@inproceedings{SchopenShabaniEschetal.2022, author = {Schopen, Oliver and Shabani, Bahman and Esch, Thomas and Kemper, Hans and Shah, Neel}, title = {Quantitative evaluation of health management designs for fuel cell systems in transport vehicles}, series = {2nd UNITED-SAIG International Conference Proceedings}, booktitle = {2nd UNITED-SAIG International Conference Proceedings}, editor = {Rahim, S.A. and As'arry, A. and Zuhri, M.Y.M. and Harmin, M.Y. and Rezali, K.A.M. and Hairuddin, A.A.}, pages = {1 -- 3}, year = {2022}, abstract = {Focusing on transport vehicles, mainly with regard to aviation applications, this paper presents compilation and subsequent quantitative evaluation of methods aimed at building an optimum integrated health management solution for fuel cell systems. The methods are divided into two different main types and compiled in a related scheme. Furthermore, different methods are analysed and evaluated based on parameters specific to the aviation context of this study. Finally, the most suitable method for use in fuel cell health management systems is identified and its performance and suitability is quantified.}, language = {en} } @inproceedings{StarkRiepingEsch2023, author = {Stark, Ralf and Rieping, Carla and Esch, Thomas}, title = {The impact of guide tubes on flow separation in rocket nozzles}, series = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, booktitle = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, pages = {8 Seiten}, year = {2023}, abstract = {Rocket engine test facilities and launch pads are typically equipped with a guide tube. Its purpose is to ensure the controlled and safe routing of the hot exhaust gases. In addition, the guide tube induces a suction that effects the nozzle flow, namely the flow separation during transient start-up and shut-down of the engine. A cold flow subscale nozzle in combination with a set of guide tubes was studied experimentally to determine the main influencing parameters.}, language = {en} } @inproceedings{StarkBartelDitscheetal.2023, author = {Stark, Ralf and Bartel, Sebastian and Ditsche, Florian and Esch, Thomas}, title = {Design study of a 30kN LOX/LCH4 aerospike rocket engine for lunar lander application}, series = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, booktitle = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, pages = {9 Seiten}, year = {2023}, abstract = {Based on lunar lander concept EL3, various LOX/CH4 aerospike engines were studied. A distinction was made between single and cluster configurations as well as ideal and non-ideal contour concepts. It could be shown that non-ideal aerospike engines promise a significant payload gain.}, language = {en} } @article{SaretzkiBergmannDahmannetal.2021, author = {Saretzki, Charlotte and Bergmann, Ole and Dahmann, Peter and Janser, Frank and Keimer, Jona and Machado, Patricia and Morrison, Audry and Page, Henry and Pluta, Emil and St{\"u}bing, Felix and K{\"u}pper, Thomas}, title = {Are small airplanes safe with regards to COVID-19 transmission?}, series = {Journal of Travel Medicine}, volume = {28}, journal = {Journal of Travel Medicine}, number = {7}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1708-8305}, doi = {10.1093/jtm/taab105}, year = {2021}, language = {en} } @misc{MayntzKeimerTegtmeyeretal.2021, author = {Mayntz, Joscha and Keimer, Jona and Tegtmeyer, Philipp and Dahmann, Peter and Hille, Sebastian and Stumpf, Eike and Fisher, Alex and Dorrington, Graham}, title = {Aerodynamic Investigation on Efficient Inflight Transition of a Propeller from Propulsion to Regeneration Mode}, series = {AIAA SCITECH 2022 Forum}, journal = {AIAA SCITECH 2022 Forum}, publisher = {AIAA}, address = {Reston, Va.}, doi = {10.2514/6.2022-0546}, year = {2021}, abstract = {This paper discusses a new way of inflight power regeneration for electric or hybrid-electric driven general aviation aircraft with one powertrain for both configurations. Three different approaches for the shift from propulsion to regeneration mode are analyzed. Numerical cal-culation and wind tunnel results are compared and show the highest regeneration potential for the "Windmill" approach, where the propeller blades are flipped, and rotation is reversed. A combination of all regeneration approaches for a realistic flight mission is discussed.}, language = {en} } @misc{KeimerGirbigMayntzetal.2022, author = {Keimer, Jona and Girbig, Leo and Mayntz, Joscha and Tegtmeyer, Philipp and Wendland, Frederik and Dahman, Peter and Fisher, Alex and Dorrington, Graham}, title = {Flight mission optimization for eco-efficiency in consideration of electric regeneration and atmospheric conditions}, series = {AIAA AVIATION 2022 Forum}, journal = {AIAA AVIATION 2022 Forum}, publisher = {AIAA}, address = {Reston, Va.}, doi = {10.2514/6.2022-4118}, year = {2022}, abstract = {The development and operation of hybrid or purely electrically powered aircraft in regional air mobility is a significant challenge for the entire aviation sector. This technology is expected to lead to substantial advances in flight performance, energy efficiency, reliability, safety, noise reduction, and exhaust emissions. Nevertheless, any consumed energy results in heat or carbon dioxide emissions and limited electric energy storage capabilities suppress commercial use. Therefore, the significant challenges to achieving eco-efficient aviation are increased aircraft efficiency, the development of new energy storage technologies, and the optimization of flight operations. Two major approaches for higher eco-efficiency are identified: The first one, is to take horizontal and vertical atmospheric motion phenomena into account. Where, in particular, atmospheric waves hold exciting potential. The second one is the use of the regeneration ability of electric aircraft. The fusion of both strategies is expected to improve efficiency. The objective is to reduce energy consumption during flight while not neglecting commercial usability and convenient flight characteristics. Therefore, an optimized control problem based on a general aviation class aircraft has to be developed and validated by flight experiments. The formulated approach enables a development of detailed knowledge of the potential and limitations of optimizing flight missions, considering the capability of regeneration and atmospheric influences to increase efficiency and range.}, language = {en} } @article{UlmerBraunChengetal.2023, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {A human factors-aware assistance system in manufacturing based on gamification and hardware modularisation}, series = {International Journal of Production Research}, journal = {International Journal of Production Research}, publisher = {Taylor \& Francis}, issn = {0020-7543 (Print)}, doi = {10.1080/00207543.2023.2166140}, year = {2023}, abstract = {Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers' cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines.}, language = {en} } @misc{MachadoDahmannKeimeretal.2020, author = {Machado, Patricia Almeida and Dahmann, Peter and Keimer, Jona and Saretzki, Charlotte and St{\"u}bing, Felix and K{\"u}pper, Thomas}, title = {Stress profile and individual workload monitoring in general aviation pilots - an experiment's setting}, series = {23. Annual Meeting of the German Society of Travel Medicine, Coburg, 18.-19.9.2020}, journal = {23. Annual Meeting of the German Society of Travel Medicine, Coburg, 18.-19.9.2020}, doi = {10.55225/hppa.156}, year = {2020}, language = {en} }