@article{KotliarDrozdovaShamshinova2007, author = {Kotliar, Konstantin and Drozdova, G. A. and Shamshinova, A. M.}, title = {Ocular hemodinamics and contemporary methods of its assessment. Part III. Non-invasive methods of assessment of ocular blood flow. 1. Assessment of blood cell velocities and flow rates in intraocular vessels and vascular beds}, series = {Journal of Glaucoma}, volume = {Vol. 6}, journal = {Journal of Glaucoma}, number = {1}, issn = {2078-4104}, pages = {61 -- 68}, year = {2007}, language = {ru} } @article{KotliarDrozdovaShamshinova2006, author = {Kotliar, Konstantin and Drozdova, G. A. and Shamshinova, A. M.}, title = {Ocular hemodinamics and contemporary methods of its assessment. Part II. Invasive methods of assessment of ocular blood flow}, series = {National Journal Glaucoma}, volume = {Vol. 5}, journal = {National Journal Glaucoma}, number = {No. 4}, issn = {2078-4104}, pages = {37 -- 49}, year = {2006}, language = {ru} } @article{WarmerWagnerSchoeningetal.2015, author = {Warmer, Johannes and Wagner, Patrick and Sch{\"o}ning, Michael Josef and Kaul, Peter}, title = {Detection of triacetone triperoxide using temperature cycled metal-oxide semiconductor gas sensors}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431882}, pages = {1289 -- 1298}, year = {2015}, language = {en} } @article{DelleHuckBaeckeretal.2015, author = {Delle, Lotta E. and Huck, Christina and B{\"a}cker, Matthias and M{\"u}ller, Frank and Grandthyll, Samuel and Jacobs, Karin and Lilischkis, Rainer and Vu, Xuan T. and Sch{\"o}ning, Michael Josef and Wagner, Patrick and Thoelen, Roland and Weil, Maryam and Ingebrandt, Sven}, title = {Impedimetric immunosensor for the detection of histamine based on reduced graphene oxide}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431863}, pages = {1327 -- 1334}, year = {2015}, language = {en} } @article{YoshinobuMoritzFingeretal.2006, author = {Yoshinobu, Tatsuo and Moritz, Werner and Finger, Friedhelm and Sch{\"o}ning, Michael Josef}, title = {Application of thin-film amorphous silicon to chemical imaging}, series = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, journal = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, number = {Paper 0910-A-20-01}, editor = {Comini, Elisabetta}, isbn = {9781558998711}, pages = {1 -- 10}, year = {2006}, language = {en} } @article{TakenagaSchneiderErbayetal.2015, author = {Takenaga, Shoko and Schneider, Benno and Erbay, E. and Biselli, Manfred and Schnitzler, Thomas and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Fabrication of biocompatible lab-on-chip devices for biomedical applications by means of a 3D-printing process}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201532053}, pages = {1347 -- 1352}, year = {2015}, abstract = {A new microfluidic assembly method for semiconductor-based biosensors using 3D-printing technologies was proposed for a rapid and cost-efficient design of new sensor systems. The microfluidic unit is designed and printed by a 3D-printer in just a few hours and assembled on a light-addressable potentiometric sensor (LAPS) chip using a photo resin. The cell growth curves obtained from culturing cells within microfluidics-based LAPS systems were compared with cell growth curves in cell culture flasks to examine biocompatibility of the 3D-printed chips. Furthermore, an optimal cell culturing within microfluidics-based LAPS chips was achieved by adjusting the fetal calf serum concentrations of the cell culture medium, an important factor for the cell proliferation.}, language = {en} } @article{OberlaenderKirchnerKeusgenetal.2015, author = {Oberl{\"a}nder, Jan and Kirchner, Patrick and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Strategies in developing thin-film sensors for monitoring aseptic food processes : Theoretical considerations and investigations of passivation materials}, series = {Electrochimica Acta}, volume = {183}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-4686}, doi = {10.1016/j.electacta.2015.06.126}, pages = {130 -- 136}, year = {2015}, abstract = {The sterilization of packages in aseptic food processes is highly significant to maintain a consumer-safe product with extended shelf-life. Today, the sterilization of food packages is predominantly accomplished by gaseous hydrogen peroxide (H2O2) in combination with heat. In order to monitor this sterilization process, calorimetric gas sensors as differential set-up of two platinum temperature sensors representing a catalytically active (additionally deposition of MnO2) and a passive segment have been recently developed. The temperature rise of the exothermic decomposition serves as an indicator of the present H2O2 concentration. In the present work, a theoretical approach considering the sensor's thermochemistry and physical transport phenomena was formulated to evaluate the temperature rise based on the energy content of gaseous H2O2. In a further part of this work, three polymers have been analyzed with respect to their application as passivation materials. The examined polymers are photoresist SU-8, perfluoroalkoxy (PFA) and fluorinated ethylene propylene (FEP). Thermal analyses by means of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) have been conducted to determine the operation limits of the polymers. The overall chemical resistance and stability of the polymers against the harsh environmental conditions during the sterilization process have been examined by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR).}, language = {en} } @inproceedings{BreuerRaueMangetal.2015, author = {Breuer, Lars and Raue, Markus and Mang, Thomas and Sch{\"o}ning, Michael Josef and Thoelen, Ronald and Wagner, Torsten}, title = {Light-stimulated hydrogel actuators with incorporated graphene oxide for microfluidic applications}, series = {12. Dresdner Sensor-Symposium 2015}, booktitle = {12. Dresdner Sensor-Symposium 2015}, doi = {10.5162/12dss2015/P5.8}, pages = {206 -- 209}, year = {2015}, language = {en} } @inproceedings{OberlaenderJildehKirchneretal.2015, author = {Oberl{\"a}nder, Jan and Jildeh, Zaid B. and Kirchner, Patrick and Wendeler, Luisa and Bromm, Alexander and Iken, Heiko and Wagner, Patrick and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Experimental and numerical evaluation of interdigitated electrode array for monitoring gaseous sterilization processes}, series = {12. Dresdner Sensor-Symposium 2015}, booktitle = {12. Dresdner Sensor-Symposium 2015}, doi = {10.5162/12dss2015/P3.11}, pages = {163 -- 168}, year = {2015}, language = {en} } @article{MiyamatoSakakitaWagneretal.2015, author = {Miyamato, Ko-ichiro and Sakakita, Sakura and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Application of chemical imaging sensor to in-situ pH imaging in the vicinity of a corroding metal surface}, series = {Electrochimica Acta}, volume = {183}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-4686}, doi = {10.1016/j.electacta.2015.07.184}, pages = {137 -- 142}, year = {2015}, abstract = {The chemical imaging sensor was applied to in-situ pH imaging of the solution in the vicinity of a corroding surface of stainless steel under potentiostatic polarization. A test piece of polished stainless steel was placed on the sensing surface leaving a narrow gap filled with artificial seawater and the stainless steel was corroded under polarization. The pH images obtained during polarization showed correspondence between the region of lower pH and the site of corrosion. It was also found that the pH value in the gap became as low as 2 by polarization, which triggered corrosion.}, language = {en} } @article{HamadBilattoAdlyetal.2016, author = {Hamad, E. M. and Bilatto, S. E. R. and Adly, N. Y. and Correa, D. S. and Wolfrum, B. and Sch{\"o}ning, Michael Josef and Offenh{\"a}usser, A. and Yakushenko, A.}, title = {Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices}, series = {Lab on a Chip}, volume = {16}, journal = {Lab on a Chip}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1473-0189}, doi = {10.1039/C5LC01195G}, pages = {70 -- 74}, year = {2016}, abstract = {Bonding of polymer-based microfluidics to polymer substrates still poses a challenge for Lab-On-a-Chip applications. Especially, when sensing elements are incorporated, patterned deposition of adhesives with curing at ambient conditions is required. Here, we demonstrate a fabrication method for fully printed microfluidic systems with sensing elements using inkjet and stereolithographic 3D-printing.}, language = {en} } @article{HauserKotliarTholenetal.2015, author = {Hauser, C. and Kotliar, Konstantin and Tholen, S. and Hasenau, A. and Suttmann, Y. and Renders, L. and Heemann, U. and Baumann, M. and Schmaderer, C.}, title = {Dynamische retinale Gef{\"a}ßreaktion bei H{\"a}modialysepatienten}, series = {Nieren- und Hochdruckkrankheiten}, volume = {44}, journal = {Nieren- und Hochdruckkrankheiten}, number = {11}, publisher = {Dustri-Verlag}, address = {Oberhaching}, issn = {0300-5224}, doi = {10.5414/NHX01743a}, pages = {480 -- 480}, year = {2015}, language = {de} } @article{FischerSelverGezeretal.2015, author = {Fischer, Felix and Selver, M. Alper and Gezer, Sinem and Dicle, Oguz and Hillen, Walter}, title = {Systematic Parameterization, Storage, and Representation of Volumetric DICOM Data}, series = {Journal of Medical and Biological Engineering}, volume = {35}, journal = {Journal of Medical and Biological Engineering}, number = {6}, publisher = {Springer}, address = {Berlin}, issn = {2199-4757}, doi = {10.1007/s40846-015-0097-5}, pages = {709 -- 723}, year = {2015}, language = {en} } @article{MiyamotoYuIsodaetal.2016, author = {Miyamoto, Ko-ichiro and Yu, Bing and Isoda, Hiroko and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Visualization of the recovery process of defects in a cultured cell layer by chemical imaging sensor}, series = {Sensors and Actuators B: Chemical}, volume = {236}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.04.018}, pages = {965 -- 969}, year = {2016}, abstract = {The chemical imaging sensor is a field-effect sensor which is able to visualize both the distribution of ions (in LAPS mode) and the distribution of impedance (in SPIM mode) in the sample. In this study, a novel cell assay is proposed, in which the chemical imaging sensor operated in SPIM mode is applied to monitor the recovery of defects in a cell layer brought into proximity of the sensing surface. A reduced impedance at a defect formed artificially in a cell layer was successfully visualized in a photocurrent image. The cell layer was cultured over two weeks, during which the temporal change of the photocurrent distribution corresponding to the recovery of the defect was observed.}, language = {de} } @article{DantismTakenagaWagneretal.2016, author = {Dantism, Shahriar and Takenaga, Shoko and Wagner, Patrick and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Determination of the extracellular acidification of Escherichia coli K12 with a multi-​chamber-​based LAPS system}, series = {Physica status solidi (a)}, volume = {213}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300}, doi = {10.1002/pssa.201533043}, pages = {1479 -- 1485}, year = {2016}, abstract = {On-line monitoring of the metabolic activity of microorganisms involved in intermediate stages of biogas production plays an important role to avoid undesirable "down times" during the biogas production. In order to control this process, an on-chip differential measuring system based on the light-addressable potentiometric sensor (LAPS) principle combined with a 3D-printed multi-chamber structure has been realized. As a test microorganism, Escherichia coli K12 (E. coli K12) were used for cell-based measurements. Multi-chamber structures were developed to determine the metabolic activity of E. coli K12 in suspension for a different number of cells, responding to the addition of a constant or variable amount of glucose concentrations, enabling differential and simultaneous measurements.}, language = {en} } @inproceedings{SchreiberKraftZuendorf2016, author = {Schreiber, Marc and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {Cost-efficient quality assurance of natural language processing tools through continuous monitoring with continuous integration}, series = {3rd International Workshop on Software Engineering Research and Industrial Practice}, booktitle = {3rd International Workshop on Software Engineering Research and Industrial Practice}, doi = {10.1145/2897022.2897029}, pages = {46 -- 52}, year = {2016}, language = {en} } @article{BreuerRaueStrobeletal.2016, author = {Breuer, Lars and Raue, Markus and Strobel, M. and Mang, Thomas and Sch{\"o}ning, Michael Josef and Thoelen, R. and Wagner, Torsten}, title = {Hydrogels with incorporated graphene oxide as light-addressable actuator materials for cell culture environments in lab-on-chip systems}, series = {Physica status solidi (a)}, volume = {213}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300}, doi = {10.1002/pssa.201533056}, pages = {1520 -- 1525}, year = {2016}, abstract = {Abstractauthoren Graphene oxide (GO) nanoparticles were incorporated in temperature-sensitive Poly(N-isopropylacrylamide) (PNIPAAm) hydrogels. The nanoparticles increase the light absorption and convert light energy into heat efficiently. Thus, the hydrogels with GO can be stimulated spatially resolved by illumination as it was demonstrated by IR thermography. The temporal progression of the temperature maximum was detected for different concentrations of GO within the polymer network. Furthermore, the compatibility of PNIPAAm hydrogels with GO and cell cultures was investigated. For this purpose, culture medium was incubated with hydrogels containing GO and the viability and morphology of chinese hamster ovary (CHO) cells was examined after several days of culturing in presence of this medium.}, language = {en} } @article{PookhalilAmoabedinyTabeshetal.2016, author = {Pookhalil, Ali and Amoabediny, Ghassem and Tabesh, Hadi and Behbahani, Mehdi and Mottaghy, Khosrow}, title = {A new approach for semiempirical modeling of mechanical blood trauma}, series = {The international journal of artificial organs}, volume = {39}, journal = {The international journal of artificial organs}, number = {4}, publisher = {Sage}, address = {London}, issn = {1724-6040}, doi = {10.5301/ijao.5000474}, pages = {171 -- 177}, year = {2016}, abstract = {Purpose Two semi-empirical models were recently published, both making use of existing literature data, but each taking into account different physical phenomena that trigger hemolysis. In the first model, hemoglobin (Hb) release is described as a permeation procedure across the membrane, assuming a shear stress-dependent process (sublethal model). The second model only accounts for hemoglobin release that is caused by cell membrane breakdown, which occurs when red blood cells (RBC) undergo mechanically induced shearing for a period longer than the threshold time (nonuniform threshold model). In this paper, we introduce a model that considers the hemolysis generated by both these possible phenomena. Methods Since hemolysis can possibly be caused by permeation of hemoglobin through the RBC functional membrane as well as by release of hemoglobin from RBC membrane breakdown, our proposed model combines both these models. An experimental setup consisting of a Couette device was utilized for validation of our proposed model. Results A comparison is presented between the damage index (DI) predicted by the proposed model vs. the sublethal model vs. the nonthreshold model and experimental datasets. This comparison covers a wide range of shear stress for both human and porcine blood. An appropriate agreement between the measured DI and the DI predicted by the present model was obtained. Conclusions The semiempirical hemolysis model introduced in this paper aims for significantly enhanced conformity with experimental data. Two phenomenological outcomes become possible with the proposed approach: an estimation of the average time after which cell membrane breakdown occurs under the applied conditions, and a prediction of the ratio between the phenomena involved in hemolysis.}, language = {en} } @book{IomdinaBauerKotliar2015, author = {Iomdina, E. N. and Bauer, S. M. and Kotliar, Konstantin}, title = {БИОМЕХАНИКА ГЛАЗА: ТЕОРЕТИЧЕСКИЕ АСПЕКТЫ И КЛИНИЧЕСКИЕ ПРИЛОЖЕНИЯ}, publisher = {Real Time}, address = {Moscow}, isbn = {978-5-903025-57-2}, pages = {208 Seiten}, year = {2015}, language = {ru} } @article{BertzSchoeningMolinnusetal.2024, author = {Bertz, Morten and Sch{\"o}ning, Michael Josef and Molinnus, Denise and Homma, Takayuki}, title = {Influence of temperature, light, and H₂O₂ concentration on microbial spore inactivation: in-situ Raman spectroscopy combined with optical trapping}, series = {Physica status solidi (a) applications and materials science}, journal = {Physica status solidi (a) applications and materials science}, number = {Early View}, publisher = {Wiley-VCH}, address = {Berlin}, issn = {1862-6319 (Online)}, doi = {10.1002/pssa.202300866}, pages = {8 Seiten}, year = {2024}, abstract = {To gain insight on chemical sterilization processes, the influence of temperature (up to 70 °C), intense green light, and hydrogen peroxide (H₂O₂) concentration (up to 30\% in aqueous solution) on microbial spore inactivation is evaluated by in-situ Raman spectroscopy with an optical trap. Bacillus atrophaeus is utilized as a model organism. Individual spores are isolated and their chemical makeup is monitored under dynamically changing conditions (temperature, light, and H₂O₂ concentration) to mimic industrially relevant process parameters for sterilization in the field of aseptic food processing. While isolated spores in water are highly stable, even at elevated temperatures of 70 °C, exposure to H₂O₂ leads to a loss of spore integrity characterized by the release of the key spore biomarker dipicolinic acid (DPA) in a concentration-dependent manner, which indicates damage to the inner membrane of the spore. Intensive light or heat, both of which accelerate the decomposition of H₂O₂ into reactive oxygen species (ROS), drastically shorten the spore lifetime, suggesting the formation of ROS as a rate-limiting step during sterilization. It is concluded that Raman spectroscopy can deliver mechanistic insight into the mode of action of H₂O₂-based sterilization and reveal the individual contributions of different sterilization methods acting in tandem.}, language = {en} }