@inproceedings{MuellerSchmittLeiseetal.2021, author = {M{\"u}ller, Tim M. and Schmitt, Andreas and Leise, Philipp and Meck, Tobias and Altherr, Lena and Pelz, Peter F. and Pfetsch, Marc E.}, title = {Validation of an optimized resilient water supply system}, series = {Uncertainty in Mechanical Engineering}, booktitle = {Uncertainty in Mechanical Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-77255-0}, doi = {10.1007/978-3-030-77256-7_7}, pages = {70 -- 80}, year = {2021}, abstract = {Component failures within water supply systems can lead to significant performance losses. One way to address these losses is the explicit anticipation of failures within the design process. We consider a water supply system for high-rise buildings, where pump failures are the most likely failure scenarios. We explicitly consider these failures within an early design stage which leads to a more resilient system, i.e., a system which is able to operate under a predefined number of arbitrary pump failures. We use a mathematical optimization approach to compute such a resilient design. This is based on a multi-stage model for topology optimization, which can be described by a system of nonlinear inequalities and integrality constraints. Such a model has to be both computationally tractable and to represent the real-world system accurately. We therefore validate the algorithmic solutions using experiments on a scaled test rig for high-rise buildings. The test rig allows for an arbitrary connection of pumps to reproduce scaled versions of booster station designs for high-rise buildings. We experimentally verify the applicability of the presented optimization model and that the proposed resilience properties are also fulfilled in real systems.}, language = {en} } @inproceedings{MuellerAltherrAholaetal.2019, author = {M{\"u}ller, Tim M. and Altherr, Lena and Ahola, Marja and Schabel, Samuel and Pelz, Peter F.}, title = {Multi-Criteria optimization of pressure screen systems in paper recycling - balancing quality, yield, energy consumption and system complexity}, series = {EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization}, booktitle = {EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization}, editor = {Rodrigues, H. C.}, publisher = {Springer International Publishing}, address = {Basel}, isbn = {978-3-319-97773-7}, doi = {10.1007/978-3-319-97773-7_105}, year = {2019}, abstract = {The paper industry is the industry with the third highest energy consumption in the European Union. Using recycled paper instead of fresh fibers for papermaking is less energy consuming and saves resources. However, adhesive contaminants in recycled paper are particularly problematic since they reduce the quality of the resulting paper-product. To remove as many contaminants and at the same time obtain as many valuable fibres as possible, fine screening systems, consisting of multiple interconnected pressure screens, are used. Choosing the best configuration is a non-trivial task: The screens can be interconnected in several ways, and suitable screen designs as well as operational parameters have to be selected. Additionally, one has to face conflicting objectives. In this paper, we present an approach for the multi-criteria optimization of pressure screen systems based on Mixed-Integer Nonlinear Programming. We specifically focus on a clear representation of the trade-off between different objectives.}, language = {en} } @inproceedings{UlmerBraunChengetal.2021, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Adapting Augmented Reality Systems to the users' needs using Gamification and error solving methods}, series = {Procedia CIRP}, volume = {104}, booktitle = {Procedia CIRP}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2021.11.024}, pages = {140 -- 145}, year = {2021}, abstract = {Animations of virtual items in AR support systems are typically predefined and lack interactions with dynamic physical environments. AR applications rarely consider users' preferences and do not provide customized spontaneous support under unknown situations. This research focuses on developing adaptive, error-tolerant AR systems based on directed acyclic graphs and error resolving strategies. Using this approach, users will have more freedom of choice during AR supported work, which leads to more efficient workflows. Error correction methods based on CAD models and predefined process data create individual support possibilities. The framework is implemented in the Industry 4.0 model factory at FH Aachen.}, language = {en} } @inproceedings{Huening2021, author = {H{\"u}ning, Felix}, title = {Sustainable changes beyond covid-19 for a second semester physics course for electrical engineering students}, series = {Blended Learning in Engineering Education: challenging, enlightening - and lasting?}, booktitle = {Blended Learning in Engineering Education: challenging, enlightening - and lasting?}, isbn = {978-2-87352-023-6}, pages = {1405 -- 1409}, year = {2021}, abstract = {The course Physics for Electrical Engineering is part of the curriculum of the bachelor program Electrical Engineering at University of Applied Science Aachen. Before covid-19 the course was conducted in a rather traditional way with all parts (lecture, exercise and lab) face-to-face. This teaching approach changed fundamentally within a week when the covid-19 limitations forced all courses to distance learning. All parts of the course were transformed to pure distance learning including synchronous and asynchronous parts for the lecture, live online-sessions for the exercises and self-paced labs at home. Using these methods, the course was able to impart the required knowledge and competencies. Taking the teacher's observations of the student's learning behaviour and engagement, the formal and informal feedback of the students and the results of the exams into account, the new methods are evaluated with respect to effectiveness, sustainability and suitability for competence transfer. Based on this analysis strong and weak points of the concept and countermeasures to solve the weak points were identified. The analysis further leads to a sustainable teaching approach combining synchronous and asynchronous parts with self-paced learning times that can be used in a very flexible manner for different learning scenarios, pure online, hybrid (mixture of online and presence times) and pure presence teaching.}, language = {en} } @inproceedings{LeiseBreuerAltherretal.2020, author = {Leise, Philipp and Breuer, Tim and Altherr, Lena and Pelz, Peter F.}, title = {Development, validation and assessment of a resilient pumping system}, series = {Proceedings of the Joint International Resilience Conference, JIRC2020}, booktitle = {Proceedings of the Joint International Resilience Conference, JIRC2020}, isbn = {978-90-365-5095-6}, pages = {97 -- 100}, year = {2020}, abstract = {The development of resilient technical systems is a challenging task, as the system should adapt automatically to unknown disturbances and component failures. To evaluate different approaches for deriving resilient technical system designs, we developed a modular test rig that is based on a pumping system. On the basis of this example system, we present metrics to quantify resilience and an algorithmic approach to improve resilience. This approach enables the pumping system to automatically react on unknown disturbances and to reduce the impact of component failures. In this case, the system is able to automatically adapt its topology by activating additional valves. This enables the system to still reach a minimum performance, even in case of failures. Furthermore, timedependent disturbances are evaluated continuously, deviations from the original state are automatically detected and anticipated in the future. This allows to reduce the impact of future disturbances and leads to a more resilient system behaviour.}, language = {en} } @inproceedings{LorenzAltherrPelz2019, author = {Lorenz, Imke-Sophie B. and Altherr, Lena and Pelz, Peter F.}, title = {Graph-theoretic resilience analysis of a water distribution system's topology}, series = {World Congress on Resilience, Reliability and Asset Management 2019}, booktitle = {World Congress on Resilience, Reliability and Asset Management 2019}, pages = {106 -- 109}, year = {2019}, abstract = {Water suppliers are faced with the great challenge of achieving high-quality and, at the same time, low-cost water supply. In practice, the focus is set on the most beneficial maintenance measures and/or capacity adaptations of existing water distribution systems (WDS). Since climatic and demographic influences will pose further challenges in the future, the resilience enhancement of WDS, i.e. the enhancement of their capability to withstand and recover from disturbances, has been in particular focus recently. To assess the resilience of WDS, metrics based on graph theory have been proposed. In this study, a promising approach is applied to assess the resilience of the WDS for a district in a major German City. The conducted analysis provides insight into the process of actively influencing the resilience of WDS}, language = {en} } @inproceedings{MeckMuellerAltherretal.2020, author = {Meck, Marvin M. and M{\"u}ller, Tim M. and Altherr, Lena and Pelz, Peter F.}, title = {Improving an industrial cooling system using MINLP, considering capital and operating costs}, series = {Operations Research Proceedings 2019}, booktitle = {Operations Research Proceedings 2019}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-48438-5 (Print)}, doi = {10.1007/978-3-030-48439-2_61}, pages = {505 -- 512}, year = {2020}, abstract = {The chemical industry is one of the most important industrial sectors in Germany in terms of manufacturing revenue. While thermodynamic boundary conditions often restrict the scope for reducing the energy consumption of core processes, secondary processes such as cooling offer scope for energy optimisation. In this contribution, we therefore model and optimise an existing cooling system. The technical boundary conditions of the model are provided by the operators, the German chemical company BASF SE. In order to systematically evaluate different degrees of freedom in topology and operation, we formulate and solve a Mixed-Integer Nonlinear Program (MINLP), and compare our optimisation results with the existing system.}, language = {en} } @inproceedings{GrundmannBauerBodenetal.2019, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Boden, Ralf and Ceriotti, Matteo and Chand, Suditi and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Heiligers, Jeannette and Herč{\´i}k, David and H{\´e}rique, Alain and Ho, Tra-Mi and Jahnke, Rico and Kofman, Wlodek and Lange, Caroline and Lichtenheldt, Roy and McInnes, Colin and Meß, Jan-Gerd and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Moore, Iain and Pelivan, Ivanka and Peloni, Alessandro and Plettemeier, Dirk and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Rogez, Yves and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and T{\´o}th, Norbert and Vergaaij, Merel and Viavattene, Giulia and Wejmo, Elisabet and Wiedemann, Carsten and Wolff, Friederike and Ziach, Christian}, title = {Flights are ten a sail - Re-use and commonality in the design and system engineering of small spacecraft solar sail missions with modular hardware for responsive and adaptive exploration}, series = {70th International Astronautical Congress (IAC)}, booktitle = {70th International Astronautical Congress (IAC)}, isbn = {9781713814856}, pages = {1 -- 7}, year = {2019}, language = {en} } @inproceedings{MuellerAltherrLeiseetal.2020, author = {M{\"u}ller, Tim M. and Altherr, Lena and Leise, Philipp and Pelz, Peter F.}, title = {Optimization of pumping systems for buildings: Experimental validation of different degrees of model detail on a modular test rig}, series = {Operations Research Proceedings 2019}, booktitle = {Operations Research Proceedings 2019}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-48438-5}, doi = {10.1007/978-3-030-48439-2_58}, pages = {481 -- 488}, year = {2020}, abstract = {Successful optimization requires an appropriate model of the system under consideration. When selecting a suitable level of detail, one has to consider solution quality as well as the computational and implementation effort. In this paper, we present a MINLP for a pumping system for the drinking water supply of high-rise buildings. We investigate the influence of the granularity of the underlying physical models on the solution quality. Therefore, we model the system with a varying level of detail regarding the friction losses, and conduct an experimental validation of our model on a modular test rig. Furthermore, we investigate the computational effort and show that it can be reduced by the integration of domain-specific knowledge.}, language = {en} } @inproceedings{LeiseAltherr2018, author = {Leise, Philipp and Altherr, Lena}, title = {Optimizing the design and control of decentralized water supply systems - a case-study of a hotel building}, series = {EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization}, booktitle = {EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-97773-7}, doi = {10.1007/978-3-319-97773-7_107}, pages = {1241 -- 1252}, year = {2018}, abstract = {To increase pressure to supply all floors of high buildings with water, booster stations, normally consisting of several parallel pumps in the basement, are used. In this work, we demonstrate the potential of a decentralized pump topology regarding energy savings in water supply systems of skyscrapers. We present an approach, based on Mixed-Integer Nonlinear Programming, that allows to choose an optimal network topology and optimal pumps from a predefined construction kit comprising different pump types. Using domain-specific scaling laws and Latin Hypercube Sampling, we generate different input sets of pump types and compare their impact on the efficiency and cost of the total system design. As a realistic application example, we consider a hotel building with 325 rooms, 12 floors and up to four pressure zones.}, language = {en} } @inproceedings{LeiseAltherrPelz2018, author = {Leise, Philipp and Altherr, Lena and Pelz, Peter F.}, title = {Technical Operations Research (TOR) - Algorithms, not Engineers, Design Optimal Energy Efficient and Resilient Cooling Systems}, series = {FAN2018 - Proceedings of the International Conference on Fan Noise, Aerodynamics, Applications and Systems}, booktitle = {FAN2018 - Proceedings of the International Conference on Fan Noise, Aerodynamics, Applications and Systems}, pages = {1 -- 12}, year = {2018}, abstract = {The overall energy efficiency of ventilation systems can be improved by considering not only single components, but by considering as well the interplay between every part of the system. With the help of the method "TOR" ("Technical Operations Research"), which was developed at the Chair of Fluid Systems at TU Darmstadt, it is possible to improve the energy efficiency of the whole system by considering all possible design choices programmatically. We show the ability of this systematic design approach with a ventilation system for buildings as a use case example. Based on a Mixed-Integer Nonlinear Program (MINLP) we model the ventilation system. We use binary variables to model the selection of different pipe diameters. Multiple fans are model with the help of scaling laws. The whole system is represented by a graph, where the edges represent the pipes and fans and the nodes represents the source of air for cooling and the sinks, that have to be cooled. At the beginning, the human designer chooses a construction kit of different suitable fans and pipes of different diameters and different load cases. These boundary conditions define a variety of different possible system topologies. It is not possible to consider all topologies by hand. With the help of state of the art solvers, on the other side, it is possible to solve this MINLP. Next to this, we also consider the effects of malfunctions in different components. Therefore, we show a first approach to measure the resilience of the shown example use case. Further, we compare the conventional approach with designs that are more resilient. These more resilient designs are derived by extending the before mentioned model with further constraints, that consider explicitly the resilience of the overall system. We show that it is possible to design resilient systems with this method already in the early design stage and compare the energy efficiency and resilience of these different system designs.}, language = {en} } @inproceedings{RauschFriesenAltherretal.2018, author = {Rausch, Lea and Friesen, John and Altherr, Lena and Pelz, Peter F.}, title = {Using mixed-integer programming for the optimal design of water supply networks for slums}, series = {Operations Research Proceedings 2017}, booktitle = {Operations Research Proceedings 2017}, editor = {Kliewer, Natalia and Ehmke, Jan Fabian and Bornd{\"o}rfer, Ralf}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-89919-0 (Print)}, doi = {10.1007/978-3-319-89920-6_68}, pages = {509 -- 516}, year = {2018}, abstract = {The UN sets the goal to ensure access to water and sanitation for all people by 2030. To address this goal, we present a multidisciplinary approach for designing water supply networks for slums in large cities by applying mathematical optimization. The problem is modeled as a mixed-integer linear problem (MILP) aiming to find a network describing the optimal supply infrastructure. To illustrate the approach, we apply it on a small slum cluster in Dhaka, Bangladesh.}, language = {en} } @inproceedings{RauschLeiseEdereretal.2016, author = {Rausch, Lea and Leise, Philipp and Ederer, Thorsten and Altherr, Lena and Pelz, Peter F.}, title = {A comparison of MILP and MINLP solver performance on the example of a drinking water supply system design problem}, series = {ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering}, booktitle = {ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering}, editor = {Papadrakakis, M. and Ppadopoulos, V. and Stefanou, G. and Plevris, V.}, isbn = {978-618-82844-0-1}, pages = {8509 -- 8527}, year = {2016}, abstract = {Finding a good system topology with more than a handful of components is a highly non-trivial task. The system needs to be able to fulfil all expected load cases, but at the same time the components should interact in an energy-efficient way. An example for a system design problem is the layout of the drinking water supply of a residential building. It may be reasonable to choose a design of spatially distributed pumps which are connected by pipes in at least two dimensions. This leads to a large variety of possible system topologies. To solve such problems in a reasonable time frame, the nonlinear technical characteristics must be modelled as simple as possible, while still achieving a sufficiently good representation of reality. The aim of this paper is to compare the speed and reliability of a selection of leading mathematical programming solvers on a set of varying model formulations. This gives us empirical evidence on what combinations of model formulations and solver packages are the means of choice with the current state of the art.}, language = {en} } @inproceedings{HueningWacheMagiera2021, author = {H{\"u}ning, Felix and Wache, Franz-Josef and Magiera, David}, title = {Redundant bus systems using dual-mode radio}, series = {Proceedings of Sixth International Congress on Information and Communication Technology}, booktitle = {Proceedings of Sixth International Congress on Information and Communication Technology}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-16-2379-0}, doi = {10.1007/978-981-16-2380-6_73}, pages = {835 -- 842}, year = {2021}, abstract = {Communication via serial bus systems, like CAN, plays an important role for all kinds of embedded electronic and mechatronic systems. To cope up with the requirements for functional safety of safety-critical applications, there is a need to enhance the safety features of the communication systems. One measure to achieve a more robust communication is to add redundant data transmission path to the applications. In general, the communication of real-time embedded systems like automotive applications is tethered, and the redundant data transmission lines are also tethered, increasing the size of the wiring harness and the weight of the system. A radio link is preferred as a redundant transmission line as it uses a complementary transmission medium compared to the wired solution and in addition reduces wiring harness size and weight. Standard wireless links like Wi-Fi or Bluetooth cannot meet the requirements for real-time capability with regard to bus communication. Using the new dual-mode radio enables a redundant transmission line meeting all requirements with regard to real-time capability, robustness and transparency for the data bus. In addition, it provides a complementary transmission medium with regard to commonly used tethered links. A CAN bus system is used to demonstrate the redundant data transfer via tethered and wireless CAN.}, language = {en} } @inproceedings{KloeserKohlKraftetal.2021, author = {Kl{\"o}ser, Lars and Kohl, Philipp and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {Multi-attribute relation extraction (MARE): simplifying the application of relation extraction}, series = {Proceedings of the 2nd International Conference on Deep Learning Theory and Applications - DeLTA}, booktitle = {Proceedings of the 2nd International Conference on Deep Learning Theory and Applications - DeLTA}, isbn = {978-989-758-526-5}, doi = {10.5220/0010559201480156}, pages = {148 -- 156}, year = {2021}, abstract = {Natural language understanding's relation extraction makes innovative and encouraging novel business concepts possible and facilitates new digitilized decision-making processes. Current approaches allow the extraction of relations with a fixed number of entities as attributes. Extracting relations with an arbitrary amount of attributes requires complex systems and costly relation-trigger annotations to assist these systems. We introduce multi-attribute relation extraction (MARE) as an assumption-less problem formulation with two approaches, facilitating an explicit mapping from business use cases to the data annotations. Avoiding elaborated annotation constraints simplifies the application of relation extraction approaches. The evaluation compares our models to current state-of-the-art event extraction and binary relation extraction methods. Our approaches show improvement compared to these on the extraction of general multi-attribute relations.}, language = {en} } @inproceedings{MandekarJentschLutzetal.2021, author = {Mandekar, Swati and Jentsch, Lina and Lutz, Kai and Behbahani, Mehdi and Melnykowycz, Mark}, title = {Earable design analysis for sleep EEG measurements}, series = {UbiComp '21}, booktitle = {UbiComp '21}, doi = {10.1145/3460418.3479328}, pages = {171 -- 175}, year = {2021}, abstract = {Conventional EEG devices cannot be used in everyday life and hence, past decade research has been focused on Ear-EEG for mobile, at-home monitoring for various applications ranging from emotion detection to sleep monitoring. As the area available for electrode contact in the ear is limited, the electrode size and location play a vital role for an Ear-EEG system. In this investigation, we present a quantitative study of ear-electrodes with two electrode sizes at different locations in a wet and dry configuration. Electrode impedance scales inversely with size and ranges from 450 kΩ to 1.29 MΩ for dry and from 22 kΩ to 42 kΩ for wet contact at 10 Hz. For any size, the location in the ear canal with the lowest impedance is ELE (Left Ear Superior), presumably due to increased contact pressure caused by the outer-ear anatomy. The results can be used to optimize signal pickup and SNR for specific applications. We demonstrate this by recording sleep spindles during sleep onset with high quality (5.27 μVrms).}, language = {en} } @inproceedings{KohlSchmidtsKloeseretal.2021, author = {Kohl, Philipp and Schmidts, Oliver and Kl{\"o}ser, Lars and Werth, Henri and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {STAMP 4 NLP - an agile framework for rapid quality-driven NLP applications development}, series = {Quality of Information and Communications Technology. QUATIC 2021}, booktitle = {Quality of Information and Communications Technology. QUATIC 2021}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-85346-4}, doi = {10.1007/978-3-030-85347-1_12}, pages = {156 -- 166}, year = {2021}, abstract = {The progress in natural language processing (NLP) research over the last years, offers novel business opportunities for companies, as automated user interaction or improved data analysis. Building sophisticated NLP applications requires dealing with modern machine learning (ML) technologies, which impedes enterprises from establishing successful NLP projects. Our experience in applied NLP research projects shows that the continuous integration of research prototypes in production-like environments with quality assurance builds trust in the software and shows convenience and usefulness regarding the business goal. We introduce STAMP 4 NLP as an iterative and incremental process model for developing NLP applications. With STAMP 4 NLP, we merge software engineering principles with best practices from data science. Instantiating our process model allows efficiently creating prototypes by utilizing templates, conventions, and implementations, enabling developers and data scientists to focus on the business goals. Due to our iterative-incremental approach, businesses can deploy an enhanced version of the prototype to their software environment after every iteration, maximizing potential business value and trust early and avoiding the cost of successful yet never deployed experiments.}, language = {en} } @inproceedings{SchmidtsKraftWinkensetal.2021, author = {Schmidts, Oliver and Kraft, Bodo and Winkens, Marvin and Z{\"u}ndorf, Albert}, title = {Catalog integration of heterogeneous and volatile product data}, series = {DATA 2020: Data Management Technologies and Applications}, booktitle = {DATA 2020: Data Management Technologies and Applications}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-83013-7}, doi = {10.1007/978-3-030-83014-4_7}, pages = {134 -- 153}, year = {2021}, abstract = {The integration of frequently changing, volatile product data from different manufacturers into a single catalog is a significant challenge for small and medium-sized e-commerce companies. They rely on timely integrating product data to present them aggregated in an online shop without knowing format specifications, concept understanding of manufacturers, and data quality. Furthermore, format, concepts, and data quality may change at any time. Consequently, integrating product catalogs into a single standardized catalog is often a laborious manual task. Current strategies to streamline or automate catalog integration use techniques based on machine learning, word vectorization, or semantic similarity. However, most approaches struggle with low-quality or real-world data. We propose Attribute Label Ranking (ALR) as a recommendation engine to simplify the integration process of previously unknown, proprietary tabular format into a standardized catalog for practitioners. We evaluate ALR by focusing on the impact of different neural network architectures, language features, and semantic similarity. Additionally, we consider metrics for industrial application and present the impact of ALR in production and its limitations.}, language = {en} } @inproceedings{GrundmannBauerBodenetal.2019, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Boden, Ralf Christian and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Hercik, D. and Herique, A. and Ho, Tra-Mi and Jahnke, Rico and Kofman, Wlodek and Lange, Caroline and Lichtenheldt, Roy and McInnes, Colin R. and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Moore, Iain and Pelivan, Ivanka and Peloni, Alessandro and Plettemeier, Dirk and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Rogez, Yves and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Toth, Norbert and Viavattene, Giulia and Wejmo, Elisabet and Wolff, Friederike and Ziach, Christian}, title = {Responsive integrated small spacecraft solar sail and payload design concepts and missions}, series = {Conference: 5th International Symposium on Solar Sailing (ISSS 2019)}, booktitle = {Conference: 5th International Symposium on Solar Sailing (ISSS 2019)}, year = {2019}, abstract = {Asteroid mining has the potential to greatly reduce the cost of in-space manufacturing, production of propellant for space transportation and consumables for crewed spacecraft, compared to launching the required resources from Earth's deep gravity well. This paper discusses the top-level mission architecture and trajectory design for these resource-return missions, comparing high-thrust trajectories with continuous low-thrust solar-sail trajectories. This work focuses on maximizing the economic Net Present Value, which takes the time-cost of finance into account and therefore balances the returned resource mass and mission duration. The different propulsion methods will then be compared in terms of maximum economic return, sets of attainable target asteroids, and mission flexibility. This paper provides one more step towards making commercial asteroid mining an economically viable reality by integrating trajectory design, propulsion technology and economic modelling.}, language = {en} } @inproceedings{GrundmannBauerBieleetal.2018, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Biele, Jens and Boden, Ralf and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Herč{\´i}k, David and Ho, Tra-Mi and Jahnke, Rico and Koch, Aaron D and Koncz, Alexander and Krause, Christian and Lange, Caroline and Lichtenheldt, Roy and Maiwald, Volker and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Pelivan, Ivanka and Peloni, Alessandro and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Tardivel, Simon and T{\´o}th, Norbert and Wejmo, Elisabet and Wolff, Friederike and Ziach, Christian}, title = {Small spacecraft based multiple near-earth asteroid rendezvous and landing with near-term solar sails and 'Now-Term 'technologies}, series = {69 th International Astronautical Congress (IAC)}, booktitle = {69 th International Astronautical Congress (IAC)}, pages = {1 -- 18}, year = {2018}, abstract = {Physical interaction with small solar system bodies (SSSB) is the next step in planetary science, planetary in-situ resource utilization (ISRU), and planetary defense (PD). It requires a broader understanding of the surface properties of the target objects, with particular interest focused on those near Earth. Knowledge of composition, multi-scale surface structure, thermal response, and interior structure is required to design, validate and operate missions addressing these three fields. The current level of understanding is occasionally simplified into the phrase, "If you've seen one asteroid, you've seen one asteroid", meaning that the in-situ characterization of SSSBs has yet to cross the threshold towards a robust and stable scheme of classification. This would enable generic features in spacecraft design, particularly for ISRU and science missions. Currently, it is necessary to characterize any potential target object sufficiently by a dedicated pre-cursor mission to design the mission which then interacts with the object in a complex fashion. To open up strategic approaches, much broader in-depth characterization of potential target objects would be highly desirable. In SSSB science missions, MASCOT-like nano-landers and instrument carriers which integrate at the instrument level to their mothership have met interest. By its size, MASCOT is compatible with small interplanetary missions. The DLR-ESTEC Gossamer Roadmap Science Working Groups' studies identified Multiple Near-Earth asteroid (NEA) Rendezvous (MNR) as one of the space science missions only feasible with solar sail propulsion. The Solar Polar Orbiter (SPO) study showed the ability to access any inclination, theDisplaced-L1 (DL1) mission operates close to Earth, where objects of interest to PD and for ISRU reside. Other studies outline the unique capability of solar sails to provide access to all SSSB, at least within the orbit of Jupiter, and significant progress has been made to explore the performance envelope of near-term solar sails for MNR. However, it is difficult for sailcraft to interact physically with a SSSB. We expand and extend the philosophy of the recently qualified DLR Gossamer solar sail deployment technology using efficient multiple sub-spacecraft integration to also include landers for one-way in-situ investigations and sample-return missions by synergetic integration and operation of sail and lander. The MASCOT design concept and its characteristic features have created an ideal counterpart for thisand has already been adapted to the needs of the AIM spacecraft, former part of the NASA-ESA AIDA missionDesigning the 69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018. IAC-18-F1.2.3 Page 2 of 17 combined spacecraft for piggy-back launch accommodation enables low-cost massively parallel access to the NEA population.}, language = {en} }