@article{PoghossianBerndsenSchoening2003, author = {Poghossian, Arshak and Berndsen, Lars and Sch{\"o}ning, Michael Josef}, title = {Chemical sensor as physical sensor: ISFET-based flowvelocity, flow-direction and diffusion-coefficient sensor}, series = {Sensors and Actuators B. 95 (2003), H. 1-3}, journal = {Sensors and Actuators B. 95 (2003), H. 1-3}, isbn = {0925-4005}, pages = {384 -- 390}, year = {2003}, language = {en} } @article{PoghossianWagnerSchoening2011, author = {Poghossian, Arshak and Wagner, Holger and Sch{\"o}ning, Michael Josef}, title = {Functional testing and characterisation of (bio-)chemical sensors on wafer level}, series = {Sensors and Actuators B: Chemical. 154 (2011), H. 2}, journal = {Sensors and Actuators B: Chemical. 154 (2011), H. 2}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1873-3077}, pages = {169 -- 173}, year = {2011}, language = {en} } @article{PoghossianBerndsenSchultzeetal.2001, author = {Poghossian, Arshak and Berndsen, L. and Schultze, J. W. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {„High order" hybrid sensor module based on an identical transducer principle}, series = {Chemical and biological sensors and analytical methods : proceedings of the international symposium / Sensor, Physical Electrochemistry, and Organic and Biological Electrochemistry Divisions. Ed.: M. Butler}, journal = {Chemical and biological sensors and analytical methods : proceedings of the international symposium / Sensor, Physical Electrochemistry, and Organic and Biological Electrochemistry Divisions. Ed.: M. Butler}, publisher = {Electrochemical Society}, address = {Pennington, NJ}, isbn = {1-56677-351-2}, pages = {143 -- 152}, year = {2001}, language = {en} } @article{PoghossianThustSchrothetal.2001, author = {Poghossian, Arshak and Thust, M. and Schroth, P. and Steffen, A. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {Penicillin detection by means of silicon-based field-effect structures}, series = {Sensors and Materials. 13 (2001), H. 4}, journal = {Sensors and Materials. 13 (2001), H. 4}, isbn = {0392-2510}, pages = {207 -- 223}, year = {2001}, language = {en} } @article{BaeckerPoghossianAbouzaretal.2010, author = {B{\"a}cker, Matthias and Poghossian, Arshak and Abouzar, Maryam H. and Wenmackers, Sylvia and Janssens, Stoffel D. and Haenen, Ken and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Capacitive field-effect (bio-)chemical sensors based on nanocrystalline diamond films}, series = {Diamond Electronics and Bioelectronics — Fundamentals to Applications III, edited by P. Bergonzo, [u.a.]}, journal = {Diamond Electronics and Bioelectronics — Fundamentals to Applications III, edited by P. Bergonzo, [u.a.]}, pages = {1 -- 6}, year = {2010}, language = {en} } @article{WendlandtKochBritzetal.2023, author = {Wendlandt, Tim and Koch, Claudia and Britz, Beate and Liedek, Anke and Schmidt, Nora and Werner, Stefan and Gleba, Yuri and Vahidpour, Farnoosh and Welden, Melanie and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Facile Purification and Use of Tobamoviral Nanocarriers for Antibody-Mediated Display of a Two-Enzyme System}, series = {Viruses}, volume = {9}, journal = {Viruses}, number = {15}, publisher = {MDPI}, address = {Basel}, issn = {1999-4915}, doi = {doi.org/10.3390/v15091951}, pages = {Artikel 1951}, year = {2023}, abstract = {Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes.}, language = {en} } @article{SchoeningNaetherAugeretal.2005, author = {Sch{\"o}ning, Michael Josef and N{\"a}ther, Niko and Auger, V. and Poghossian, Arshak and Koudelka-Hep, M.}, title = {Miniaturised flow-through cell with integrated capacitive EIS sensor fabricated at wafer level using Si and SU-8 technologies}, series = {Sensors and Actuators B. 108 (2005), H. 1-2}, journal = {Sensors and Actuators B. 108 (2005), H. 1-2}, isbn = {0925-4005}, pages = {986 -- 992}, year = {2005}, language = {en} } @article{PoghossianSchoening2021, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Recent progress in silicon-based biologically sensitive field-effect devices}, series = {Current Opinion in Electrochemistry}, journal = {Current Opinion in Electrochemistry}, number = {Article number: 100811}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2451-9103}, doi = {10.1016/j.coelec.2021.100811}, year = {2021}, abstract = {Biologically sensitive field-effect devices (BioFEDs) advantageously combine the electronic field-effect functionality with the (bio)chemical receptor's recognition ability for (bio)chemical sensing. In this review, basic and widely applied device concepts of silicon-based BioFEDs (ion-sensitive field-effect transistor, silicon nanowire transistor, electrolyte-insulator-semiconductor capacitor, light-addressable potentiometric sensor) are presented and recent progress (from 2019 to early 2021) is discussed. One of the main advantages of BioFEDs is the label-free sensing principle enabling to detect a large variety of biomolecules and bioparticles by their intrinsic charge. The review encompasses applications of BioFEDs for the label-free electrical detection of clinically relevant protein biomarkers, deoxyribonucleic acid molecules and viruses, enzyme-substrate reactions as well as recording of the cell acidification rate (as an indicator of cellular metabolism) and the extracellular potential.}, language = {en} } @article{PoghossianSchoeningSchrothetal.2001, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Schroth, P. and Simonis, A. and L{\"u}th, H.}, title = {An ISFET-based penicillin sensor with high sensitivity, low detection limit and long lifetime}, series = {Sensors and Actuators B. 76 (2001), H. 1-3}, journal = {Sensors and Actuators B. 76 (2001), H. 1-3}, isbn = {0925-4005}, pages = {519 -- 526}, year = {2001}, language = {en} } @article{HuckSchiffelsHerreraetal.2013, author = {Huck, Christina and Schiffels, Johannes and Herrera, Cony N. and Schelden, Maximilian and Selmer, Thorsten and Poghossian, Arshak and Baumann, Marcus and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Metabolic responses of Escherichia coli upon glucose pulses captured by a capacitive field-effect sensor}, series = {Physica Status Solidi (A)}, volume = {210}, journal = {Physica Status Solidi (A)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0031-8965}, doi = {10.1002/pssa.201200900}, pages = {926 -- 931}, year = {2013}, abstract = {Living cells are complex biological systems transforming metabolites taken up from the surrounding medium. Monitoring the responses of such cells to certain substrate concentrations is a challenging task and offers possibilities to gain insight into the vitality of a community influenced by the growth environment. Cell-based sensors represent a promising platform for monitoring the metabolic activity and thus, the "welfare" of relevant organisms. In the present study, metabolic responses of the model bacterium Escherichia coli in suspension, layered onto a capacitive field-effect structure, were examined to pulses of glucose in the concentration range between 0.05 and 2 mM. It was found that acidification of the surrounding medium takes place immediately after glucose addition and follows Michaelis-Menten kinetic behavior as a function of the glucose concentration. In future, the presented setup can, therefore, be used to study substrate specificities on the enzymatic level and may as well be used to perform investigations of more complex metabolic responses. Conclusions and perspectives highlighting this system are discussed.}, language = {en} } @article{SiqueiraWernerBaeckeretal.2009, author = {Siqueira, Jose R. and Werner, Frederik and B{\"a}cker, Matthias and Poghossian, Arshak and Zucolotto, Valtencir and Oliveira, Osvaldo N. Jr. and Sch{\"o}ning, Michael Josef}, title = {Layer-by-Layer Assembly of Carbon Nanotubes Incorporated in Light-Addressable Potentiometric Sensors}, series = {Journal of Physical Chemistry C. 113 (2009), H. 33}, journal = {Journal of Physical Chemistry C. 113 (2009), H. 33}, publisher = {American Chemical Society}, address = {Washington, DC}, isbn = {1932-7455}, pages = {14765 -- 14770}, year = {2009}, language = {en} } @article{SchoeningBrinkmannRolkaetal.2005, author = {Sch{\"o}ning, Michael Josef and Brinkmann, D. and Rolka, David and Demuth, C. and Poghossian, Arshak}, title = {CIP (cleaning-in-place) suitable "non-glass" pH sensor based on a Ta2O5-gate EIS structure}, series = {Sensors and Actuators B: Chemical. 111-112 (2005)}, journal = {Sensors and Actuators B: Chemical. 111-112 (2005)}, isbn = {0925-4005}, pages = {423 -- 429}, year = {2005}, language = {en} } @article{PoghossianWernerBuniatyanetal.2017, author = {Poghossian, Arshak and Werner, Frederik and Buniatyan, V. V. and Wagner, Torsten and Miamoto, K. and Yoshinobu, T. and Sch{\"o}ning, Michael Josef}, title = {Towards addressability of light-addressable potentiometric sensors: Shunting effect of non-illuminated region and cross-talk}, series = {Sensor and Actuators B: Chemical}, journal = {Sensor and Actuators B: Chemical}, number = {244}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2017.01.047}, pages = {1071 -- 1079}, year = {2017}, abstract = {The LAPS (light-addressable potentiometric sensor) platform is one of the most attractive approaches for chemical and biological sensing with many applications ranging from pH and ion/analyte concentration measurements up to cell metabolism detection and chemical imaging. However, although it is generally accepted that LAPS measurements are spatially resolved, the light-addressability feature of LAPS devices has not been discussed in detail so far. In this work, an extended electrical equivalent-circuit model of the LAPS has been presented, which takes into account possible cross-talk effects due to the capacitive coupling of the non-illuminated region. A shunting effect of the non-illuminated area on the measured photocurrent and addressability of LAPS devices has been studied. It has been shown, that the measured photocurrent will be determined not only by the local interfacial potential in the illuminated region but also by possible interfacial potential changes in the non-illuminated region, yielding cross-talk effects. These findings were supported by the experimental investigations of a penicillin-sensitive multi-spot LAPS and a metal-insulator-semiconductor LAPS as model systems.}, language = {en} } @article{SchoeningPoghossian2008, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {Detection of charged macromolecules by means of field-effect devices (FEDs): possibilities and limitations}, series = {Electrochemical sensors, biosensors and their biomedical applications / ed. by Xueji Zhang ...}, journal = {Electrochemical sensors, biosensors and their biomedical applications / ed. by Xueji Zhang ...}, publisher = {Elsevier Acad. Press}, address = {Amsterdam}, isbn = {978-0-12-373738-0}, pages = {187 -- 212}, year = {2008}, language = {en} } @article{MolinnusBaeckerIkenetal.2015, author = {Molinnus, Denise and B{\"a}cker, Matthias and Iken, Heiko and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Concept for a biomolecular logic chip with an integrated sensor and actuator function}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431913}, pages = {1382 -- 1388}, year = {2015}, abstract = {A concept for a new generation of an integrated multi-functional biosensor/actuator system is developed, which is based on biomolecular logic principles. Such a system is expected to be able to detect multiple biochemical input signals simultaneously and in real-time and convert them into electrical output signals with logical operations such as OR, AND, etc. The system can be designed as a closed-loop drug release device triggered by an enzyme logic gate, while the release of the drug induced by the actuator at the required dosage and timing will be controlled by an additional drug sensor. Thus, the system could help to make an accurate and specific diagnosis. The presented concept is exemplarily demonstrated by using an enzyme logic gate based on a glucose/glucose oxidase system, a temperature-responsive hydrogel mimicking the actuator function and an insulin (drug) sensor. In this work, the results of functional testing of individual amperometric glucose and insulin sensors as well as an impedimetric sensor for the detection of the hydrogel swelling/shrinking are presented.}, language = {en} } @article{ChristiaensAbouzarPoghossianetal.2007, author = {Christiaens, P. and Abouzar, Maryam H. and Poghossian, Arshak and Wagner, Torsten and Bijnens, N. and Williams, O. A. and Daenen, M. and Haenen, K. and Douth{\´e}ret, O. and Haen, J. d´ and Mekhalif, Z. and Sch{\"o}ning, Michael Josef and Wagner, P.}, title = {pH sensitivity of nanocrystalline diamond films}, series = {Physica status solidi (A). 204 (2007), H. 9}, journal = {Physica status solidi (A). 204 (2007), H. 9}, isbn = {0031-8965}, pages = {2925 -- 2930}, year = {2007}, language = {en} } @article{WuPoghossianBronderetal.2016, author = {Wu, Chunsheng and Poghossian, Arshak and Bronder, Thomas and Sch{\"o}ning, Michael Josef}, title = {Sensing of double-stranded DNA molecules by their intrinsic molecular charge using the light-addressable potentiometric sensor}, series = {Sensors and Actuators B: Chemical}, journal = {Sensors and Actuators B: Chemical}, number = {229}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.02.004}, pages = {506 -- 512}, year = {2016}, abstract = {A multi-spot light-addressable potentiometric sensor (LAPS), which belongs to the family of semiconductor field-effect devices, was applied for label-free detection of double-stranded deoxyribonucleic acid (dsDNA) molecules by their intrinsic molecular charge. To reduce the distance between the DNA charge and sensor surface and thus, to enhance the electrostatic coupling between the dsDNA molecules and the LAPS, the negatively charged dsDNA molecules were electrostatically adsorbed onto the gate surface of the LAPS covered with a positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)). The surface potential changes in each spot of the LAPS, induced by the layer-by-layer adsorption of a PAH/dsDNA bilayer, were recorded by means of photocurrent-voltage and constant-photocurrent measurements. In addition, the surface morphology of the gate surface before and after consecutive electrostatic adsorption of PAH and dsDNA layers was studied by atomic force microscopy measurements. Moreover, fluorescence microscopy was used to verify the successful adsorption of dsDNA molecules onto the PAH-modified LAPS surface. A high sensor signal of 25 mV was registered after adsorption of 10 nM dsDNA molecules. The lower detection limit is down to 0.1 nM dsDNA. The obtained results demonstrate that the PAH-modified LAPS device provides a convenient and rapid platform for the direct label-free electrical detection of in-solution hybridized dsDNA molecules.}, language = {en} } @article{PoghossianSchoening2014, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Label-free sensing of biomolecules with field-effect devices for clinical applications}, series = {Electroanalysis}, volume = {26}, journal = {Electroanalysis}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109 (E-Journal); 1040-0397 (Print)}, doi = {10.1002/elan.201400073}, pages = {1197 -- 1213}, year = {2014}, abstract = {Among the variety of transducer concepts proposed for label-free detection of biomolecules, the semiconductor field-effect device (FED) is one of the most attractive platforms. As medical techniques continue to progress towards diagnostic and therapies based on biomarkers, the ability of FEDs for a label-free, fast and real-time detection of multiple pathogenic and physiologically relevant molecules with high specificity and sensitivity offers very promising prospects for their application in point-of-care and personalized medicine for an early diagnosis and treatment of diseases. The presented paper reviews recent advances and current trends in research and development of different FEDs for label-free, direct electrical detection of charged biomolecules by their intrinsic molecular charge. The authors are mainly focusing on the detection of the DNA hybridization event, antibody-antigen affinity reaction as well as clinically relevant biomolecules such as cardiac and cancer biomarkers.}, language = {en} } @article{PourshahidiAchtsnichtNambipareecheeetal.2021, author = {Pourshahidi, Ali Mohammad and Achtsnicht, Stefan and Nambipareechee, Mrinal Murali and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Multiplex detection of magnetic beads using offset field dependent frequency mixing magnetic detection}, series = {Sensors}, volume = {21}, journal = {Sensors}, number = {17}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s21175859}, pages = {16 Seiten}, year = {2021}, abstract = {Magnetic immunoassays employing Frequency Mixing Magnetic Detection (FMMD) have recently become increasingly popular for quantitative detection of various analytes. Simultaneous analysis of a sample for two or more targets is desirable in order to reduce the sample amount, save consumables, and save time. We show that different types of magnetic beads can be distinguished according to their frequency mixing response to a two-frequency magnetic excitation at different static magnetic offset fields. We recorded the offset field dependent FMMD response of two different particle types at frequencies ƒ₁ + n⋅ƒ₂, n = 1, 2, 3, 4 with ƒ₁ = 30.8 kHz and ƒ₂ = 63 Hz. Their signals were clearly distinguishable by the locations of the extremes and zeros of their responses. Binary mixtures of the two particle types were prepared with different mixing ratios. The mixture samples were analyzed by determining the best linear combination of the two pure constituents that best resembled the measured signals of the mixtures. Using a quadratic programming algorithm, the mixing ratios could be determined with an accuracy of greater than 14\%. If each particle type is functionalized with a different antibody, multiplex detection of two different analytes becomes feasible.}, language = {en} } @article{LeinhosSchusserBaeckeretal.2014, author = {Leinhos, Marcel and Schusser, Sebastian and B{\"a}cker, Matthias and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Micromachined multi-parameter sensor chip for the control of polymer-degradation medium}, series = {Physica Status Solidi (A) : special issue on engineering and functional interfaces}, volume = {211}, journal = {Physica Status Solidi (A) : special issue on engineering and functional interfaces}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E-Journal); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201330364}, pages = {1346 -- 1351}, year = {2014}, abstract = {It is well known that the degradation environment can strongly influence the biodegradability and kinetics of biodegradation processes of polymers. Therefore, besides the monitoring of the degradation process, it is also necessary to control the medium in which the degradation takes place. In this work, a micromachined multi-parameter sensor chip for the control of the polymer-degradation medium has been developed. The chip combines a capacitive field-effect pH sensor, a four-electrode electrolyte-conductivity sensor and a thin-film Pt-temperature sensor. The results of characterization of individual sensors are presented. In addition, the multi-parameter sensor chip together with an impedimetric polymer-degradation sensor was simultaneously characterized in degradation solutions with different pH and electrolyte conductivity. The obtained results demonstrate the feasibility of the multi-parameter sensor chip for the control of the polymer-degradation medium.}, language = {en} }