@article{ValeroBung2018, author = {Valero, Daniel and Bung, Daniel B.}, title = {Vectrino profiler spatial filtering for shear flows based on the mean velocity gradient equation}, series = {Journal of Hydraulic Engineering}, volume = {144}, journal = {Journal of Hydraulic Engineering}, number = {7}, publisher = {ASCE}, address = {Reston, Va.}, issn = {0733-9429}, doi = {10.1061/(ASCE)HY.1943-7900.0001485}, year = {2018}, abstract = {A new methodology is proposed to spatially filter acoustic Doppler velocimetry data from a Vectrino profiler based on the differential mean velocity equation. Lower and upper bounds are formulated in terms of physically based flow constraints. Practical implementation is discussed, and its application is tested against data gathered from an open-channel flow over a stepped macroroughness surface. The method has proven to detect outliers occurring all over the distance range sampled by the Vectrino profiler and has shown to remain applicable out of the region of validity of the velocity gradient equation. Finally, a statistical analysis suggests that physically obtained bounds are asymptotically representative.}, language = {en} } @inproceedings{ValeroBungCrookstonetal.2016, author = {Valero, Daniel and Bung, Daniel B. and Crookston, B. M. and Matos, J.}, title = {Numerical investigation of USBR type III stilling basin performance downstream of smooth and stepped spillways}, series = {Hydraulic Structures and Water System Management. 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June 2016}, booktitle = {Hydraulic Structures and Water System Management. 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June 2016}, editor = {Crookston, B. and Tullis, B.}, isbn = {978-1-884575-75-4}, doi = {10.15142/T340628160853}, pages = {635 -- 646}, year = {2016}, language = {en} } @article{ValeroBungCrookston2018, author = {Valero, Daniel and Bung, Daniel B. and Crookston, B.M.}, title = {Energy dissipation of a Type III basin under design and adverse conditions for stepped and smooth spillways}, series = {Journal of Hydraulic Engineering}, volume = {144}, journal = {Journal of Hydraulic Engineering}, number = {7}, publisher = {ASCE}, address = {Reston, Va.}, issn = {0733-9429}, doi = {10.1061/(ASCE)HY.1943-7900.0001482}, year = {2018}, abstract = {New information regarding the influence of a stepped chute on the hydraulic performance of the United States Bureau of Reclamation (Reclamation) Type III hydraulic jump stilling basin is presented for design (steady) and adverse (decreasing tailwater) conditions. Using published experimental data and computational fluid dynamics (CFD) models, this paper presents a detailed comparison between smooth-chute and stepped-chute configurations for chute slopes of 0.8H:1V and 4H:1V and Froude numbers (F) ranging from 3.1 to 9.5 for a Type III basin designed for F = 8. For both stepped and smooth chutes, the relative role of each basin element was quantified, up to the most hydraulic extreme case of jump sweep-out. It was found that, relative to a smooth chute, the turbulence generated by a stepped chute causes a higher maximum velocity decay within the stilling basin, which represents an enhancement of the Type III basin's performance but also a change in the relative role of the basin elements. Results provide insight into the ability of the CFD models [unsteady Reynolds-averaged Navier-Stokes (RANS) equations with renormalization group (RNG) k-ϵ turbulence model and volume-of-fluid (VOF) for free surface tracking] to predict the transient basin flow structure and velocity profiles. Type III basins can perform adequately with a stepped chute despite the effects steps have on the relative role of each basin element. It is concluded that the classic Type III basin design, based upon methodology by reclamation specific to smooth chutes, can be hydraulically improved for the case of stepped chutes for design and adverse flow conditions using the information presented herein.}, language = {en} } @inproceedings{ValeroBungErpicumetal.2017, author = {Valero, Daniel and Bung, Daniel B. and Erpicum, Sebastien and Dewals, Benjamin}, title = {Numerical study of turbulent oscillations around a cylinder: RANS capabilities and sensitivity analysis}, series = {Proceedings of the 37th IAHR World Congress August 13 - 18, 2017, Kuala Lumpur, Malaysia}, booktitle = {Proceedings of the 37th IAHR World Congress August 13 - 18, 2017, Kuala Lumpur, Malaysia}, issn = {2521-716X}, pages = {3126 -- 3135}, year = {2017}, language = {en} } @article{ValeroBungErpicumetal.2022, author = {Valero, Daniel and Bung, Daniel B. and Erpicum, Sebastien and Peltier, Yann and Dewals, Benjamin}, title = {Unsteady shallow meandering flows in rectangular reservoirs: a modal analysis of URANS modelling}, series = {Journal of Hydro-environment Research}, journal = {Journal of Hydro-environment Research}, number = {In Press}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1570-6443}, doi = {10.1016/j.jher.2022.03.002}, year = {2022}, abstract = {Shallow flows are common in natural and human-made environments. Even for simple rectangular shallow reservoirs, recent laboratory experiments show that the developing flow fields are particularly complex, involving large-scale turbulent structures. For specific combinations of reservoir size and hydraulic conditions, a meandering jet can be observed. While some aspects of this pseudo-2D flow pattern can be reproduced using a 2D numerical model, new 3D simulations, based on the unsteady Reynolds-Averaged Navier-Stokes equations, show consistent advantages as presented herein. A Proper Orthogonal Decomposition was used to characterize the four most energetic modes of the meandering jet at the free surface level, allowing comparison against experimental data and 2D (depth-averaged) numerical results. Three different isotropic eddy viscosity models (RNG k-ε, k-ε, k-ω) were tested. The 3D models accurately predicted the frequency of the modes, whereas the amplitudes of the modes and associated energy were damped for the friction-dominant cases and augmented for non-frictional ones. The performance of the three turbulence models remained essentially similar, with slightly better predictions by RNG k-ε model in the case with the highest Reynolds number. Finally, the Q-criterion was used to identify vortices and study their dynamics, assisting on the identification of the differences between: i) the three-dimensional phenomenon (here reproduced), ii) its two-dimensional footprint in the free surface (experimental observations) and iii) the depth-averaged case (represented by 2D models).}, language = {en} } @inproceedings{ValeroBungOertel2016, author = {Valero, Daniel and Bung, Daniel B. and Oertel, M.}, title = {Turbulent dispersion in bounded horizontal jets : RANS capabilities and physical modeling comparison}, series = {Sustainable Hydraulics in the Era of Global Change : Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016)}, booktitle = {Sustainable Hydraulics in the Era of Global Change : Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016)}, editor = {Dewals, Benjamin}, publisher = {CRC Press}, isbn = {978-1-138-02977-4}, doi = {10.1201/b21902-13}, pages = {49 -- 55}, year = {2016}, language = {en} } @article{ValeroChansonBung2019, author = {Valero, Daniel and Chanson, Hubert and Bung, Daniel B.}, title = {Robust estimators for turbulence properties assessment}, pages = {1 -- 24}, year = {2019}, language = {en} } @article{ValeroChansonBung2020, author = {Valero, Daniel and Chanson, Hubert and Bung, Daniel B.}, title = {Robust estimators for free surface turbulence characterization: A stepped spillway application}, series = {Flow Measurement and Instrumentation}, volume = {76}, journal = {Flow Measurement and Instrumentation}, number = {Art. 101809}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0955-5986}, doi = {10.1016/j.flowmeasinst.2020.101809}, year = {2020}, abstract = {Robust estimators are parameters insensitive to the presence of outliers. However, they presume the shape of the variables' probability density function. This study exemplifies the sensitivity of turbulent quantities to the use of classic and robust estimators and the presence of outliers in turbulent flow depth time series. A wide range of turbulence quantities was analysed based upon a stepped spillway case study, using flow depths sampled with Acoustic Displacement Meters as the flow variable of interest. The studied parameters include: the expected free surface level, the expected fluctuation intensity, the depth skewness, the autocorrelation timescales, the vertical velocity fluctuation intensity, the perturbations celerity and the one-dimensional free surface turbulence spectrum. Three levels of filtering were utilised prior to applying classic and robust estimators, showing that comparable robustness can be obtained either using classic estimators together with an intermediate filtering technique or using robust estimators instead, without any filtering technique.}, language = {en} } @inproceedings{ValeroKramerBungetal.2019, author = {Valero, Daniel and Kramer, Matthias and Bung, Daniel B. and Chanson, Hubert}, title = {A stochastic bubble generator for air-water flow research}, series = {E-proceedings of the 38th IAHR World Congress, September 1-6, 2019, Panama City, Panama}, booktitle = {E-proceedings of the 38th IAHR World Congress, September 1-6, 2019, Panama City, Panama}, doi = {10.3850/38WC092019-0909}, pages = {5714 -- 5721}, year = {2019}, language = {en} } @article{ValeroSchalkoFriedrichetal.2021, author = {Valero, Daniel and Schalko, Isabella and Friedrich, Heide and Abad, Jorge D. and Bung, Daniel B. and Donchyts, Gennadii and Felder, Stefan and Ferreira, Rui M. L. and Hohermuth, Benjamin and Kramer, Matthias and Li, Danxun and Mendes, Luis and Moreno-Rodenas, Antonio and Nones, Michael and Paron, Paolo and Ruiz-Villanueva, Virginia and Wang, Ruo-Qian and Franca, Mario J.}, title = {Pathways towards democratization of hydro-environment observations and data}, series = {Iahr White Paper Series}, journal = {Iahr White Paper Series}, number = {1}, publisher = {International Association for Hydro-Environment Engineering and Research (IAHR)}, pages = {1 -- 9}, year = {2021}, language = {en} } @article{ValeroVitiGualtieri2019, author = {Valero, Daniel and Viti, Nicolo and Gualtieri, Carlo}, title = {Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment}, series = {Water}, volume = {11}, journal = {Water}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w11010036}, pages = {Art. Nr. 36}, year = {2019}, language = {en} } @inproceedings{ValeroVogelSchmidtetal.2018, author = {Valero, Daniel and Vogel, Jochen and Schmidt, Daniel and Bung, Daniel B.}, title = {Three-dimensional flow structure inside the cavity of a non-aerated stepped chute}, series = {7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15-18 May}, booktitle = {7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15-18 May}, isbn = {978-0-692-13277-7}, doi = {10.15142/T3GH17}, pages = {12 Seiten}, year = {2018}, language = {en} } @book{Vismann1993, author = {Vismann, Ulrich}, title = {Eingepr{\"a}gte Verformungen im Betonbau : Entwicklung eines Bemessungs- und Sicherungskonzeptes ; [Abschlußbericht zum Forschungsvorhaben IfBt, Az.: IV 1-5-642/91] / [U. Vismann]}, publisher = {IRB-Verl.}, address = {Stuttgart}, pages = {XI, 152 S. : graph. Darst.}, year = {1993}, language = {de} } @book{Vismann1995, author = {Vismann, Ulrich}, title = {Zuverl{\"a}ssigkeitstheoretische Verifikation von Bemessungskriterien im Stahlbetonbau}, publisher = {Techn. Univ.}, address = {M{\"u}nchen}, pages = {V, 241 S. : graph. Darst.}, year = {1995}, language = {de} } @book{Vismann2012, author = {Vismann, Ulrich}, title = {Wendehorst Bautechnische Zahlentafeln / hrsg. von Ulrich Vismann in Verbindung mit dem DIN Deutsches Institut f{\"u}r Normung e.V. Herwig Baumgartner ...}, edition = {34., vollst. {\"u}berarb. und erw. Aufl.}, publisher = {Vieweg + Teubner}, address = {Wiesbaden}, isbn = {978-3-8348-0960-5}, doi = {10.1007/978-3-8348-8613-2}, pages = {1688 S. : graph. Darst.}, year = {2012}, language = {de} } @incollection{Vismann2012, author = {Vismann, Ulrich}, title = {Stahlbeton- und Spannbetonbau nach Eurocode 2}, series = {Wendehorst Bautechnische Zahlentafeln}, booktitle = {Wendehorst Bautechnische Zahlentafeln}, editor = {Vismann, Ulrich}, edition = {34}, publisher = {Vieweg + Teubner}, address = {Wiesbaden}, isbn = {978-3-8348-0960-5}, doi = {10.1007/978-3-8348-8613-2_12}, pages = {601 -- 775}, year = {2012}, abstract = {Die bauaufsichtliche Einf{\"u}hrung der Eurocodes steht unmittelbar bevor. F{\"u}r den Bereich des Stahl- und Spannbetonbaus soll die Anwendung zum 1. Juli 2012 verbindlich sein, d. h. mit diesem Stichtag sollte nur noch der Eurocode 2 (DIN EN 1992-1-1, Ausgabe Januar 2011) mit seinem zugeh{\"o}rigen nationalen Anhang (DIN EN 1992-1-1/NA, Ausgabe Januar 2011) Verwendung finden, die DIN 1045-1 wird zur{\"u}ckgezogen. Bereits seit M{\"a}rz 2010 gilt eine {\"U}bergangsphase, ist der die Anwendung des Eurocodes alternativ zur DIN 1045-1 als bauaufsichtlich gleichwertige L{\"o}sung m{\"o}glich.}, language = {de} } @incollection{Vismann2012, author = {Vismann, Ulrich}, title = {Beton nach DIN 1045-2}, series = {Wendehorst Bautechnische Zahlentafeln}, booktitle = {Wendehorst Bautechnische Zahlentafeln}, editor = {Vismann, Ulrich}, edition = {34}, publisher = {Vieweg + Teubner}, address = {Wiesbaden}, isbn = {978-3-8348-0960-5}, doi = {10.1007/978-3-8348-8613-2_11}, pages = {571 -- 600}, year = {2012}, language = {de} } @incollection{Vismann2012, author = {Vismann, Ulrich}, title = {Stahlbetonbau}, series = {Wendehorst Beispiele aus der Baupraxis. - 4. Aufl.}, booktitle = {Wendehorst Beispiele aus der Baupraxis. - 4. Aufl.}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-8348-0999-5 ; 978-3-8348-8229-5}, doi = {10.1007/978-3-8348-8229-5_9}, pages = {223 -- 262}, year = {2012}, language = {de} } @incollection{Vismann2009, author = {Vismann, Ulrich}, title = {Stahlbetonbau}, series = {Wendehorst Beispiele aus der Baupraxis. - 3. Aufl.}, booktitle = {Wendehorst Beispiele aus der Baupraxis. - 3. Aufl.}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-8348-0684-0 ; 978-3-8348-9997-2}, doi = {10.1007/978-3-8348-9997-2_9}, pages = {203 -- 233}, year = {2009}, language = {de} } @incollection{Vismann2015, author = {Vismann, Ulrich}, title = {Beton}, series = {Wendehorst bautechnische Zahlentafeln / hrsg. von Ulrich Vismann. Ernst Biener ... 35. Aufl.}, booktitle = {Wendehorst bautechnische Zahlentafeln / hrsg. von Ulrich Vismann. Ernst Biener ... 35. Aufl.}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-01689-0 ; 978-3-410-24199-7}, doi = {10.1007/978-3-658-01689-0_11}, pages = {477 -- 495}, year = {2015}, language = {de} }