@incollection{KochPoghossianWegeetal.2018, author = {Koch, Claudia and Poghossian, Arshak and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {TMV-Based Adapter Templates for Enhanced Enzyme Loading in Biosensor Applications}, series = {Virus-Derived Nanoparticles for Advanced Technologies}, booktitle = {Virus-Derived Nanoparticles for Advanced Technologies}, editor = {Wege, Christina}, publisher = {Humana Press}, address = {New York, NY}, isbn = {978-1-4939-7808-3}, doi = {10.1007/978-1-4939-7808-3}, pages = {553 -- 568}, year = {2018}, abstract = {Nanotubular tobacco mosaic virus (TMV) particles and RNA-free lower-order coat protein (CP) aggregates have been employed as enzyme carriers in different diagnostic layouts and compared for their influence on biosensor performance. In the following, we describe a label-free electrochemical biosensor for improved glucose detection by use of TMV adapters and the enzyme glucose oxidase (GOD). A specific and efficient immobilization of streptavidin-conjugated GOD ([SA]-GOD) complexes on biotinylated TMV nanotubes or CP aggregates was achieved via bioaffinity binding. Glucose sensors with adsorptively immobilized [SA]-GOD, and with [SA]-GOD cross-linked with glutardialdehyde, respectively, were tested in parallel on the same sensor chip. Comparison of these sensors revealed that TMV adapters enhanced the amperometric glucose detection remarkably, conveying highest sensitivity, an extended linear detection range and fastest response times. These results underline a great potential of an integration of virus/biomolecule hybrids with electronic transducers for applications in biosensorics and biochips. Here, we describe the fabrication and use of amperometric sensor chips combining an array of circular Pt electrodes, their loading with GOD-modified TMV nanotubes (and other GOD immobilization methods), and the subsequent investigations of the sensor performance.}, language = {en} } @article{BronderJessingPoghossianetal.2018, author = {Bronder, Thomas and Jessing, Max P. and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of PCR-Amplified Tuberculosis DNA Fragments with Polyelectrolyte-Modified Field-Effect Sensors}, series = {Analytical Chemistry}, volume = {90}, journal = {Analytical Chemistry}, number = {12}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {0003-2700}, doi = {10.1021/acs.analchem.8b01807}, pages = {7747 -- 7753}, year = {2018}, abstract = {Field-effect-based electrolyte-insulator-semiconductor (EIS) sensors were modified with a bilayer of positively charged weak polyelectrolyte (poly(allylamine hydrochloride) (PAH)) and probe single-stranded DNA (ssDNA) and are used for the detection of complementary single-stranded target DNA (cDNA) in different test solutions. The sensing mechanism is based on the detection of the intrinsic molecular charge of target cDNA molecules after the hybridization event between cDNA and immobilized probe ssDNA. The test solutions contain synthetic cDNA oligonucleotides (with a sequence of tuberculosis mycobacteria genome) or PCR-amplified DNA (which origins from a template DNA strand that has been extracted from Mycobacterium avium paratuberculosis-spiked human sputum samples), respectively. Sensor responses up to 41 mV have been measured for the test solutions with DNA, while only small signals of ∼5 mV were detected for solutions without DNA. The lower detection limit of the EIS sensors was ∼0.3 nM, and the sensitivity was ∼7.2 mV/decade. Fluorescence experiments using SybrGreen I fluorescence dye support the electrochemical results.}, language = {en} } @article{JildehOberlaenderKirchneretal.2018, author = {Jildeh, Zaid B. and Oberl{\"a}nder, Jan and Kirchner, Patrick and Keusgen, Michael and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Experimental and Numerical Analyzes of a Sensor Based on Interdigitated Electrodes for Studying Microbiological Alterations}, series = {physica status solidi (a): applications and materials science}, volume = {215}, journal = {physica status solidi (a): applications and materials science}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201700920}, pages = {Artikel 1700920}, year = {2018}, abstract = {In this work, a cell-based biosensor to evaluate the sterilization efficacy of hydrogen peroxide vapor sterilization processes is characterized. The transducer of the biosensor is based on interdigitated gold electrodes fabricated on an inert glass substrate. Impedance spectroscopy is applied to evaluate the sensor behavior and the alteration of test microorganisms due to the sterilization process. These alterations are related to changes in relative permittivity and electrical conductivity of the bacterial spores. Sensor measurements are conducted with and without bacterial spores (Bacillus atrophaeus), as well as after an industrial sterilization protocol. Equivalent two-dimensional numerical models based on finite element method of the periodic finger structures of the interdigitated gold electrodes are designed and validated using COMSOL® Multiphysics software by the application of known dielectric properties. The validated models are used to compute the electrical properties at different sensor states (blank, loaded with spores, and after sterilization). As a final result, we will derive and tabulate the frequency-dependent electrical parameters of the spore layer using a novel model that combines experimental data with numerical optimization techniques.}, language = {en} } @article{JildehOberlaenderKirchneretal.2018, author = {Jildeh, Zaid B. and Oberl{\"a}nder, Jan and Kirchner, Patrick and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Thermocatalytic Behavior of Manganese (IV) Oxide as Nanoporous Material on the Dissociation of a Gas Mixture Containing Hydrogen Peroxide}, series = {Nanomaterials}, volume = {8}, journal = {Nanomaterials}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2079-4991}, doi = {10.3390/nano8040262}, pages = {Artikel 262}, year = {2018}, abstract = {In this article, we present an overview on the thermocatalytic reaction of hydrogen peroxide (H₂O₂) gas on a manganese (IV) oxide (MnO₂) catalytic structure. The principle of operation and manufacturing techniques are introduced for a calorimetric H₂O₂ gas sensor based on porous MnO₂. Results from surface analyses by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) of the catalytic material provide indication of the H₂O₂ dissociation reaction schemes. The correlation between theory and the experiments is documented in numerical models of the catalytic reaction. The aim of the numerical models is to provide further information on the reaction kinetics and performance enhancement of the porous MnO₂ catalyst.}, language = {en} } @article{AboulnagaZouSelmeretal.2018, author = {Aboulnaga, E. A. and Zou, H. and Selmer, Thorsten and Xian, M.}, title = {Development of a plasmid-based, tunable, tolC-derived expression system for application in Cupriavidus necator H16}, series = {Journal of Biotechnology}, volume = {274}, journal = {Journal of Biotechnology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-1656}, doi = {10.1016/j.jbiotec.2018.03.007}, pages = {15 -- 27}, year = {2018}, abstract = {Cupriavidus necator H16 gains increasing attention in microbial research and biotechnological application due to its diverse metabolic features. Here we present a tightly controlled gene expression system for C. necator including the pBBR1-vector that contains hybrid promoters originating from C. necator native tolC-promoter in combination with a synthetic tetO-operator. The expression of the reporter gene from these plasmids relies on the addition of the exogenous inducer doxycycline (dc). The novel expression system offers a combination of advantageous features as; (i) high and dose-dependent recombinant protein production, (ii) tight control with a high dynamic range (On/Off ratio), which makes it applicable for harmful pathways or for toxic protein production, (iii) comparable cheap inducer (doxycycline, dc), (iv) effective at low inducer concentration, that makes it useful for large scale application, (v) rapid, diffusion controlled induction, and (vi) the inducer does not interfere within the cell metabolism. As applications of the expression system in C. necator H16, the growth ability on glycerol was enhanced by constitutively expressing the E. coli glpk gene-encoding for glycerol kinase. Likewise, we used the system to overcome the expression toxicity of mevalonate pathway in C. necator H16. With this system, the mevalonate-genes were successfully introduced in the host and the recombinant strains could produce about 200 mg/l mevalonate.}, language = {en} } @article{KochPoghossianSchoeningetal.2018, author = {Koch, Claudia and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Wege, Christian}, title = {Penicillin Detection by Tobacco Mosaic Virus-Assisted Colorimetric Biosensors}, series = {Nanotheranostics}, volume = {2}, journal = {Nanotheranostics}, number = {2}, publisher = {Ivyspring}, address = {Sydney}, issn = {2206-7418}, doi = {10.7150/ntno.22114}, pages = {184 -- 196}, year = {2018}, abstract = {The presentation of enzymes on viral scaffolds has beneficial effects such as an increased enzyme loading and a prolonged reusability in comparison to conventional immobilization platforms. Here, we used modified tobacco mosaic virus (TMV) nanorods as enzyme carriers in penicillin G detection for the first time. Penicillinase enzymes were conjugated with streptavidin and coupled to TMV rods by use of a bifunctional biotin-linker. Penicillinase-decorated TMV particles were characterized extensively in halochromic dye-based biosensing. Acidometric analyte detection was performed with bromcresol purple as pH indicator and spectrophotometry. The TMV-assisted sensors exhibited increased enzyme loading and strongly improved reusability, and higher analysis rates compared to layouts without viral adapters. They extended the half-life of the sensors from 4 - 6 days to 5 weeks and thus allowed an at least 8-fold longer use of the sensors. Using a commercial budget-priced penicillinase preparation, a detection limit of 100 µM penicillin was obtained. Initial experiments also indicate that the system may be transferred to label-free detection layouts.}, language = {en} } @article{VahidpourOberlaenderSchoening2018, author = {Vahidpour, Farnoosh and Oberl{\"a}nder, Jan and Sch{\"o}ning, Michael Josef}, title = {Flexible Calorimetric Gas Sensors for Detection of a Broad Concentration Range of Gaseous Hydrogen Peroxide: A Step Forward to Online Monitoring of Food-Package Sterilization Processes}, series = {Phys. Status Solidi A}, volume = {215}, journal = {Phys. Status Solidi A}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, doi = {10.1002/pssa.201800044}, pages = {Artikel 1800044}, year = {2018}, abstract = {In this study, flexible calorimetric gas sensors are developed for specificdetection of gaseous hydrogen peroxide (H₂O₂) over a wide concentrationrange, which is used in sterilization processes for aseptic packaging industry.The flexibility of these sensors is an advantage for identifying the chemical components of the sterilant on the corners of the food boxes, so-called "coldspots", as critical locations in aseptic packaging, which are of great importance. These sensors are fabricated on flexible polyimide films by means of thin-film technique. Thin layers of titanium and platinum have been deposited on polyimide to define the conductive structures of the sensors. To detect the high-temperature evaporated H₂O₂, a differential temperature set-up is proposed. The sensors are evaluated in a laboratory-scaled sterilizationsystem to simulate the sterilization process. The concentration range of the evaporated H₂O₂ from 0 to 7.7\% v/v was defined and the sensors have successfully detected high as well as low H₂O₂ concentrations with a sensitivity of 5.04 °C/\% v/v. The characterizations of the sensors confirm their precise fabrication, high sensitivity and the novelty of low H₂O₂ concentration detections for future inline monitoring of food-package sterilization.}, language = {en} } @article{PoghossianJablonskiKochetal.2018, author = {Poghossian, Arshak and Jablonski, Melanie and Koch, Claudia and Bronder, Thomas and Rolka, David and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Field-effect biosensor using virus particles as scaffolds for enzyme immobilization}, series = {Biosensors and Bioelectronics}, volume = {110}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2018.03.036}, pages = {168 -- 174}, year = {2018}, abstract = {A field-effect biosensor employing tobacco mosaic virus (TMV) particles as scaffolds for enzyme immobilization is presented. Nanotubular TMV scaffolds allow a dense immobilization of precisely positioned enzymes with retained activity. To demonstrate feasibility of this new strategy, a penicillin sensor has been developed by coupling a penicillinase with virus particles as a model system. The developed field-effect penicillin biosensor consists of an Al-p-Si-SiO₂-Ta₂O₅-TMV structure and has been electrochemically characterized in buffer solutions containing different concentrations of penicillin G. In addition, the morphology of the biosensor surface with virus particles was characterized by scanning electron microscopy and atomic force microscopy methods. The sensors possessed a high penicillin sensitivity of ~ 92 mV/dec in a nearly-linear range from 0.1 mM to 10 mM, and a low detection limit of about 50 µM. The long-term stability of the penicillin biosensor was periodically tested over a time period of about one year without any significant loss of sensitivity. The biosensor has also been successfully applied for penicillin detection in bovine milk samples.}, language = {en} } @article{MiyamotoSekiSutoetal.2018, author = {Miyamoto, Koichiro and Seki, Kosuke and Suto, Takeyuki and Werner, Frederik and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Improved spatial resolution of the chemical imaging sensor with a hybrid illumination that suppresses lateral diffusion of photocarriers}, series = {Sensor and Actuators B: Chemical}, volume = {273}, journal = {Sensor and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2018.07.016}, pages = {1328 -- 1333}, year = {2018}, abstract = {The chemical imaging sensor is a semiconductor-based chemical sensor capable of visualizing pH and ion distributions. The spatial resolution depends on the lateral diffusion of photocarriers generated by illumination of the semiconductor substrate. In this study, two types of optical setups, one based on a bundle of optical fibers and the other based on a binocular tube head, were developed to project a hybrid illumination of a modulated light beam and a ring-shaped constant illumination onto the sensor plate. An improved spatial resolution was realized by the ring-shaped constant illumination, which suppressed lateral diffusion of photocarriers by enhanced recombination due to the increased carrier concentration.}, language = {en} } @article{RoehlenPilasDahmenetal.2018, author = {R{\"o}hlen, Desiree and Pilas, Johanna and Dahmen, Markus and Keusgen, Michael and Selmer, Thorsten and Sch{\"o}ning, Michael Josef}, title = {Toward a Hybrid Biosensor System for Analysis of Organic and Volatile Fatty Acids in Fermentation Processes}, series = {Frontiers in Chemistry}, journal = {Frontiers in Chemistry}, number = {6}, publisher = {Frontiers}, address = {Lausanne}, doi = {10.3389/fchem.2018.00284}, pages = {Artikel 284}, year = {2018}, abstract = {Monitoring of organic acids (OA) and volatile fatty acids (VFA) is crucial for the control of anaerobic digestion. In case of unstable process conditions, an accumulation of these intermediates occurs. In the present work, two different enzyme-based biosensor arrays are combined and presented for facile electrochemical determination of several process-relevant analytes. Each biosensor utilizes a platinum sensor chip (14 × 14 mm²) with five individual working electrodes. The OA biosensor enables simultaneous measurement of ethanol, formate, d- and l-lactate, based on a bi-enzymatic detection principle. The second VFA biosensor provides an amperometric platform for quantification of acetate and propionate, mediated by oxidation of hydrogen peroxide. The cross-sensitivity of both biosensors toward potential interferents, typically present in fermentation samples, was investigated. The potential for practical application in complex media was successfully demonstrated in spiked sludge samples collected from three different biogas plants. Thereby, the results obtained by both of the biosensors were in good agreement to the applied reference measurements by photometry and gas chromatography, respectively. The proposed hybrid biosensor system was also used for long-term monitoring of a lab-scale biogas reactor (0.01 m³) for a period of 2 months. In combination with typically monitored parameters, such as gas quality, pH and FOS/TAC (volatile organic acids/total anorganic carbonate), the amperometric measurements of OA and VFA concentration could enhance the understanding of ongoing fermentation processes.}, language = {en} } @article{RodriguesMoraisNordietal.2018, author = {Rodrigues, Raul T. and Morais, Paulo V. and Nordi, Cristina S. F. and Sch{\"o}ning, Michael Josef and Siqueira Jr., Jos{\´e} R. and Caseli, Luciano}, title = {Carbon Nanotubes and Algal Polysaccharides To Enhance the Enzymatic Properties of Urease in Lipid Langmuir-Blodgett Films}, series = {Langmuir}, volume = {34}, journal = {Langmuir}, number = {9}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {1520-5827}, doi = {10.1021/acs.langmuir.7b04317}, pages = {3082 -- 3093}, year = {2018}, abstract = {Algal polysaccharides (extracellular polysaccharides) and carbon nanotubes (CNTs) were adsorbed on dioctadecyldimethylammonium bromide Langmuir monolayers to serve as a matrix for the incorporation of urease. The physicochemical properties of the supramolecular system as a monolayer at the air-water interface were investigated by surface pressure-area isotherms, surface potential-area isotherms, interfacial shear rheology, vibrational spectroscopy, and Brewster angle microscopy. The floating monolayers were transferred to hydrophilic solid supports, quartz, mica, or capacitive electrolyte-insulator-semiconductor (EIS) devices, through the Langmuir-Blodgett (LB) technique, forming mixed films, which were investigated by quartz crystal microbalance, fluorescence spectroscopy, and field emission gun scanning electron microscopy. The enzyme activity was studied with UV-vis spectroscopy, and the feasibility of the thin film as a urea sensor was essayed in an EIS sensor device. The presence of CNT in the enzyme-lipid LB film not only tuned the catalytic activity of urease but also helped to conserve its enzyme activity. Viability as a urease sensor was demonstrated with capacitance-voltage and constant capacitance measurements, exhibiting regular and distinctive output signals over all concentrations used in this work. These results are related to the synergism between the compounds on the active layer, leading to a surface morphology that allowed fast analyte diffusion owing to an adequate molecular accommodation, which also preserved the urease activity. This work demonstrates the feasibility of employing LB films composed of lipids, CNT, algal polysaccharides, and enzymes as EIS devices for biosensing applications.}, language = {en} } @book{SchoeningPoghossian2018, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {Label-free biosensing: advanced materials, devices and applications}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-75219-8}, pages = {xii, 480 Seiten ; Illustrationen, Diagramme}, year = {2018}, language = {en} } @incollection{YoshinobuKrauseMiyamotoetal.2018, author = {Yoshinobu, Tatsuo and Krause, Steffi and Miyamoto, Ko-ichiro and Werner, Frederik and Poghossian, Arshak and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {(Bio-)chemical Sensing and Imaging by LAPS and SPIM}, series = {Label-free biosensing: advanced materials, devices and applications}, booktitle = {Label-free biosensing: advanced materials, devices and applications}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-75219-8}, pages = {103 -- 132}, year = {2018}, abstract = {The light-addressable potentiometric sensor (LAPS) and scanning photo-induced impedance microscopy (SPIM) are two closely related methods to visualise the distributions of chemical species and impedance, respectively, at the interface between the sensing surface and the sample solution. They both have the same field-effect structure based on a semiconductor, which allows spatially resolved and label-free measurement of chemical species and impedance in the form of a photocurrent signal generated by a scanning light beam. In this article, the principles and various operation modes of LAPS and SPIM, functionalisation of the sensing surface for measuring various species, LAPS-based chemical imaging and high-resolution sensors based on silicon-on-sapphire substrates are described and discussed, focusing on their technical details and prospective applications.}, language = {en} } @incollection{SchoeningWagnerPoghossianetal.2018, author = {Sch{\"o}ning, Michael Josef and Wagner, Torsten and Poghossian, Arshak and Miyamoto, K.I. and Werner, C.F. and Krause, S. and Yoshinobu, T.}, title = {Light-addressable potentiometric sensors for (bio-)chemical sensing and imaging}, series = {Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Vol. 7}, booktitle = {Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Vol. 7}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {9780128097397}, pages = {295 -- 308}, year = {2018}, language = {en} } @article{RabehiGarlanAchtsnichtetal.2018, author = {Rabehi, Amine and Garlan, Benjamin and Achtsnicht, Stefan and Krause, Hans-Joachim and Offenh{\"a}usser, Andreas and Ngo, Kieu and Neveu, Sophie and Graff-Dubois, Stephanie and Kokabi, Hamid}, title = {Magnetic detection structure for Lab-on-Chip applications based on the frequency mixing technique}, series = {Sensors}, volume = {18}, journal = {Sensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s18061747}, pages = {14 Seiten}, year = {2018}, abstract = {A magnetic frequency mixing technique with a set of miniaturized planar coils was investigated for use with a completely integrated Lab-on-Chip (LoC) pathogen sensing system. The system allows the detection and quantification of superparamagnetic beads. Additionally, in terms of magnetic nanoparticle characterization ability, the system can be used for immunoassays using the beads as markers. Analytical calculations and simulations for both excitation and pick-up coils are presented; the goal was to investigate the miniaturization of simple and cost-effective planar spiral coils. Following these calculations, a Printed Circuit Board (PCB) prototype was designed, manufactured, and tested for limit of detection, linear response, and validation of theoretical concepts. Using the magnetic frequency mixing technique, a limit of detection of 15 µg/mL of 20 nm core-sized nanoparticles was achieved without any shielding.}, language = {en} } @article{BaeckerKochEibenetal.2017, author = {B{\"a}cker, Matthias and Koch, Claudia and Eiben, Sabine and Geiger, Fania and Eber, Fabian and Gliemann, Hartmut and Poghossian, Arshak and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Tobacco mosaic virus as enzyme nanocarrier for electrochemical biosensors}, series = {Sensors and Actuators B: Chemical}, volume = {238}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.07.096}, pages = {716 -- 722}, year = {2017}, abstract = {The conjunction of (bio-)chemical recognition elements with nanoscale biological building blocks such as virus particles is considered as a very promising strategy for the creation of biohybrids opening novel opportunities for label-free biosensing. This work presents a new approach for the development of biosensors using tobacco mosaic virus (TMV) nanotubes or coat proteins (CPs) as enzyme nanocarriers. Sensor chips combining an array of Pt electrodes loaded with glucose oxidase (GOD)-modified TMV nanotubes or CP aggregates were used for amperometric detection of glucose as a model system for the first time. The presence of TMV nanotubes or CPs on the sensor surface allows binding of a high amount of precisely positioned enzymes without substantial loss of their activity, and may also ensure accessibility of their active centers for analyte molecules. Specific and efficient immobilization of streptavidin-conjugated GOD ([SA]-GOD) complexes on biotinylated TMV nanotubes or CPs was achieved via bioaffinity binding. These layouts were tested in parallel with glucose sensors with adsorptively immobilized [SA]-GOD, as well as [SA]-GOD crosslinked with glutardialdehyde, and came out to exhibit superior sensor performance. The achieved results underline a great potential of an integration of virus/biomolecule hybrids with electronic transducers for future applications in biosensorics and biochips.}, language = {en} } @article{PoghossianWernerBuniatyanetal.2017, author = {Poghossian, Arshak and Werner, Frederik and Buniatyan, V. V. and Wagner, Torsten and Miamoto, K. and Yoshinobu, T. and Sch{\"o}ning, Michael Josef}, title = {Towards addressability of light-addressable potentiometric sensors: Shunting effect of non-illuminated region and cross-talk}, series = {Sensor and Actuators B: Chemical}, journal = {Sensor and Actuators B: Chemical}, number = {244}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2017.01.047}, pages = {1071 -- 1079}, year = {2017}, abstract = {The LAPS (light-addressable potentiometric sensor) platform is one of the most attractive approaches for chemical and biological sensing with many applications ranging from pH and ion/analyte concentration measurements up to cell metabolism detection and chemical imaging. However, although it is generally accepted that LAPS measurements are spatially resolved, the light-addressability feature of LAPS devices has not been discussed in detail so far. In this work, an extended electrical equivalent-circuit model of the LAPS has been presented, which takes into account possible cross-talk effects due to the capacitive coupling of the non-illuminated region. A shunting effect of the non-illuminated area on the measured photocurrent and addressability of LAPS devices has been studied. It has been shown, that the measured photocurrent will be determined not only by the local interfacial potential in the illuminated region but also by possible interfacial potential changes in the non-illuminated region, yielding cross-talk effects. These findings were supported by the experimental investigations of a penicillin-sensitive multi-spot LAPS and a metal-insulator-semiconductor LAPS as model systems.}, language = {en} } @article{KatzPoghossianSchoening2017, author = {Katz, Evgeny and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Enzyme-based logic gates and circuits - analytical applications and interfacing with electronics}, series = {Analytical and Bioanalytical Chemistry}, volume = {409}, journal = {Analytical and Bioanalytical Chemistry}, publisher = {Springer}, address = {Berlin}, issn = {1618-2650}, doi = {10.1007/s00216-016-0079-7}, pages = {81 -- 94}, year = {2017}, abstract = {The paper is an overview of enzyme-based logic gates and their short circuits, with specific examples of Boolean AND and OR gates, and concatenated logic gates composed of multi-step enzyme-biocatalyzed reactions. Noise formation in the biocatalytic reactions and its decrease by adding a "filter" system, converting convex to sigmoid response function, are discussed. Despite the fact that the enzyme-based logic gates are primarily considered as components of future biomolecular computing systems, their biosensing applications are promising for immediate practical use. Analytical use of the enzyme logic systems in biomedical and forensic applications is discussed and exemplified with the logic analysis of biomarkers of various injuries, e.g., liver injury, and with analysis of biomarkers characteristic of different ethnicity found in blood samples on a crime scene. Interfacing of enzyme logic systems with modified electrodes and semiconductor devices is discussed, giving particular attention to the interfaces functionalized with signal-responsive materials. Future perspectives in the design of the biomolecular logic systems and their applications are discussed in the conclusion.}, language = {en} } @article{HonarvarfardGamellaChannaveerappaetal.2017, author = {Honarvarfard, Elham and Gamella, Maria and Channaveerappa, Devika and Darie, Costel C. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {Electrochemically Stimulated Insulin Release from a Modified Graphene-functionalized Carbon Fiber Electrode}, series = {Electroanalysis}, volume = {29}, journal = {Electroanalysis}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.201700095}, pages = {1543 -- 1553}, year = {2017}, abstract = {A graphene-functionalized carbon fiber electrode was modified with adsorbed polyethylenimine to introduce amino functionalities and then with trigonelline and 4-carboxyphenylboronic acid covalently bound to the amino groups. The trigonelline species containing quarterized pyridine groups produced positive charge on the electrode surface regardless of the pH value, while the phenylboronic acid species were neutral below pH 8 and negatively charged above pH 9 (note that their pKa=8.4). The total charge on the monolayer-modified electrode was positive at the neutral pH and negative at pH > 9. Note that 4-carboxyphenylboronic acid was attached to the electrode surface in molar excess to trigonelline, thus allowing the negative charge to dominate on the electrode surface at basic pH. Negatively charged fluorescent dye-labeled insulin (insulin-FITC) was loaded on the modified electrode surface at pH 7.0 due to its electrostatic attraction to the positively charged interface. The local pH in close vicinity to the electrode surface was increased to ca. 9-10 due to consumption of H+ ions upon electrochemical reduction of oxygen proceeding at the potential of -1.0 V (vs. Ag/AgCl) applied on the modified electrode. The process resulted in recharging of the electrode surface to the negative value due to the formation of the negative charge on the phenylboronic acid groups, thus resulting in the electrostatic repulsion of insulin-FITC and stimulating its release from the electrode surface. The insulin release was characterized by fluorescence spectroscopy (using the FITC-labeled insulin), by electrochemical measurements on an iridium oxide, IrOx, electrode and by mass spectrometry. The graphene-functionalized carbon fiber electrode demonstrated significant advantages in the signal-stimulated insulin release comparing with the carbon fiber electrode without the graphene species.}, language = {en} } @article{GamellaZakharchenkoGuzetal.2017, author = {Gamella, Maria and Zakharchenko, Andrey and Guz, Nataliia and Masi, Madeline and Minko, Sergiy and Kolpashchikov, Dmitry M. and Iken, Heiko and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {DNA computing system activated by electrochemically triggered DNA realease from a polymer-brush-modified electrode array}, series = {Electroanalysis}, volume = {29}, journal = {Electroanalysis}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.201600389}, pages = {398 -- 408}, year = {2017}, abstract = {An array of four independently wired indium tin oxide (ITO) electrodes was used for electrochemically stimulated DNA release and activation of DNA-based Identity, AND and XOR logic gates. Single-stranded DNA molecules were loaded on the mixed poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA)/poly(methacrylic acid) (PMAA) brush covalently attached to the ITO electrodes. The DNA deposition was performed at pH 5.0 when the polymer brush is positively charged due to protonation of tertiary amino groups in PDMAEMA, thus resulting in electrostatic attraction of the negatively charged DNA. By applying electrolysis at -1.0 V(vs. Ag/AgCl reference) electrochemical oxygen reduction resulted in the consumption of hydrogen ions and local pH increase near the electrode surface. The process resulted in recharging the polymer brush to the negative state due to dissociation of carboxylic groups of PMAA, thus repulsing the negatively charged DNA and releasing it from the electrode surface. The DNA release was performed in various combinations from different electrodes in the array assembly. The released DNA operated as input signals for activation of the Boolean logic gates. The developed system represents a step forward in DNA computing, combining for the first time DNA chemical processes with electronic input signals.}, language = {en} }