North Macedonia (SeismoWall)". Two independent segments were included in this research: Seismic hazard assessment by creating a cite specific response spectra and Seismic vulnerability definition by creating a region - specific series of vulnerability curves for the chosen building topology. A reliable Seismic Hazard Assessment for a selected region is a crucial point for performing a seismic risk analysis of a characteristic building class. In that manner, a scenario - based method that incorporates together the knowledge of tectonic style of the considered region, the active fault characterization, the earth crust model and the historical seismicity named Neo Deterministic approach is used for calculation of the response spectra for the location of the building. Variations of the rupturing process are taken into account in the nucleation point of the rupture, in the rupture velocity pattern and in the istribution of the slip on the fault. The results obtained from the multiple scenarios are obtained as an envelope of the response spectra computed for the cite using the procedure Maximum Credible Seismic Input (MCSI). Capacity of the selected building has been determined by using nonlinear static analysis. MINEA software (SDA Engineering) was used for verification of the structural safety of the chosen unreinforced masonry structure. In the process of optimization of the number of samples, computational cost required in a Monte Carlo simulation is significantly reduced since the simulation is performed on a polynomial response surface function for prediction of the structural response. Performance point, found as the intersection of the capacity of the building and the spectra used, is chosen as a response parameter. Five levels of damage limit states based on the capacity curve of the building are defined in dependency on the yield displacement and the maximum displacement. Maximum likelihood estimation procedure is utilized in the process of vulnerability curves determination. As a result, region specific series of vulnerability curves for the chosen type of masonry structures are defined. The obtained probabilities of exceedance a specific damage states as a result from vulnerability curves are compared with the observed damages happened after the earthquake in July 2017 in the City of Ohrid, North Macedonia.}, language = {en} } @article{MarinkovićFloresCalvinistiButenweg2020, author = {Marinković, Marko and Flores Calvinisti, Santiago and Butenweg, Christoph}, title = {Numerical analysis of reinforced concrete frame buildings with decoupled infill walls}, series = {Building Materials and Structures}, volume = {63}, journal = {Building Materials and Structures}, number = {4}, publisher = {Society for Materials and Structures Testing of Serbia}, address = {Belgrad}, issn = {2217-8139}, doi = {10.5937/GRMK2004013M}, pages = {13 -- 48}, year = {2020}, abstract = {Reinforced concrete (RC) buildings with masonry infill walls are widely used in many countries all over the world. Although infills are considered as non-structural elements, they significantly change dynamic characteristics of RC frame structures during earthquake excitation. Recently, significant effort was spent on studying decoupled infills, which are isolated from the surrounding frame usually by adding a gap between frame and infill. In this case, the frame deformation does not activate infill wall, thus infills are not influencing the behaviour of the frame. This paper presents the results of the investigation of the behaviour of RC frame buildings with the INODIS system that decouples masonry infills from the surrounding frame. Effect of masonry infill decoupling was investigated first on the one-bay onestorey frame. This was used as a base for parametric study on the frames with more bays and storeys, as well as on the building level. Change of stiffness and dynamic characteristics was analysed as well as response under earthquake loading. Comparison with the bare frame and traditionally infilled frame was performed. The results show that behaviour of the decoupled infilled frames is similar to the bare frame, whereas behaviour of frames with traditional infills is significantly different and demands complex numerical models. This means that if adequate decoupling is applied, design of}, language = {mul} } @inproceedings{DuranParedesMottaghyHerrmannetal.2020, author = {Duran Paredes, Ludwin and Mottaghy, Darius and Herrmann, Ulf and Groß, Rolf Fritz}, title = {Online ground temperature and soil moisture monitoring of a shallow geothermal system with non-conventional components}, series = {EGU General Assembly 2020}, booktitle = {EGU General Assembly 2020}, year = {2020}, abstract = {We present first results from a newly developed monitoring station for a closed loop geothermal heat pump test installation at our campus, consisting of helix coils and plate heat exchangers, as well as an ice-store system. There are more than 40 temperature sensors and several soil moisture content sensors distributed around the system, allowing a detailed monitoring under different operating conditions.In the view of the modern development of renewable energies along with the newly concepts known as Internet of Things and Industry 4.0 (high-tech strategy from the German government), we created a user-friendly web application, which will connect the things (sensors) with the open network (www). Besides other advantages, this allows a continuous remote monitoring of the data from the numerous sensors at an arbitrary sampling rate.Based on the recorded data, we will also present first results from numerical simulations, taking into account all relevant heat transport processes.The aim is to improve the understanding of these processes and their influence on the thermal behavior of shallow geothermal systems in the unsaturated zone. This will in turn facilitate the prediction of the performance of these systems and therefore yield an improvement in their dimensioning when designing a specific shallow geothermal installation.}, language = {en} } @book{MeskourisButenwegHinzenetal.2019, author = {Meskouris, Konstantin and Butenweg, Christoph and Hinzen, Klaus-G. and H{\"o}ffer, R{\"u}diger}, title = {Structural Dynamics with Applications in Earthquake and Wind Engineering}, publisher = {Springer}, address = {Berlin, Heidelberg}, isbn = {978-3-662-57550-5}, doi = {10.1007/978-3-662-57550-5}, year = {2019}, language = {en} } @incollection{MeskourisButenwegHinzenetal.2019, author = {Meskouris, Konstantin and Butenweg, Christoph and Hinzen, Klaus-G. and H{\"o}ffer, R{\"u}diger}, title = {Stochasticity of Wind Processes and Spectral Analysis of Structural Gust Response}, series = {Structural Dynamics with Applications in Earthquake and Wind Engineering}, booktitle = {Structural Dynamics with Applications in Earthquake and Wind Engineering}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-57550-5 (Online)}, doi = {10.1007/978-3-662-57550-5_3}, pages = {153 -- 196}, year = {2019}, abstract = {Wind loads have great impact on many engineering structures. Wind storms often cause irreparable damage to the buildings which are exposed to it. Along with the earthquakes, wind represents one of the most common environmental load on structures and is relevant for limit state design. Modern wind codes indicate calculation procedures allowing engineers to deal with structural systems, which are susceptible to conduct wind-excited oscillations. In the codes approximate formulas for wind buffeting are specified which relate the dynamic problem to rather abstract parameter functions. The complete theory behind is not visible in order to simplify the applicability of the procedures. This chapter derives the underlying basic relations of the spectral method for wind buffeting and explains the main important applications of it in order to elucidate part of the theoretical background of computations after the new codes. The stochasticity of the wind processes is addressed, and the analysis of analytical as well as measurement based power spectra is outlined. Short MATLAB codes are added to the Appendix 3 which carry out the computation of a single sided auto-spectrum from a statistically stationary, discrete stochastic process. Two examples are presented.}, language = {en} } @book{Pieper2019, author = {Pieper, Martin}, title = {Quantenmechanik : Einf{\"u}hrung in die mathematische Formulierung}, publisher = {Springer Spektrum}, address = {Wiesbaden}, isbn = {978-3-658-28329-2}, doi = {10.1007/978-3-658-28329-2}, year = {2019}, language = {de} } @book{BudelmannButenweg2019, author = {Budelmann, Harald and Butenweg, Christoph}, title = {Mauerwerksbau: Bemessung und Konstruktion : Baustoffe, Bemessung und Ausf{\"u}hrung, Brandschutz und Erdbeben, Nachhaltigkeit, Bewertung und Revitalisierung}, editor = {Gunkler, Erhard}, edition = {2. {\"u}berarbeitete und aktualisierte Auflage}, publisher = {Bundesanzeiger Verlag}, address = {K{\"o}ln}, isbn = {978-3-8462-0371-2}, pages = {XXIV, 738 S. ; Illustrationen, Diagramme}, year = {2019}, language = {de} } @incollection{ButenwegHoltschoppen2019, author = {Butenweg, Christoph and Holtschoppen, Britta}, title = {Seismic design of structures and components in industrial units}, series = {Structural Dynamics with Applications in Earthquake and Wind Engineering}, booktitle = {Structural Dynamics with Applications in Earthquake and Wind Engineering}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-57550-5}, doi = {10.1007/978-3-662-57550-5_5}, pages = {359 -- 481}, year = {2019}, abstract = {Industrial units consist of the primary load-carrying structure and various process engineering components, the latter being by far the most important in financial terms. In addition, supply structures such as free-standing tanks and silos are usually required for each plant to ensure the supply of material and product storage. Thus, for the earthquake-proof design of industrial plants, design and construction rules are required for the primary structures, the secondary structures and the supply structures. Within the framework of these rules, possible interactions of primary and secondary structures must also be taken into account. Importance factors are used in seismic design in order to take into account the usually higher risk potential of an industrial unit compared to conventional building structures. Industrial facilities must be able to withstand seismic actions because of possibly wide-ranging damage consequences in addition to losses due to production standstill and the destruction of valuable equipment. The chapter presents an integrated concept for the seismic design of industrial units based on current seismic standards and the latest research results. Special attention is devoted to the seismic design of steel thin-walled silos and tank structures.}, language = {en} } @incollection{GiresiniButenweg2019, author = {Giresini, Linda and Butenweg, Christoph}, title = {Earthquake resistant design of structures according to Eurocode 8}, series = {Structural Dynamics with Applications in Earthquake and Wind Engineering}, booktitle = {Structural Dynamics with Applications in Earthquake and Wind Engineering}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-57550-5 (Online)}, doi = {10.1007/978-3-662-57550-5_4}, pages = {197 -- 358}, year = {2019}, abstract = {The chapter initially provides a summary of the contents of Eurocode 8, its aim being to offer both to the students and to practising engineers an easy introduction into the calculation and dimensioning procedures of this earthquake code. Specifically, the general rules for earthquake-resistant structures, the definition of design response spectra taking behaviour and importance factors into account, the application of linear and non-linear calculation methods and the structural safety verifications at the serviceability and ultimate limit state are presented. The application of linear and non-linear calculation methods and corresponding seismic design rules is demonstrated on practical examples for reinforced concrete, steel and masonry buildings. Furthermore, the seismic assessment of existing buildings is discussed and illustrated on the example of a typical historical masonry building in Italy. The examples are worked out in detail and each step of the design process, from the preliminary analysis to the final design, is explained in detail.}, language = {en} } @article{RossiStupazziniParisietal.2019, author = {Rossi, Leonardo and Stupazzini, Marco and Parisi, Davide and Holtschoppen, Britta and Ruggieri, Gabriella and Butenweg, Christoph}, title = {Empirical fragility functions and loss curves for long-span-beam buildings based on the 2012 Emilia-Romagna earthquake official database}, series = {Bulletin of Earthquake Engineering}, volume = {18}, journal = {Bulletin of Earthquake Engineering}, publisher = {Springer Nature}, issn = {1573-1456}, doi = {10.1007/s10518-019-00759-1}, pages = {1693 -- 1721}, year = {2019}, abstract = {The 2012 Emilia-Romagna earthquake, that mainly struck the homonymous Italian region provoking 28 casualties and damage to thousands of structures and infrastructures, is an exceptional source of information to question, investigate, and challenge the validity of seismic fragility functions and loss curves from an empirical standpoint. Among the most recent seismic events taking place in Europe, that of Emilia-Romagna is quite likely one of the best documented, not only in terms of experienced damages, but also for what concerns occurred losses and necessary reconstruction costs. In fact, in order to manage the compensations in a fair way both to citizens and business owners, soon after the seismic sequence, the regional administrative authority started (1) collecting damage and consequence-related data, (2) evaluating information sources and (3) taking care of the cross-checking of various reports. A specific database—so-called Sistema Informativo Gestione Europa (SFINGE)—was devoted to damaged business activities. As a result, 7 years after the seismic events, scientists can rely on a one-of-a-kind, vast and consistent database, containing information about (among other things): (1) buildings' location and dimensions, (2) occurred structural damages, (3) experienced direct economic losses and (4) related reconstruction costs. The present work is focused on a specific data subset of SFINGE, whose elements are Long-Span-Beam buildings (mostly precast) deployed for business activities in industry, trade or agriculture. With the available set of data, empirical fragility functions, cost and loss ratio curves are elaborated, that may be included within existing Performance Based Earthquake Engineering assessment toolkits.}, language = {en} } @article{RossiHoltschoppenButenweg2019, author = {Rossi, Leonardo and Holtschoppen, Britta and Butenweg, Christoph}, title = {Official data on the economic consequences of the 2012 Emilia-Romagna earthquake: a first analysis of database SFINGE}, series = {Bulletin of Earthquake Engineering}, volume = {17}, journal = {Bulletin of Earthquake Engineering}, number = {9}, publisher = {Springer}, address = {Berlin}, doi = {10.1007\%2Fs10518-019-00655-8}, pages = {4855 -- 4884}, year = {2019}, language = {en} } @article{MarinkovicButenweg2019, author = {Marinkovic, Marko and Butenweg, Christoph}, title = {Innovative decoupling system for the seismic protection of masonry infill walls in reinforced concrete frames}, series = {Engineering Structures}, volume = {197}, journal = {Engineering Structures}, number = {Article 109435}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0141-0296}, doi = {10.1016/j.engstruct.2019.109435}, year = {2019}, language = {en} }