@incollection{YoshinobuKrauseMiyamotoetal.2018, author = {Yoshinobu, Tatsuo and Krause, Steffi and Miyamoto, Ko-ichiro and Werner, Frederik and Poghossian, Arshak and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {(Bio-)chemical Sensing and Imaging by LAPS and SPIM}, series = {Label-free biosensing: advanced materials, devices and applications}, booktitle = {Label-free biosensing: advanced materials, devices and applications}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-75219-8}, pages = {103 -- 132}, year = {2018}, abstract = {The light-addressable potentiometric sensor (LAPS) and scanning photo-induced impedance microscopy (SPIM) are two closely related methods to visualise the distributions of chemical species and impedance, respectively, at the interface between the sensing surface and the sample solution. They both have the same field-effect structure based on a semiconductor, which allows spatially resolved and label-free measurement of chemical species and impedance in the form of a photocurrent signal generated by a scanning light beam. In this article, the principles and various operation modes of LAPS and SPIM, functionalisation of the sensing surface for measuring various species, LAPS-based chemical imaging and high-resolution sensors based on silicon-on-sapphire substrates are described and discussed, focusing on their technical details and prospective applications.}, language = {en} } @incollection{Weber1998, author = {Weber, Hans-Joachim}, title = {Applied physics of compressible and incompressible fluids}, series = {Critical care nephrology / [Hrsg.:] Claudio Ronco and Rinaldo Bellomo}, booktitle = {Critical care nephrology / [Hrsg.:] Claudio Ronco and Rinaldo Bellomo}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-94-010-6306-7}, pages = {63 -- 84}, year = {1998}, language = {en} } @incollection{Bialonski2016, author = {Bialonski, Stephan}, title = {Are interaction clusters in epileptic networks predictive of seizures?}, series = {Epilepsy: The Intersection of Neurosciences, Biology, Mathematics, Engineering, and Physics}, booktitle = {Epilepsy: The Intersection of Neurosciences, Biology, Mathematics, Engineering, and Physics}, publisher = {CRC Press}, isbn = {978-143983886-0}, pages = {349 -- 355}, year = {2016}, language = {en} } @incollection{StaatHeitzer2003, author = {Staat, Manfred and Heitzer, M.}, title = {Basis reduction technique for limit and shakedown problems}, series = {Numerical Methods for Limit and Shakedown Analysis. Deterministic and Probabilistic Approach. NIC Series Vol. 15 / Ed. by Staat, M.; Heitzer, M.}, booktitle = {Numerical Methods for Limit and Shakedown Analysis. Deterministic and Probabilistic Approach. NIC Series Vol. 15 / Ed. by Staat, M.; Heitzer, M.}, publisher = {John von Neumann Institute for Computing (NIC)}, address = {J{\"u}lich}, isbn = {3-00-010001-6}, url = {http://nbn-resolving.de/urn:nbn:de:0001-2018112115}, pages = {1 -- 55}, year = {2003}, language = {en} } @incollection{MansurovJandosovChenchiketal.2020, author = {Mansurov, Zulkhair A. and Jandosov, Jakpar and Chenchik, D. and Azat, Seitkhan and Savitskaya, Irina S. and Kistaubaeva, Aida and Akimbekov, Nuraly and Digel, Ilya and Zhubanova, Azhar Achmet}, title = {Biocomposite Materials Based on Carbonized Rice Husk in Biomedicine and Environmental Applications}, series = {Carbon Nanomaterials in Biomedicine and the Environment}, booktitle = {Carbon Nanomaterials in Biomedicine and the Environment}, publisher = {Jenny Stanford Publishing Pte. Ltd.}, address = {Singapore}, isbn = {978-981-4800-27-3}, doi = {10.1201/9780429428647-2}, pages = {3 -- 32}, year = {2020}, abstract = {This chapter describes the prospects for biomedical and environmental engineering applications of heterogeneous materials based on nanostructured carbonized rice husk. Efforts in engineering enzymology are focused on the following directions: development and optimization of immobilization methods leading to novel biotechnological and biomedical applications; construction of biocomposite materials based on individual enzymes, multi-enzyme complexes and whole cells, targeted on realization of specific industrial processes. Molecular biological and biochemical studies on cell adhesion focus predominantly on identification, isolation and structural analysis of attachment-responsible biological molecules and their genetic determinants. The chapter provides a short overview of applications of the biocomposite materials based of nanostructured carbonized adsorbents. It emphasizes that further studies and better understanding of the interactions between CNS and microbial cells are necessary. The future use of living cells as biocatalysts, especially in the environmental field, needs more systematic investigations of the microbial adsorption phenomenon.}, language = {en} } @incollection{OsterhageBialonskiStanieketal.2008, author = {Osterhage, Hannes and Bialonski, Stephan and Staniek, Matth{\"a}us and Schindler, Kaspar and Wagner, Tobias and Elger, Christian E. and Lehnertz, Klaus}, title = {Bivariate and multivariate time series analysis techniques and their potential impact for seizure prediction}, series = {Seizure Prediction in Epilepsy: From Basic Mechanisms to Clinical Applications}, booktitle = {Seizure Prediction in Epilepsy: From Basic Mechanisms to Clinical Applications}, publisher = {Wiley-VCH}, address = {Weinheim}, isbn = {978-3-527-62519-2}, doi = {10.1002/9783527625192.ch15}, pages = {189 -- 208}, year = {2008}, language = {en} } @incollection{DigelSadykovTemizArtmannetal.2015, author = {Digel, Ilya and Sadykov, R. and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard}, title = {Changes in intestinal microflora in rats induced by oral exposure to low lead (II) concentrations}, series = {Lead Exposure and Poisoning: Clinical Symptoms, Medical Management and Preventive Strategies}, booktitle = {Lead Exposure and Poisoning: Clinical Symptoms, Medical Management and Preventive Strategies}, publisher = {Nova Science Publ.}, isbn = {9781634826990}, pages = {75 -- 99}, year = {2015}, language = {en} } @incollection{BhattaraiFrotscherStaat2018, author = {Bhattarai, Aroj and Frotscher, Ralf and Staat, Manfred}, title = {Computational Analysis of Pelvic Floor Dysfunction}, series = {Women's Health and Biomechanics}, booktitle = {Women's Health and Biomechanics}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-71574-2}, doi = {10.1007/978-3-319-71574-2_17}, pages = {217 -- 230}, year = {2018}, abstract = {Pelvic floor dysfunction (PFD) is characterized by the failure of the levator ani (LA) muscle to maintain the pelvic hiatus, resulting in the descent of the pelvic organs below the pubococcygeal line. This chapter adopts the modified Humphrey material model to consider the effect of the muscle fiber on passive stretching of the LA muscle. The deformation of the LA muscle subjected to intra-abdominal pressure during Valsalva maneuver is compared with the magnetic resonance imaging (MRI) examination of a nulliparous female. Numerical result shows that the fiber-based Humphrey model simulates the muscle behavior better than isotropic constitutive models. Greater posterior movement of the LA muscle widens the levator hiatus due to lack of support from the anococcygeal ligament and the perineal structure as a consequence of birth-related injury and aging. Old and multiparous females with uncontrolled urogenital and rectal hiatus tend to develop PFDs such as prolapse and incontinence.}, language = {en} } @incollection{SchoeningPoghossianGluecketal.2014, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak and Gl{\"u}ck, Olaf and Thust, Marion}, title = {Electrochemical composition measurement}, series = {Measurement, instrumentation, and sensors handbook: electromagnetic, optical, radiation, chemical, and biomedical measuremen}, booktitle = {Measurement, instrumentation, and sensors handbook: electromagnetic, optical, radiation, chemical, and biomedical measuremen}, edition = {2nd ed.}, publisher = {CRC Pr.}, address = {Boca Raton, Fa.}, isbn = {978-1-4398-4891-3}, pages = {55-1 -- 55-54}, year = {2014}, language = {en} } @incollection{SchoeningPoghossianGluecketal.2014, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak and Gl{\"u}ck, Olaf and Thust, Marion}, title = {Electrochemical methods for the determination of chemical variables in aqueous media}, series = {Measurement, instrumentation, and sensors handbook / ed. by John G. Webster [u.a.] Vol. 2 : Electromagnetic, optical, radiation, chemical, and biomedical measurement}, booktitle = {Measurement, instrumentation, and sensors handbook / ed. by John G. Webster [u.a.] Vol. 2 : Electromagnetic, optical, radiation, chemical, and biomedical measurement}, publisher = {CRC Pr.}, address = {Boca Raton, Fla.}, isbn = {978-1-4398-4891-3}, pages = {55-1 -- 55-54}, year = {2014}, language = {en} } @incollection{LehnertzBialonskiHorstmannetal.2010, author = {Lehnertz, Klaus and Bialonski, Stephan and Horstmann, Marie-Therese and Krug, Dieter and Rothkegel, Alexander and Staniek, Matth{\"a}us and Wagner, Tobias}, title = {Epilepsy}, series = {Reviews of Nonlinear Dynamics and Complexity, Volume 2}, booktitle = {Reviews of Nonlinear Dynamics and Complexity, Volume 2}, publisher = {Wiley-VCH}, isbn = {9783527628001}, doi = {10.1002/9783527628001.ch5}, pages = {159 -- 200}, year = {2010}, language = {en} } @incollection{BialonskiLehnertz2013, author = {Bialonski, Stephan and Lehnertz, Klaus}, title = {From time series to complex networks: an overview}, series = {Recent Advances in Predicting and Preventing Epileptic Seizures: Proceedings of the 5th International Workshop on Seizure Prediction}, booktitle = {Recent Advances in Predicting and Preventing Epileptic Seizures: Proceedings of the 5th International Workshop on Seizure Prediction}, isbn = {978-981-4525-36-7}, doi = {10.1142/9789814525350_0010}, pages = {132 -- 147}, year = {2013}, abstract = {The network approach towards the analysis of the dynamics of complex systems has been successfully applied in a multitude of studies in the neurosciences and has yielded fascinating insights. With this approach, a complex system is considered to be composed of different constituents which interact with each other. Interaction structures can be compactly represented in interaction networks. In this contribution, we present a brief overview about how interaction networks are derived from multivariate time series, about basic network characteristics, and about challenges associated with this analysis approach.}, language = {en} } @incollection{AkimbekovZhanadilovnaUalievaetal.2020, author = {Akimbekov, Nuraly and Zhanadilovna, Abdieva G. and Ualieva, Perizat S. and Abaihanovna, Zhusipova D. and Digel, Ilya and Savitskaya, Irina S. and Zhubanova, Azhar Achmet}, title = {Functionalization of Carbon Based Wound Dressings with Antimicrobial Phytoextracts for Bioactive Treatment of Septic Wounds}, series = {Carbon Nanomaterials in Biomedicine and the Environment}, booktitle = {Carbon Nanomaterials in Biomedicine and the Environment}, publisher = {Jenny Stanford Publishing}, address = {Singapore}, isbn = {978-981-4800-27-3}, doi = {10.1201/9780429428647-11}, pages = {211 -- 228}, year = {2020}, abstract = {The treatment of septic wounds with curative dressings based on biocomposites containing sage and marigold phytoextracts was effective in in vitro and in vivo experiments. These dressings caused the purification of the wound surface from purulent-necrotic masses three days earlier than in the other experimental groups. The consequence of an increase in incidents of severe course of the wound and the observed tendency to increase the number of adverse effects is the development of long-term recurrent wound processes. To treat purulent wounds, the following tactics were used: The purulent wounds of animals were covered with the examined wound dressing, and then the next day samples were taken, the procedure was performed once in 2 days. To obtain the active nanostructured sorbents such as carbonized rice husks, they are functionalized with biologically active components possessing antimicrobial, anti-inflammatory, antitoxic, immunomodulating, antiallergic and other types of properties.}, language = {en} } @incollection{Dikta1998, author = {Dikta, Gerhard}, title = {Fundamentals of applied probability and basic statistics}, series = {Critical care nephrology / [Hrsg.:] Claudio Ronco and Rinaldo Bellomo}, booktitle = {Critical care nephrology / [Hrsg.:] Claudio Ronco and Rinaldo Bellomo}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-94-010-6306-7}, pages = {51 -- 61}, year = {1998}, language = {en} } @incollection{DuongSeifarthTemizArtmannetal.2018, author = {Duong, Minh Tuan and Seifarth, Volker and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard and Staat, Manfred}, title = {Growth Modelling Promoting Mechanical Stimulation of Smooth Muscle Cells of Porcine Tubular Organs in a Fibrin-PVDF Scaffold}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_9}, pages = {209 -- 232}, year = {2018}, abstract = {Reconstructive surgery and tissue replacements like ureters or bladders reconstruction have been recently studied, taking into account growth and remodelling of cells since living cells are capable of growing, adapting, remodelling or degrading and restoring in order to deform and respond to stimuli. Hence, shapes of ureters or bladders and their microstructure change during growth and these changes strongly depend on external stimuli such as training. We present the mechanical stimulation of smooth muscle cells in a tubular fibrin-PVDFA scaffold and the modelling of the growth of tissue by stimuli. To this end, mechanotransduction was performed with a kyphoplasty balloon catheter that was guided through the lumen of the tubular structure. The bursting pressure was examined to compare the stability of the incubated tissue constructs. The results showed the significant changes on tissues with training by increasing the burst pressure as a characteristic mechanical property and the smooth muscle cells were more oriented with uniformly higher density. Besides, the computational growth models also exhibited the accurate tendencies of growth of the cells under different external stimuli. Such models may lead to design standards for the better layered tissue structure in reconstructing of tubular organs characterized as composite materials such as intestines, ureters and arteries.}, language = {en} } @incollection{DigelMansurovBiisenbaevetal.2012, author = {Digel, Ilya and Mansurov, Zulkhair and Biisenbaev, Makhmut and Savitskaya, Irina and Kistaubaeva, Aida and Akimbekov, Nuraly and Zhubanova, Azhar}, title = {Heterogeneous Composites on the Basis of Microbial Cells and Nanostructured Carbonized Sorbents}, series = {Composites and Their Applications}, booktitle = {Composites and Their Applications}, editor = {Hu, Ning}, publisher = {Intech}, address = {London}, isbn = {978-953-51-0706-4}, doi = {10.5772/47796}, pages = {249 -- 272}, year = {2012}, abstract = {The fact that microorganisms prefer to grow on liquid/solid phase surfaces rather than in the surrounding aqueous phase was noticed long time ago [1]. Virtually any surface - animal, mineral, or vegetable - is a subject for microbial colonization and subsequent biofilm formation. It would be adequate to name just a few notorious examples on microbial colonization of contact lenses, ship hulls, petroleum pipelines, rocks in streams and all kinds of biomedical implants. The propensity of microorganisms to become surface-bound is so profound and ubiquitous that it vindicates the advantages for attached forms over their free-ranging counterparts [2]. Indeed, from ecological and evolutionary standpoints, for many microorganisms the surface-bound state means dwelling in nutritionally favorable, non-hostile environments [3]. Therefore, in most of natural and artificial ecosystems surface-associated microorganisms vastly outnumber organisms in suspension and often organize into complex communities with features that differ dramatically from those of free cells [4].}, language = {en} } @incollection{SchoeningWagnerPoghossianetal.2018, author = {Sch{\"o}ning, Michael Josef and Wagner, Torsten and Poghossian, Arshak and Miyamoto, K.I. and Werner, C.F. and Krause, S. and Yoshinobu, T.}, title = {Light-addressable potentiometric sensors for (bio-)chemical sensing and imaging}, series = {Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Vol. 7}, booktitle = {Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Vol. 7}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {9780128097397}, pages = {295 -- 308}, year = {2018}, language = {en} } @incollection{EngelmannShashaSlabu2021, author = {Engelmann, Ulrich M. and Shasha, Carolyn and Slabu, Ioana}, title = {Magnetic nanoparticle relaxation in biomedical application: focus on simulating nanoparticle heating}, series = {Magnetic nanoparticles in human health and medicine}, booktitle = {Magnetic nanoparticles in human health and medicine}, publisher = {Wiley-Blackwell}, address = {Hoboken, New Jeersey}, isbn = {978-1-119-75467-1}, pages = {327 -- 354}, year = {2021}, language = {en} } @incollection{BhattaraiStaat2018, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Mechanics of soft tissue reactions to textile mesh implants}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_11}, pages = {251 -- 275}, year = {2018}, abstract = {For pelvic floor disorders that cannot be treated with non-surgical procedures, minimally invasive surgery has become a more frequent and safer repair procedure. More than 20 million prosthetic meshes are implanted each year worldwide. The simple selection of a single synthetic mesh construction for any level and type of pelvic floor dysfunctions without adopting the design to specific requirements increase the risks for mesh related complications. Adverse events are closely related to chronic foreign body reaction, with enhanced formation of scar tissue around the surgical meshes, manifested as pain, mesh erosion in adjacent structures (with organ tissue cut), mesh shrinkage, mesh rejection and eventually recurrence. Such events, especially scar formation depend on effective porosity of the mesh, which decreases discontinuously at a critical stretch when pore areas decrease making the surgical reconstruction ineffective that further augments the re-operation costs. The extent of fibrotic reaction is increased with higher amount of foreign body material, larger surface, small pore size or with inadequate textile elasticity. Standardized studies of different meshes are essential to evaluate influencing factors for the failure and success of the reconstruction. Measurements of elasticity and tensile strength have to consider the mesh anisotropy as result of the textile structure. An appropriate mesh then should show some integration with limited scar reaction and preserved pores that are filled with local fat tissue. This chapter reviews various tissue reactions to different monofilament mesh implants that are used for incontinence and hernia repairs and study their mechanical behavior. This helps to predict the functional and biological outcomes after tissue reinforcement with meshes and permits further optimization of the meshes for the specific indications to improve the success of the surgical treatment.}, language = {en} } @incollection{DigelAkimbekovKistaubayevaetal.2018, author = {Digel, Ilya and Akimbekov, Nuraly Sh. and Kistaubayeva, Aida and Zhubanova, Azhar A.}, title = {Microbial Sampling from Dry Surfaces: Current Challenges and Solutions}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_19}, pages = {421 -- 456}, year = {2018}, abstract = {Sampling of dry surfaces for microorganisms is a main component of microbiological safety and is of critical importance in many fields including epidemiology, astrobiology as well as numerous branches of medical and food manufacturing. Aspects of biofilm formation, analysis and removal in aqueous solutions have been thoroughly discussed in literature. In contrast, microbial communities on air-exposed (dry) surfaces have received significantly less attention. Diverse surface sampling methods have been developed in order to address various surfaces and microbial groups, but they notoriously show poor repeatability, low recovery rates and suffer from lack of mutual consistency. Quantitative sampling for viable microorganisms represents a particular challenge, especially on porous and irregular surfaces. Therefore, it is essential to examine in depth the factors involved in microorganisms' recovery efficiency and accuracy depending on the sampling technique used. Microbial colonization, retention and community composition on different dry surfaces are very complex and rely on numerous physicochemical and biological factors. This study is devoted to analyze and review the (a) physical phenomena and intermolecular forces relevant for microbiological surface sampling; (b) challenges and problems faced by existing sampling methods for viable microorganisms and (c) current directions of engineering and research aimed at improvement of quality and efficiency of microbiological surface sampling.}, language = {en} }