@article{WagnerRaoKloocketal.2006, author = {Wagner, Torsten and Rao, C. and Kloock, Joachim P. and Yoshinobu, T. and Otto, R. and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {"LAPS Card"—A novel chip card-based light-addressable potentiometric sensor (LAPS)}, series = {Sensors and Actuators B: Chemical. 118 (2006), H. 1-2}, journal = {Sensors and Actuators B: Chemical. 118 (2006), H. 1-2}, isbn = {0925-4005}, pages = {33 -- 40}, year = {2006}, language = {en} } @inproceedings{KoplinSiemonsOcenValentinetal.2006, author = {Koplin, Tobias J. and Siemons, Maike and Oc{\´e}n-Val{\´e}ntin, C{\´e}sar and Sanders, Daniel and Simon, Ulrich}, title = {Workflow for high throughput screening of gas sensing materials}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1407}, year = {2006}, abstract = {The workflow of a high throughput screening setup for the rapid identification of new and improved sensor materials is presented. The polyol method was applied to prepare nanoparticular metal oxides as base materials, which were functionalised by surface doping. Using multi-electrode substrates and high throughput impedance spectroscopy (HT-IS) a wide range of materials could be screened in a short time. Applying HT-IS in search of new selective gas sensing materials a NO2-tolerant NO sensing material with reduced sensitivities towards other test gases was identified based on iridium doped zinc oxide. Analogous behaviour was observed for iridium doped indium oxide.}, subject = {Biosensor}, language = {en} } @misc{RongenZiemonsSchieketal.2006, author = {Rongen, Heinz and Ziemons, Karl and Schiek, Michael and Tass, Alexander}, title = {Vorrichtung zur Messung biomedizinischer Daten eines Probanden und Verfahren zur Simulation des Probanden mit in Echtzeit verarbeiteten Daten}, pages = {1 -- 12}, year = {2006}, abstract = {Die Erfindung betrifft eine Vorrichtung zur Messung biomedizinischer Daten eines Probanden, mit einem Messsystem zur Erhebung der Daten sowie einer ersten Hardware-Komponente zur Aufzeichnung der Daten. In einer Verbindungsleitung zur {\"U}bertragung der Daten vom Messsystem zur ersten Hardware-Komponente zur Aufzeichnung der Daten ist erfindungsgem{\"a}ss ein Mittel zur galvanischen Auftrennung der Daten angeordnet. Auf diese Weise ist wenigstens die Duplizierung der Daten f{\"u}r Datenverarbeitungszwecke gew{\"a}hrleistet. Die auf diese Weise verarbeiteten Daten werden f{\"u}r ein Verfahren zur Echtzeit-Stimulation eines Probanden genutzt.}, language = {de} } @article{StreunChavanLameetal.2006, author = {Streun, M. and Chavan, U. and Lame, H. and Parl, C. and M{\"u}ller-Veggian, Mattea and Ziemons, Karl}, title = {Treating the Gain Non-Uniformity of Multi Channel PMTs by Channel-Specific Trigger Levels}, series = {2006 IEEE Nuclear Science Symposium Conference Record, Vol. 2.}, journal = {2006 IEEE Nuclear Science Symposium Conference Record, Vol. 2.}, address = {San Diego, CA}, issn = {1082-3654}, pages = {1301 -- 1304}, year = {2006}, language = {en} } @article{SchoeningAbouzarIngebrandtetal.2006, author = {Sch{\"o}ning, Michael Josef and Abouzar, Maryam H. and Ingebrandt, Sven and Platen, Johannes and Offenh{\"a}usser, Andreas and Poghossian, Arshak}, title = {Towards label-free detection of charged macromolecules using field-effect-based structures : Scaling down from capacitive EIS sensor over ISFET to nano-scale devices}, series = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, journal = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, number = {paper 0915-R05-04}, editor = {Comini, Elisabetta}, isbn = {9781558998711}, pages = {89 -- 94}, year = {2006}, language = {en} } @article{StreunBrandenburgKhodaverdietal.2006, author = {Streun, M. and Brandenburg, G. and Khodaverdi, M. and Larue, H. and Parl, C. and Ziemons, Karl}, title = {Timemark correction for the ClearPET™ scanners}, series = {2005 IEEE Nuclear Science Symposium Conference Record, Vol. 4}, journal = {2005 IEEE Nuclear Science Symposium Conference Record, Vol. 4}, isbn = {1082-3654}, pages = {2057 -- 2060}, year = {2006}, abstract = {The small animal PET scanners developed by the Crystal Clear Collaboration (ClearPETtrade) detect coincidences by analyzing timemarks which are attached to each event. The scanners are able to save complete single list mode data which allows analysis and modification of the timemarks after data acquisition. The timemarks are obtained from the digitally sampled detector pulses by calculating the baseline crossing of the rising edge of the pulse which is approximated as a straight line. But the limited sampling frequency causes a systematic error in the determination of the timemark. This error depends on the phase of the sampling clock at the time of the event. A statistical method that corrects these errors will be presented}, language = {en} } @article{Dikta2006, author = {Dikta, Gerhard}, title = {Time series methods to forecast patent filings}, series = {Forecasting innovations : methods for predicting numbers of patent filings ; with 71 tables / Peter Hingley ; Marc Nicolas (ed.),}, journal = {Forecasting innovations : methods for predicting numbers of patent filings ; with 71 tables / Peter Hingley ; Marc Nicolas (ed.),}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {978-3-540-35991-3}, doi = {10.1007/3-540-35992-3_6}, pages = {95 -- 124}, year = {2006}, language = {en} } @inproceedings{KloockSchubertErmelenkoetal.2006, author = {Kloock, Joachim P. and Schubert, J. and Ermelenko, Y. and Vlasov, Y. G. and Bratov, A. and Sch{\"o}ning, Michael Josef}, title = {Thin-film sensors with chalcogenide glass materials - a general survey}, series = {Biochemical sensing utilisation of micro- and nanotechnologies : Warsaw, [23rd - 26th] November 2005 / ed. by M. Mascini ...}, booktitle = {Biochemical sensing utilisation of micro- and nanotechnologies : Warsaw, [23rd - 26th] November 2005 / ed. by M. Mascini ...}, address = {Warsaw}, pages = {92 -- 97}, year = {2006}, language = {en} } @article{MuellerVeggianMoroFerretietal.2006, author = {M{\"u}ller-Veggian, Mattea and Moro, D. and Ferreti, A. and Colautti, P.}, title = {The new articulated twin mini TEPC}, series = {Annual Report 2006 / Istituto Nazionale di Fisica Nucleare / Laboratori Nazionali }, journal = {Annual Report 2006 / Istituto Nazionale di Fisica Nucleare / Laboratori Nazionali }, address = {Legnaro}, pages = {273}, year = {2006}, language = {en} } @article{StreunBrandenburgLarueetal.2006, author = {Streun, M. and Brandenburg, G. and Larue, H. and Parl, C. and Ziemons, Karl}, title = {The data acquisition system of ClearPET neuro - a small animal PET scanner}, series = {IEEE Transactions on Nuclear Science}, volume = {53}, journal = {IEEE Transactions on Nuclear Science}, number = {3}, isbn = {0018-9499}, pages = {700 -- 703}, year = {2006}, abstract = {The Crystal Clear Collaboration has developed a modular system for a small animal PET scanner (ClearPET). The modularity allows the assembly of scanners of different sizes and characteristics in order to satisfy the specific needs of the individual member institutions. The system performs depth of interaction detection by using a phoswich arrangement combining LSO and LuYAP scintillators which are coupled to Multichannel Photomultipliers (PMTs). For each PMT a free running 40 MHz ADC digitizes the signal and the complete scintillation pulse is sampled by an FPGA and sent with 20 MB/s to a PC for preprocessing. The pulse provides information about the gamma energy and the scintillator material which identifies the interaction layer. Furthermore, the exact pulse starting time is obtained from the sampled data. This is important as no hardware coincidence detection is implemented. All single events are recorded and coincidences are identified by software. The system in J{\"u}lich (ClearPET Neuro) is equipped with 10240 crystals on 80 PMTs. The paper will present an overview of the data acquisition system.}, language = {en} } @misc{Staat2006, author = {Staat, Manfred}, title = {Technische Mechanik. Vorlesungsmitschrift. Korrigierter Nachdr. der 3. Aufl.}, year = {2006}, abstract = {{\"U}berarbeitete, korrigierte und erg{\"a}nzte Version einer Vorlesungsmitschrift von Sebastian Kr{\"a}mer. 172 S. Inhaltsverzeichnis 0 Einf{\"u}hrung in die Mechanik 1 Statik starrer K{\"o}rper 2 Elastostatik (Festigkeitslehre) 3 Kinematik 4 Kinetik Literatur}, subject = {Technische Mechanik}, language = {de} } @inproceedings{PijanowskaRemiszewskaPederzollietal.2006, author = {Pijanowska, Dorota G. and Remiszewska, Elzbieta and Pederzolli, Cecilia and Lunelli, Lorenzo and Vendano, Michele and Canteri, Roberto and Dudzinski, Konrad and Kruk, Jerzy and Torbicz, Wladyslaw}, title = {Surface modification for microreactor fabrication}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1480}, year = {2006}, abstract = {In this paper, methods of surface modification of different supports, i.e. glass and polymeric beads for enzyme immobilisation are described. The developed method of enzyme immobilisation is based on Schiff's base formation between the amino groups on the enzyme surface and the aldehyde groups on the chemically modified surface of the supports. The surface of silicon modified by APTS and GOPS with immobilised enzyme was characterised by atomic force microscopy (AFM), time-of-flight secondary ion mass spectroscopy (ToF-SIMS) and infrared spectroscopy (FTIR). The supports with immobilised enzyme (urease) were also tested in combination with microreactors fabricated in silicon and Perspex, operating in a flow-through system. For microreactors filled with urease immobilised on glass beads (Sigma) and on polymeric beads (PAN), a very high and stable signal (pH change) was obtained. The developed method of urease immobilisation can be stated to be very effective.}, subject = {Biosensor}, language = {en} } @inproceedings{SrivastavaSinghDhandetal.2006, author = {Srivastava, Alok and Singh, Virendra and Dhand, Chetna and Kaur, Manindar and Singh, Tejvir and Witte, Katrin and Scherer, Ulrich W.}, title = {Study of swift heavy ion modified conduction polymer composites for application as gas sensor}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1345}, year = {2006}, abstract = {A polyaniline-based conducting composite was prepared by oxidative polymerisation of aniline in a polyvinylchloride (PVC) matrix. The coherent free standing thin films of the composite were prepared by a solution casting method. The polyvinyl chloride-polyaniline composites exposed to 120 MeV ions of silicon with total ion fluence ranging from 1011 to 1013 ions/cm2, were observed to be more sensitive towards ammonia gas than the unirradiated composite. The response time of the irradiated composites was observed to be comparably shorter. We report for the first time the application of swift heavy ion modified insulating polymer conducting polymer (IPCP) composites for sensing of ammonia gas.}, subject = {Biosensor}, language = {en} } @book{KaminskyKallweitWeberetal.2006, author = {Kaminsky, Radoslav and Kallweit, Stephan and Weber, Hans-Joachim and Simons, Antoine and Verdonck, Pascal}, title = {Stereo high speed PIV measurements behind two different artificial heart valves}, pages = {9 S. : Ill., graph. Darst.}, year = {2006}, language = {en} } @inproceedings{BarekFischerNavratiletal.2006, author = {Barek, Jiri and Fischer, Jan and Navratil, Tomas and Peckova, Karolina and Yosypchuk, Bogdan}, title = {Silver solid amalgam electrodes as sensors for chemical carcinogens}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1554}, year = {2006}, abstract = {The applicability of differential pulse voltammetry (DPV) and adsorptive stripping voltammetry (AdSV) at a non-toxic meniscus-modified silver solid amalgam electrode (m-AgSAE) for the determination of trace amounts of genotoxic substances was demonstrated on the determination of micromolar and submicromolar concentrations of 3-nitrofluoranthene using methanol - 0.01 mol L-1 NaOH (9:1) mixture as a base electrolyte and of Ostazine Orange using 0.01 mol L-1 NaOH as a base electrolyte.}, subject = {Biosensor}, language = {en} } @incollection{PoghossianSchoening2006, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Silicon-based chemical and biological field-effect sensors}, series = {Encyclopedia of Sensors. Vol. 9 S - Sk}, booktitle = {Encyclopedia of Sensors. Vol. 9 S - Sk}, publisher = {ASP, American Scientific Publ.}, address = {Stevenson Ranch, Calif.}, isbn = {1-58883-065-9}, pages = {463 -- 534}, year = {2006}, language = {en} } @inproceedings{KraftRetkowitz2006, author = {Kraft, Bodo and Retkowitz, Daniel}, title = {Rule-Dependencies for Visual Knowledge Specification in Conceptual Design}, year = {2006}, abstract = {In: Proc. of the 11th Intl. Conf. on Computing in Civil and Building Engineering (ICCCBE-XI) ed. Hugues Rivard, Montreal, Canada, Seite 1-12, ACSE (CD-ROM), 2006 Currently, the conceptual design phase is not adequately supported by any CAD tool. Neither the support while elaborating conceptual sketches, nor the automatic proof of correctness with respect to effective restrictions is currently provided by any commercial tool. To enable domain experts to store the common as well as their personal domain knowledge, we develop a visual language for knowledge formalization. In this paper, a major extension to the already existing concepts is introduced. The possibility to define rule dependencies extends the expressiveness of the knowledge definition language and contributes to the usability of our approach.}, subject = {CAD}, language = {en} } @inproceedings{SakthivelWeppner2006, author = {Sakthivel, Mariappan and Weppner, Werner}, title = {Response behaviour of a hydrogen sensor based on ionic conducting polymer-metal interfaces prepared by the chemical reduction method}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1399}, year = {2006}, abstract = {A solid-state amperometric hydrogen sensor based on a protonated Nafion membrane and catalytic active electrode operating at room temperature was fabricated and tested. Ionic conducting polymer-metal electrode interfaces were prepared chemically by using the impregnation-reduction method. The polymer membrane was impregnated with tetra-ammine platinum chloride hydrate and the metal ions were subsequently reduced by using either sodium tetrahydroborate or potassium tetrahydroborate. The hydrogen sensing characteristics with air as reference gas is reported. The sensors were capable of detecting hydrogen concentrations from 10 ppm to 10\% in nitrogen. The response time was in the range of 10-30 s and a stable linear current output was observed. The thin Pt films were characterized by XRD, Infrared Spectroscopy, Optical Microscopy, Atomic Force Microscopy, Scanning Electron Microscopy and EDAX.}, subject = {Biosensor}, language = {en} } @inproceedings{MirmohseniRostamizadeh2006, author = {Mirmohseni, Abdolreza and Rostamizadeh, Kobra}, title = {Quartz crystal nanobalance in conjunction with principal component analysis for identification of volatile organic compounds}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1434}, year = {2006}, abstract = {Quartz crystal nanobalance (QCN) sensors are considered as powerful masssensitive sensors to determine materials in the sub-nanogram level. In this study, a single piezoelectric quartz crystal nanobalance modified with polystyrene was employed to detect benzene, toluene, ethylbenzene and xylene (BTEX compounds). The frequency shift of the QCN sensor was found to be linear against the BTEX compound concentrations in the range about 1-45 mg l-1. The correlation coefficients for benzene, toluene, ethylbenzene, and xylene were 0.991, 0.9977, 0.9946 and 0.9971, respectively. The principal component analysis was also utilized to process the frequency response data of the single piezoelectric crystal at different times, considering to the different adsorption-desorption dynamics of BTEX compounds. Using principal component analysis, it was found that over 90\% of the data variance could still be explained by use of two principal components (PC1 and PC2). Subsequently, the successful identification of benzene and toluene was possible through the principal component analysis of the transient responses of the polystyrene modified QCN sensor. The results showed that the polystyrene-modified QCN had favorable identification and quantification performances for the BTEX compounds.}, subject = {Biosensor}, language = {en} } @inproceedings{PlatenPoghossianSchoening2006, author = {Platen, J. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Pr{\"a}paration von selbstjustierenden Nanostrukturen mittels Schichtausdehnungstechnik}, series = {Sensoren und Mess-Systeme 2006 : Vortr{\"a}ge der 13. ITG/GMA-Fachtagung vom 13. bis 14.3.2006 in Freiburg/Breisgau}, booktitle = {Sensoren und Mess-Systeme 2006 : Vortr{\"a}ge der 13. ITG/GMA-Fachtagung vom 13. bis 14.3.2006 in Freiburg/Breisgau}, publisher = {VDE Verl.}, address = {Berlin}, isbn = {3-8007-2939-3}, pages = {277 -- 280}, year = {2006}, language = {de} }