@incollection{SamuelssonScheerWilsonetal.2017, author = {Samuelsson, K. and Scheer, Nico and Wilson, I. and Wolf, C.R. and Henderson, C.J.}, title = {Genetically Humanized Animal Models}, series = {Comprehensive Medicinal Chemistry III. 3rd Edition}, booktitle = {Comprehensive Medicinal Chemistry III. 3rd Edition}, editor = {Chackalamannil, Samuel}, publisher = {Elsevier}, address = {Saint Louis}, isbn = {978-0-12-803201-5}, doi = {10.1016/B978-0-12-409547-2.12376-5}, pages = {130 -- 149}, year = {2017}, abstract = {Genetically humanized mice for proteins involved in drug metabolism and toxicity and mice engrafted with human hepatocytes are emerging as promising in vivo models for improved prediction of the pharmacokinetic, drug-drug interaction, and safety characteristics of compounds in humans. This is an overview on the genetically humanized and chimeric liver-humanized mouse models, which are illustrated with examples of their utility in drug metabolism and toxicity studies. The models are compared to give guidance for selection of the most appropriate model by highlighting advantages and disadvantages to be carefully considered when used for studies in drug discovery and development.}, language = {en} } @incollection{ScheerChuSalphatietal.2016, author = {Scheer, Nico and Chu, Xiaoyan and Salphati, Laurent and Zamek-Gliszczynski, Maciej J.}, title = {Knockout and humanized animal models to study membrane transporters in drug development}, series = {Drug Transporters: Volume 1: Role and Importance in ADME and Drug Development}, booktitle = {Drug Transporters: Volume 1: Role and Importance in ADME and Drug Development}, editor = {Nicholls, Glynis}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, isbn = {978-1-78262-379-3}, doi = {10.1039/9781782623793-00298}, pages = {298 -- 332}, year = {2016}, language = {en} } @article{DadfarCamozziDarguzyteetal.2020, author = {Dadfar, Dryed Mohammadali and Camozzi, Denise and Darguzyte, Milita and Roemhild, Karolin and Varvar{\`a}, Paola and Metselaar, Josbert and Banala, Srinivas and Straub, Marcel and G{\"u}ver, Nihan and Engelmann, Ulrich M. and Slabu, Ioana and Buhl, Miriam and Leusen, Jan van and K{\"o}gerler, Paul and Hermanns-Sachweh, Benita and Schulz, Volkmar and Kiessling, Fabian and Lammers, Twan}, title = {Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance}, series = {Journal of Nanobiotechnology}, volume = {18}, journal = {Journal of Nanobiotechnology}, number = {Article number 22}, publisher = {Nature Portfolio}, issn = {1477-3155}, doi = {10.1186/s12951-020-0580-1}, pages = {1 -- 13}, year = {2020}, abstract = {Superparamagnetic iron oxide nanoparticles (SPION) are extensively used for magnetic resonance imaging (MRI) and magnetic particle imaging (MPI), as well as for magnetic fluid hyperthermia (MFH). We here describe a sequential centrifugation protocol to obtain SPION with well-defined sizes from a polydisperse SPION starting formulation, synthesized using the routinely employed co-precipitation technique. Transmission electron microscopy, dynamic light scattering and nanoparticle tracking analyses show that the SPION fractions obtained upon size-isolation are well-defined and almost monodisperse. MRI, MPI and MFH analyses demonstrate improved imaging and hyperthermia performance for size-isolated SPION as compared to the polydisperse starting mixture, as well as to commercial and clinically used iron oxide nanoparticle formulations, such as Resovist® and Sinerem®. The size-isolation protocol presented here may help to identify SPION with optimal properties for diagnostic, therapeutic and theranostic applications.}, language = {en} } @inproceedings{HorikawaOkadaUtoetal.2019, author = {Horikawa, Atsushi and Okada, Kunio and Uto, Takahiro and Uchiyama, Yuta and Wirsum, Manfred and Funke, Harald and Kusterer, Karsten}, title = {Application of Low NOx Micro-mix Hydrogen Combustion to 2MW Class Industrial Gas Turbine Combustor}, series = {Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan}, booktitle = {Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan}, isbn = {978-4-89111-010-9}, pages = {1 -- 6}, year = {2019}, language = {en} } @inproceedings{MatchaKarzelQuasten2008, author = {Matcha, Heike and Karzel, R{\"u}diger and Quasten, Gero}, title = {Architectural Design with Parametric Modeling \& Customized Mass Production: Explorations and Case Studies in Architectural Design and Production Methods}, series = {Language and the Scientific Imagination. The 11th International Conference of ISSEI, Language Centre, University of Helsinki (Finland) 28 July - 2 August 2008}, booktitle = {Language and the Scientific Imagination. The 11th International Conference of ISSEI, Language Centre, University of Helsinki (Finland) 28 July - 2 August 2008}, pages = {19 Seiten}, year = {2008}, language = {en} } @article{EngelmannShashaTeemanetal.2019, author = {Engelmann, Ulrich M. and Shasha, Carolyn and Teeman, Eric and Slabu, Iona and Krishnan, Kannan M.}, title = {Predicting size-dependent heating efficiency of magnetic nanoparticles from experiment and stochastic N{\´e}el-Brown Langevin simulation}, series = {Journal of Magnetism and Magnetic Materials}, volume = {471}, journal = {Journal of Magnetism and Magnetic Materials}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2018.09.041}, pages = {450 -- 456}, year = {2019}, language = {en} } @article{EngelmannSeifertMuesetal.2019, author = {Engelmann, Ulrich M. and Seifert, Julian and Mues, Benedikt and Roitsch, Stefan and M{\´e}nager, Christine and Schmidt, Annette M. and Slabu, Ioana}, title = {Heating efficiency of magnetic nanoparticles decreases with gradual immobilization in hydrogels}, series = {Journal of Magnetism and Magnetic Materials}, volume = {471}, journal = {Journal of Magnetism and Magnetic Materials}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2018.09.113}, pages = {486 -- 494}, year = {2019}, language = {en} } @article{EngelmannRoethEberbecketal.2018, author = {Engelmann, Ulrich M. and Roeth, Anjali A.J. and Eberbeck, Dietmar and Buhl, Eva Miriam and Neumann, Ulf Peter and Schmitz-Rode, Thomas and Slabu, Ioana}, title = {Combining Bulk Temperature and Nanoheating Enables Advanced Magnetic Fluid Hyperthermia Efficacy on Pancreatic Tumor Cells}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {1}, publisher = {Springer Nature}, address = {Cham}, issn = {2045-2322}, doi = {10.1038/s41598-018-31553-9}, pages = {Article number 13210}, year = {2018}, abstract = {Many efforts are made worldwide to establish magnetic fluid hyperthermia (MFH) as a treatment for organ-confined tumors. However, translation to clinical application hardly succeeds as it still lacks of understanding the mechanisms determining MFH cytotoxic effects. Here, we investigate the intracellular MFH efficacy with respect to different parameters and assess the intracellular cytotoxic effects in detail. For this, MiaPaCa-2 human pancreatic tumor cells and L929 murine fibroblasts were loaded with iron-oxide magnetic nanoparticles (MNP) and exposed to MFH for either 30 min or 90 min. The resulting cytotoxic effects were assessed via clonogenic assay. Our results demonstrate that cell damage depends not only on the obvious parameters bulk temperature and duration of treatment, but most importantly on cell type and thermal energy deposited per cell during MFH treatment. Tumor cell death of 95\% was achieved by depositing an intracellular total thermal energy with about 50\% margin to damage of healthy cells. This is attributed to combined intracellular nanoheating and extracellular bulk heating. Tumor cell damage of up to 86\% was observed for MFH treatment without perceptible bulk temperature rise. Effective heating decreased by up to 65\% after MNP were internalized inside cells.}, language = {en} } @article{EngelmannBuhlDraacketal.2018, author = {Engelmann, Ulrich M. and Buhl, Eva Miriam and Draack, Sebastian and Viereck, Thilo and Frank, and Schmitz-Rode, Thomas and Slabu, Ioana}, title = {Magnetic relaxation of agglomerated and immobilized iron oxide nanoparticles for hyperthermia and imaging applications}, series = {IEEE Magnetic Letters}, volume = {9}, journal = {IEEE Magnetic Letters}, number = {Article number 8519617}, publisher = {IEEE}, address = {New York, NY}, issn = {1949-307X}, doi = {10.1109/LMAG.2018.2879034}, year = {2018}, abstract = {Magnetic nanoparticles (MNPs) are used as therapeutic and diagnostic agents for local delivery of heat and image contrast enhancement in diseased tissue. Besides magnetization, the most important parameter that determines their performance for these applications is their magnetic relaxation, which can be affected when MNPs immobilize and agglomerate inside tissues. In this letter, we investigate different MNP agglomeration states for their magnetic relaxation properties under excitation in alternating fields and relate this to their heating efficiency and imaging properties. With focus on magnetic fluid hyperthermia, two different trends in MNP heating efficiency are measured: an increase by up to 23\% for agglomerated MNP in suspension and a decrease by up to 28\% for mixed states of agglomerated and immobilized MNP, which indicates that immobilization is the dominant effect. The same comparatively moderate effects are obtained for the signal amplitude in magnetic particle spectroscopy.}, language = {en} } @article{EngelmannBuhlBaumannetal.2017, author = {Engelmann, Ulrich M. and Buhl, Eva Miriam and Baumann, Martin and Schmitz-Rode, Thomas and Slabu, Ioana}, title = {Agglomeration of magnetic nanoparticles and its effects on magnetic hyperthermia}, series = {Current Directions in Biomedical Engineering}, volume = {3}, journal = {Current Directions in Biomedical Engineering}, number = {2}, publisher = {De Gruyter}, address = {Berlin}, issn = {2364-5504}, doi = {10.1515/cdbme-2017-0096}, pages = {457 -- 460}, year = {2017}, language = {en} } @article{ChenJostVolkeretal.2017, author = {Chen, Chao and Jost, Peter and Volker, Hanno and Kaminski, Marvin and Wirtssohn, Matti R. and Engelmann, Ulrich M. and Kr{\"u}ger, K. and Schlich, Franziska F. and Schlockermann, Carl and Lobo, Ricardo P.S.M. and Wuttig, Matthias}, title = {Dielectric properties of amorphous phase-change materials}, series = {Physical Review B}, volume = {95}, journal = {Physical Review B}, number = {9}, issn = {2469-9950}, doi = {10.1103/PhysRevB.95.094111}, pages = {Article number 094111}, year = {2017}, language = {en} } @article{DantismRoehlenWagneretal.2019, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Wagner, Torsten and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {A LAPS-based differential sensor for parallelized metabolism monitoring of various bacteria}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {21}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19214692}, pages = {Artikel 4692}, year = {2019}, abstract = {Monitoring the cellular metabolism of bacteria in (bio)fermentation processes is crucial to control and steer them, and to prevent undesired disturbances linked to metabolically inactive microorganisms. In this context, cell-based biosensors can play an important role to improve the quality and increase the yield of such processes. This work describes the simultaneous analysis of the metabolic behavior of three different types of bacteria by means of a differential light-addressable potentiometric sensor (LAPS) set-up. The study includes Lactobacillus brevis, Corynebacterium glutamicum, and Escherichia coli, which are often applied in fermentation processes in bioreactors. Differential measurements were carried out to compensate undesirable influences such as sensor signal drift, and pH value variation during the measurements. Furthermore, calibration curves of the cellular metabolism were established as a function of the glucose concentration or cell number variation with all three model microorganisms. In this context, simultaneous (bio)sensing with the multi-organism LAPS-based set-up can open new possibilities for a cost-effective, rapid detection of the extracellular acidification of bacteria on a single sensor chip. It can be applied to evaluate the metabolic response of bacteria populations in a (bio)fermentation process, for instance, in the biogas fermentation process.}, language = {en} } @article{KarschuckFilipovBollellaetal.2019, author = {Karschuck, T. L. and Filipov, Y. and Bollella, P. and Sch{\"o}ning, Michael Josef and Katz, E.}, title = {Not-XOR (NXOR) logic gate based on an enzyme-catalyzed reaction}, series = {International Journal of Unconventional Computing}, volume = {14}, journal = {International Journal of Unconventional Computing}, number = {3-4}, publisher = {Old City Publishing}, address = {Philadelphia}, issn = {1548-7199}, pages = {235 -- 242}, year = {2019}, abstract = {Enzyme-catalyzed reactions have been designed to mimic various Boolean logic gates in the general framework of unconventional biomolecular computing. While some of the logic gates, particularly OR, AND, are easy to realize with biocatalytic reactions and have been reported in numerous publications, some other, like NXOR, are very challenging and have not been realized yet with enzyme reactions. The paper reports on a novel approach to mimicking the NXOR logic gate using the bell-shaped enzyme activity dependent on pH values. Shifting pH from the optimum value to the acidic or basic values by using acid or base inputs (meaning 1,0 and 0,1 inputs) inhibits the enzyme reaction, while keeping the optimum pH (assuming 0,0 and 1,1 input combinations) preserves a high enzyme activity. The challenging part of the present approach is the selection of an enzyme with a well-demonstrated bell-shape activity dependence on the pH value. While many enzymes can satisfy this condition, we selected pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase as this enzyme has the optimum pH center-located on the pH scale allowing the enzyme activity change by the acidic and basic pH shift from the optimum value corresponding to the highest activity. The present NXOR gate is added to the biomolecular "toolbox" as a new example of Boolean logic gates based on enzyme reactions.}, language = {en} } @phdthesis{Engelmann2019, author = {Engelmann, Ulrich M.}, title = {Assessing magnetic fluid hyperthermia : magnetic relaxation simulation, modeling of nanoparticle uptake inside pancreatic tumor cells and in vitro efficacy}, publisher = {Infinite Science Publishing}, address = {L{\"u}beck}, isbn = {978-3-945954-58-4}, year = {2019}, language = {en} } @inproceedings{GerhardsSchleserOttenetal.2019, author = {Gerhards, Benjamin and Schleser, Markus and Otten,, Christian and Schwarz, Alexander and Gebhardt, Andreas}, title = {Innovative Laser Beam Joining Technology for Additive Manufactured Parts}, series = {Conference Proceedings 72nd IIW Annual Assembly and International Conference, 7-12 July 2019, Bratislava}, booktitle = {Conference Proceedings 72nd IIW Annual Assembly and International Conference, 7-12 July 2019, Bratislava}, pages = {1 -- 8}, year = {2019}, language = {en} } @inproceedings{GerhardsSchleserOtten2019, author = {Gerhards, Benjamin and Schleser, Markus and Otten, Christian}, title = {Advancements of mobile vacuum laser welding for industrial thick sheet applications}, series = {Conference Proceedings 72nd IIW Annual Assembly and International Conference, 7-12 July 2019, Bratislava}, booktitle = {Conference Proceedings 72nd IIW Annual Assembly and International Conference, 7-12 July 2019, Bratislava}, pages = {1 -- 8}, year = {2019}, language = {en} } @incollection{MatchaBarczik2011, author = {Matcha, Heike and Barczik, G{\"u}nter}, title = {Mass Diversity: Individualized housing via parametric typology}, series = {Structuralism Reloaded? Rule-Based Design in Architecture and Urbanism}, booktitle = {Structuralism Reloaded? Rule-Based Design in Architecture and Urbanism}, editor = {Valena, Tomas and Avermaete, Tom and Vrachliotis, Georg}, publisher = {Edition Axel Menges}, address = {Fellbach}, isbn = {978-3-936681-47-5}, pages = {354 -- 358}, year = {2011}, language = {en} } @inproceedings{MatchaLjubas2010, author = {Matcha, Heike and Ljubas, Ante}, title = {Parametric Origami: Adaptable temporary buildings}, series = {Future cities: 28th eCAADe Conference Proceedings. eCAADe: Conferences. Zurich, Switzerland}, booktitle = {Future cities: 28th eCAADe Conference Proceedings. eCAADe: Conferences. Zurich, Switzerland}, isbn = {978-0-9541183-7-2}, pages = {243 -- 251}, year = {2010}, language = {en} } @inproceedings{MatchaQuasten2009, author = {Matcha, Heike and Quasten, Gero}, title = {A Parametric-Typological Tool: More Diversity for Mass Produced Single Family Homes Through Parametrized Design and Customized Mass Production}, series = {Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings}, booktitle = {Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings}, isbn = {978-0-9541183-8-9}, pages = {409 -- 416}, year = {2009}, language = {en} } @inproceedings{KarzerMatcha2009, author = {Karzer, R{\"u}diger and Matcha, Heike}, title = {Experimental design-build: teaching parameter-based design}, series = {Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings]}, booktitle = {Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings]}, isbn = {978-0-9541183-8-9}, doi = {10.52842/conf.ecaade.2009.153}, pages = {153 -- 158}, year = {2009}, language = {en} }