@article{KotliarLanzlMaieretal.2008, author = {Kotliar, Konstantin and Lanzl, Ines M. and Maier, Mathias and Feucht, Nikolaus}, title = {Intraocular pressure effects of pegaptanib (macugen) injections in patients with and without glaucoma / Lanzl, Ines M. ; Maier, Mathias ; Feucht, Nikolaus ; Lohmann, Chris P. ; Kotliar, Konstantin E.}, series = {American Journal of Ophthalmology . 145 (2008), H. 1}, journal = {American Journal of Ophthalmology . 145 (2008), H. 1}, publisher = {-}, isbn = {1879-1891}, pages = {185 -- 185}, year = {2008}, language = {en} } @article{KotliarLanzlHanssenetal.2012, author = {Kotliar, Konstantin and Lanzl, Ines M. and Hanssen, Henner and Eberhardt, Karla and Vilser, Walthard and Halle, Martin and Heemann, Uwe and Schmidt-Trucks{\"a}ss, Arno and Baumann, Marcus}, title = {Does increased blood pressure rather than aging influence retinal pulse wave velocity?}, series = {Investigative Ophthalmology \& Visual Science, IOVS}, volume = {53}, journal = {Investigative Ophthalmology \& Visual Science, IOVS}, number = {4}, publisher = {ARVO}, address = {Rockville, Md.}, issn = {0146-0404}, doi = {10.1167/iovs.11-8815}, pages = {2119 -- 2126}, year = {2012}, abstract = {Purpose: It was demonstrated previously that retinal pulse wave velocity (rPWV) as a measure of retinal arterial stiffness is increased in aged anamnestically healthy volunteers compared with young healthy subjects. Using novel methodology of rPWV assessment this finding was confirmed and investigated whether it might relate to the increased blood pressure usually accompanying the aging process, rather than to the aging itself. Methods: A total of 12 young 25.5-year-old (24.0-28.8) [median(1st quartile-3rd quartile)] and 12 senior 68.5-year-old (63.8-71.8) anamnestically healthy volunteers; and 12 senior 63.0-year-old (60.8-65.0) validated healthy volunteers and 12 young 33.0-year-old (29.5-35.0) hypertensive patients were examined. Time-dependent alterations of vessel diameter were assessed by the Dynamic Vessel Analyzer in a retinal artery of each subject. The data were filtered and processed using mathematical signal analysis and rPWVs were calculated. Results: rPWV amounted to 1200 (990-1470) RU (relative units)/s in the hypertensive group and to 1040 (700-2230) RU/s in anamnestically healthy seniors. These differed significantly from rPWVs in young healthy group (410 [280-500] RU/s) and in validated healthy seniors (400 [320-510] RU/s). rPWV associated with age and mean arterial pressure (MAP) in the pooled cohort excluded validated healthy seniors. In a regression model these associations remain when alternately adjusted for MAP and age. When including validated healthy seniors in the pooled cohort only association with MAP remains. Conclusions: Both aging (with not excluded cardiovascular risk factors) and mild hypertension are associated with elevated rPWV. rPWV increases to a similar extent both in young mildly hypertensive subjects and in aged anamnestically healthy persons. Healthy aging is not associated with increased rPWV.}, language = {en} } @article{KotliarLanzl2011, author = {Kotliar, Konstantin and Lanzl, Ines M.}, title = {Can vascular function be assessed by the interpretation of retinal vascular diameter changes?}, series = {Investigative Ophthalmology \& Visual Science, IOVS. 52 (2011), H. 1}, journal = {Investigative Ophthalmology \& Visual Science, IOVS. 52 (2011), H. 1}, publisher = {ARVO}, address = {Rockville, Md.}, isbn = {0146-0404}, pages = {635 -- 636}, year = {2011}, language = {en} } @article{KotliarKozlovaLanzl2009, author = {Kotliar, Konstantin and Kozlova, Tatiana V. and Lanzl, Ines M.}, title = {Postoperative aqueous outflow in the human eye after glaucoma filtration surgery: biofluidmechanical considerations}, series = {Biomedizinische Technik = Biomedical Engineering}, volume = {54}, journal = {Biomedizinische Technik = Biomedical Engineering}, number = {1}, publisher = {-}, isbn = {1862-278X}, pages = {14 -- 22}, year = {2009}, language = {en} } @article{KotliarKoshitzSvetlowaetal.2006, author = {Kotliar, Konstantin and Koshitz, I. N. and Svetlowa, O. V. and Zaseeva, M. V.}, title = {Physiological principles of hypotensive therapy of open-angle glaucoma during presbyopic period. Part II Promising algorithms of practical sparing applications / Koshitz, I. N. ; Svetlova, O. V. ; Zaseeva, M. V. ; Shuhaev, S. V. ; Makarov, F. N. ; Kotliar}, series = {Glaukoma (2006)}, journal = {Glaukoma (2006)}, publisher = {-}, pages = {51 -- 70}, year = {2006}, language = {en} } @article{KotliarKoshitzSvetlowaetal.2005, author = {Kotliar, Konstantin and Koshitz, I. N. and Svetlowa, O. V. and Makarov, F. N.}, title = {Biomechanical analysis of traditional and contemporary conceptions on pathogenesis of the primary open angle glaucoma / Koshitz, I. N. ; Svetlova, O. V. ; Kotliar, K. E. ; Makarov, F. N. ; Smolnikov, B. A.}, series = {Glaukoma (2005)}, journal = {Glaukoma (2005)}, publisher = {-}, pages = {41 -- 63}, year = {2005}, language = {en} } @article{KotliarKoshitzSvetlovaetal.2006, author = {Kotliar, Konstantin and Koshitz, I. N. and Svetlova, O. V. and Zaseeva, M. V.}, title = {Physiological principles of hypotensive therapy of open-angle glaucoma during presbyopic period. Part I Initial theoretical presuppositions, hypotheses and facts / Koshitz, I. N. ; Svetlova, O. V. ; Zaseeva, M. V. ; Shuhaev, S. V. ; Makarov, F. N. ; Kotli}, series = {Glaukoma (2006)}, journal = {Glaukoma (2006)}, publisher = {-}, pages = {35 -- 53}, year = {2006}, language = {en} } @article{KotliarKharoubiSchmidtTrucksaessetal.2009, author = {Kotliar, Konstantin and Kharoubi, A. and Schmidt-Trucks{\"a}ß, A. and Halle, M. and Lanzl, I.}, title = {Does internal longitudinal microstructure of retinal veins change with age in medically healthy persons?}, series = {Acta Ophthalmologica}, volume = {Vol. 87}, journal = {Acta Ophthalmologica}, number = {Suppl. S244}, publisher = {Wiley}, address = {Weinheim}, issn = {1600-0420 (E-Journal); 1755-3768 (E-Journal); 0001-639X (Print); 1395-3907 (Print); 1755-375X (Print)}, pages = {0}, year = {2009}, language = {en} } @article{KotliarHauserOrtneretal.2017, author = {Kotliar, Konstantin and Hauser, Christine and Ortner, Marion and Muggenthaler, Claudia and Diehl-Schmid, Janine and Angermann, Susanne and Hapfelmeier, Alexander and Schmaderer, Christoph and Grimmer, Timo}, title = {Altered neurovascular coupling as measured by optical imaging: a biomarker for Alzheimer's disease}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {1}, publisher = {Springer Nature}, address = {Cham}, issn = {2045-2322}, doi = {10.1038/s41598-017-13349-5}, pages = {1 -- 11}, year = {2017}, language = {en} } @article{KotliarHanssenEberhardtetal.2013, author = {Kotliar, Konstantin and Hanssen, Henner and Eberhardt, Karla and Vilser, Walthard and Schmaderer, Christoph and Halle, Martin and Heemann, Uwe and Baumann, M.}, title = {Retinal pulse wave velocity in young male normotensive and mildly hypertensive subjects}, series = {Microcirculation}, journal = {Microcirculation}, publisher = {Wiley}, address = {Malden}, issn = {1549-8719}, year = {2013}, language = {en} } @article{KotliarBaumannVilseretal.2011, author = {Kotliar, Konstantin and Baumann, Marcus and Vilser, Walthard and Lanzl, Ines M.}, title = {Pulse wave velocity in retinal arteries of healthy volunteers}, series = {British Journal of Ophthalmology (eBJO)}, volume = {95}, journal = {British Journal of Ophthalmology (eBJO)}, number = {11}, publisher = {BMJ Publ. Group}, address = {London}, isbn = {1468-2079}, pages = {675 -- 679}, year = {2011}, language = {en} } @article{KotliarBauerZamuraev2006, author = {Kotliar, Konstantin and Bauer, S. M. and Zamuraev, L. A.}, title = {Model of the transversely isotropic spherical layer for estimation of intraocular pressure changes after intravitreal injections / Bauer, S. M. ; Zamuraev, L. A. ; Kotliar, K. E.}, series = {Rossiiskii zhurnal biomekhaniki = Russian Journal of biomechanics. 10 (2006), H. 2}, journal = {Rossiiskii zhurnal biomekhaniki = Russian Journal of biomechanics. 10 (2006), H. 2}, publisher = {-}, isbn = {1812-5123}, pages = {41 -- 47}, year = {2006}, language = {en} } @phdthesis{Kotliar2008, author = {Kotliar, Konstantin}, title = {Functional in-vivo assessment and biofluidmechanical analysis of age-related and pathological microstructural changes in retinal vessels [Elektronische Ressource]}, publisher = {-}, year = {2008}, language = {en} } @incollection{Kotliar2021, author = {Kotliar, Konstantin}, title = {Ocular rigidity: clinical approach}, series = {Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye}, booktitle = {Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye}, editor = {Pallikaris, I. and Tsilimbaris, M. K. and Dastiridou, A. I.}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-64422-2}, doi = {10.1007/978-3-030-64422-2_2}, pages = {15 -- 43}, year = {2021}, abstract = {The term ocular rigidity is widely used in clinical ophthalmology. Generally it is assumed as a resistance of the whole eyeball to mechanical deformation and relates to biomechanical properties of the eye and its tissues. Basic principles and formulas for clinical tonometry, tonography and pulsatile ocular blood flow measurements are based on the concept of ocular rigidity. There is evidence for altered ocular rigidity in aging, in several eye diseases and after eye surgery. Unfortunately, there is no consensual view on ocular rigidity: it used to make a quite different sense for different people but still the same name. Foremost there is no clear consent between biomechanical engineers and ophthalmologists on the concept. Moreover ocular rigidity is occasionally characterized using various parameters with their different physical dimensions. In contrast to engineering approach, clinical approach to ocular rigidity claims to characterize the total mechanical response of the eyeball to its deformation without any detailed considerations on eye morphology or material properties of its tissues. Further to the previous chapter this section aims to describe clinical approach to ocular rigidity from the perspective of an engineer in an attempt to straighten out this concept, to show its advantages, disadvantages and various applications.}, language = {en} } @article{KodomskoiKotliarSchroederetal.2019, author = {Kodomskoi, Leonid and Kotliar, Konstantin and Schr{\"o}der, Andreas and Weiss, Michael and Hille, Konrad}, title = {Suture-Probe Canaloplasty as an Alternative to Canaloplasty using the iTrack™ Microcatheter}, series = {Journal of Glaucoma}, journal = {Journal of Glaucoma}, number = {Epub ahead of print}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1057-0829}, doi = {10.1097/IJG.0000000000001321}, year = {2019}, language = {en} } @inproceedings{IomdinaKiselevaKotliaretal.2020, author = {Iomdina, Elena N. and Kiseleva, Anna A. and Kotliar, Konstantin and Luzhnov, Petr V.}, title = {Quantification of Choroidal Blood Flow Using the OCT-A System Based on Voxel Scan Processing}, series = {2020 International Conference on Biomedical Innovations and Applications (BIA)}, booktitle = {2020 International Conference on Biomedical Innovations and Applications (BIA)}, isbn = {978-1-7281-7073-2}, doi = {10.1109/BIA50171.2020.9244511}, pages = {41 -- 44}, year = {2020}, language = {en} } @article{HanssenNickelDrexeletal.2011, author = {Hanssen, H. and Nickel, T. and Drexel, V. and Hertel, G. and Emslander, I. and Sisic, Z. and Lorang, D. and Schuster, T. and Kotliar, Konstantin and Pressler, A. and Schmidt-Trucks{\"a}ss, A. and Weis, M. and Halle, M.}, title = {Exercise-induced alterations of retinal vessel diameters and cardiovascular risk reduction in obesity}, series = {Atherosclerosis}, volume = {216}, journal = {Atherosclerosis}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0021-9150}, pages = {433 -- 439}, year = {2011}, language = {en} } @article{HamouKotliarTanetal.2020, author = {Hamou, Hussam Aldin and Kotliar, Konstantin and Tan, Sonny Kian and Weiß, Christel and Blume, Christian and Clusmann, Hans and Schubert, Gerrit Alexander and Albanna, Walid}, title = {Surgical nuances and placement of subgaleal drains for supratentorial procedures—a prospective analysis of efficacy and outcome in 150 craniotomies}, series = {Acta Neurochirurgica}, volume = {2020}, journal = {Acta Neurochirurgica}, number = {162}, publisher = {Springer Nature}, address = {Cham}, issn = {0942-0940}, doi = {10.1007/s00701-019-04196-6}, pages = {729 -- 736}, year = {2020}, abstract = {Background For supratentorial craniotomy, surgical access, and closure technique, including placement of subgaleal drains, may vary considerably. The influence of surgical nuances on postoperative complications such as cerebrospinal fluid leakage or impaired wound healing overall remains largely unclear. With this study, we are reporting our experiences and the impact of our clinical routines on outcome in a prospectively collected data set. Method We prospectively observed 150 consecutive patients undergoing supratentorial craniotomy and recorded technical variables (type/length of incision, size of craniotomy, technique of dural and skin closure, type of dressing, and placement of subgaleal drains). Outcome variables (subgaleal hematoma/CSF collection, periorbital edema, impairment of wound healing, infection, and need for operative revision) were recorded at time of discharge and at late follow-up. Results Early subgaleal fluid collection was observed in 36.7\% (2.8\% at the late follow-up), and impaired wound healing was recorded in 3.3\% of all cases, with an overall need for operative revision of 6.7\%. Neither usage of dural sealants, lack of watertight dural closure, and presence of subgaleal drains, nor type of skin closure or dressing influenced outcome. Curved incisions, larger craniotomy, and tumor size, however, were associated with an increase in early CSF or hematoma collection (p < 0.0001, p = 0.001, p < 0.01 resp.), and larger craniotomy size was associated with longer persistence of subgaleal fluid collections (p < 0.05). Conclusions Based on our setting, individual surgical nuances such as the type of dural closure and the use of subgaleal drains resulted in a comparable complication rate and outcome. Subgaleal fluid collections were frequently observed after supratentorial procedures, irrespective of the closing technique employed, and resolve spontaneously in the majority of cases without significant sequelae. Our results are limited due to the observational nature in our single-center study and need to be validated by supportive prospective randomized design.}, language = {en} } @article{GarhoferBekBoehmetal.2010, author = {Garhofer, Gerhard and Bek, Toke and Boehm, Andreas G. and Gherghel, Doina and Grundwald, Juan and Jeppesen, Peter and Kergoat, H{\´e}l{\`e}ne and Kotliar, Konstantin and Lanzl, Ines and Lovasik, John V. and Nagel, Edgar and Vilser, Walthard and Orgul, Selim and Schmetterer, Leopold}, title = {Use of the retinal vessel analyzer in ocular blood flow research}, series = {Acta Ophthalmol}, volume = {88}, journal = {Acta Ophthalmol}, number = {7}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1755-3768}, doi = {10.1111/j.1755-3768.2009.01587.x}, pages = {717 -- 722}, year = {2010}, abstract = {The present article describes a standard instrument for the continuous online determination of retinal vessel diameters, the commercially available retinal vessel analyzer. This report is intended to provide informed guidelines for measuring ocular blood flow with this system. The report describes the principles underlying the method and the instruments currently available, and discusses clinical protocol and the specific parameters measured by the system. Unresolved questions and the possible limitations of the technique are also discussed.}, language = {en} } @article{FuestKotliarWalteretal.2014, author = {Fuest, Matthias and Kotliar, Konstantin and Walter, Peter and Plange, Niklas}, title = {Monitoring intraocular pressure changes after intravitreal Ranibizumab injection using rebound tonometry}, series = {Ophthalmic and physiological optics}, volume = {34}, journal = {Ophthalmic and physiological optics}, number = {4}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1475-1313 (E-Journal); 0275-5408 (Print)}, doi = {10.1111/opo.12134}, pages = {438 -- 444}, year = {2014}, language = {en} }