@article{HoltrupSadeghfamHeuermannetal.2014, author = {Holtrup, S. and Sadeghfam, Arash and Heuermann, Holger and Awakowicz, P.}, title = {Characterization and optimization technique for microwave-driven high-intensity discharge lamps using hot S-parameters}, series = {IEEE transactions on microwave theories and techniques}, volume = {62}, journal = {IEEE transactions on microwave theories and techniques}, number = {10}, publisher = {IEEE}, address = {New York}, issn = {0018-9480}, doi = {10.1109/TMTT.2014.2342652}, pages = {2471 -- 2480}, year = {2014}, abstract = {High-intensity discharge lamps can be driven by radio-frequency signals in the ISM frequency band at 2.45 GHz, using a matching network to transform the impedance of the plasma to the source impedance. To achieve an optimal operating condition, a good characterization of the lamp in terms of radio frequency equivalent circuits under operating conditions is necessary, enabling the design of an efficient matching network. This paper presents the characterization technique for such lamps and presents the design of the required matching network. For the characterization, a high-intensity discharge lamp was driven by a monofrequent large signal at 2.45 GHz, whereas a frequency sweep over 300 MHz was performed across this signal to measure so-called small-signal hot S-parameters using a vector network analyzer. These parameters are then used as an equivalent load in a circuit simulator to design an appropriate matching network. Using the measured data as a black-box model in the simulation results in a quick and efficient method to simulate and design efficient matching networks in spite of the complex plasma behavior. Furthermore, photometric analysis of high-intensity discharge lamps are carried out, comparing microwave operation to conventional operation.}, language = {en} } @article{HulseboschGuentherHornetal.2004, author = {Hulsebosch, R. J. and G{\"u}nther, C. and Horn, C. and Holtmanns, S. and Howker, K. and Paterson, K. and Claessens, J. and Schuba, Marko}, title = {Pioneering Advanced Mobile Privacy and Security}, series = {Security for mobility}, journal = {Security for mobility}, editor = {Mitchell, Chris J.}, publisher = {Institution of Electrical Engineers}, address = {London}, isbn = {9781849190886}, doi = {10.1049/PBTE051E_ch}, pages = {383 -- 432}, year = {2004}, language = {en} } @article{Huening2008, author = {H{\"u}ning, Felix}, title = {Die Anforderungen steigen : Entwicklungstrends bei MOSFETs f{\"u}r den Automobilbereich}, series = {Elektronik-Industrie. 39 (2008), H. 5}, journal = {Elektronik-Industrie. 39 (2008), H. 5}, publisher = {-}, isbn = {0174-5522}, pages = {74 -- 76}, year = {2008}, language = {de} } @book{Huening2001, author = {H{\"u}ning, Felix}, title = {Magnetische Eigenschaften niederdimensionaler Chrom-, Ruthenium- und Niobhalogenide}, publisher = {Shaker}, address = {Aachen}, isbn = {3-8265-8551-8}, pages = {II, 122 S Ill., graph. Darst.}, year = {2001}, language = {en} } @article{Huening2008, author = {H{\"u}ning, Felix}, title = {Robusti affidabili per le Sfide dell'automotive}, series = {Selezione di Elettronica (2008)}, journal = {Selezione di Elettronica (2008)}, publisher = {-}, pages = {116 -- 117}, year = {2008}, language = {de} } @article{Huening2009, author = {H{\"u}ning, Felix}, title = {Mosfet ottimizzati per l'automotive}, series = {Selezione di Elettronica (2009)}, journal = {Selezione di Elettronica (2009)}, publisher = {-}, pages = {115 -- 117}, year = {2009}, language = {de} } @article{Huening2008, author = {H{\"u}ning, Felix}, title = {Entwicklungstrends bei MOSFETs f{\"u}r den Automobilbereich}, series = {Elektronik-Industrie . 39 (2008), H. 5}, journal = {Elektronik-Industrie . 39 (2008), H. 5}, publisher = {-}, isbn = {0174-5522}, pages = {74 -- 76}, year = {2008}, language = {en} } @article{Huening2009, author = {H{\"u}ning, Felix}, title = {SMD packages for PowerMOSFETs in automotive applications - developments and trends}, series = {Automotive Designline Europe (2009)}, journal = {Automotive Designline Europe (2009)}, publisher = {-}, year = {2009}, language = {en} } @incollection{Huening2012, author = {H{\"u}ning, Felix}, title = {PowerMOSFETs f{\"u}r Elektromotoren im Automobil : Vom Fensterheber zum EPS}, series = {Elektronik im Kraftfahrzeug : Innovationen bei Systemen und Komponenten ; mit 7 Tabellen}, booktitle = {Elektronik im Kraftfahrzeug : Innovationen bei Systemen und Komponenten ; mit 7 Tabellen}, editor = {Schmitz, G{\"u}nter}, publisher = {Expert Verlag}, address = {Renningen}, isbn = {978-3-8169-3110-2}, pages = {71 -- 81}, year = {2012}, language = {de} } @article{Huening2012, author = {H{\"u}ning, Felix}, title = {Using Trench PowerMOSFETs in Linear Mode}, series = {Power Electronics Europe (2012)}, journal = {Power Electronics Europe (2012)}, publisher = {DFA Media}, address = {Tonbridge}, issn = {1748-3530}, pages = {27 -- 29}, year = {2012}, abstract = {If we think about applications for modern Power MOSFETs using trench technology, running them in linear mode may not be top of the priority list. Yet there are multiple uses for Trench Power MOSFETs in linear mode. In fact, even turning the device on and off in switching applications is a form of linear operation. Also, these components can be run in linear mode to protect the device against voltage surges. This article will illustrate the factors that need to be considered for linear operation and show how Trench Power MOSFETs are suited to it.}, language = {en} } @article{Huening2011, author = {H{\"u}ning, Felix}, title = {PowerMOSFETs in ANL2-Technologie : Ansteuerungen bis in den kW-Bereich mit wenig Verlustleistung und Platzbedarf}, series = {Elektronik-Industrie}, volume = {42}, journal = {Elektronik-Industrie}, number = {10}, publisher = {H{\"u}thig}, address = {Heidelberg}, issn = {0174-5522}, pages = {36 -- 39}, year = {2011}, language = {de} } @article{Huening2009, author = {H{\"u}ning, Felix}, title = {Hart im Nehmen : Low-Voltage-Powermosfets mit Super-Junction-1-Technologie optimieren}, series = {Elektronik-Journal. 44 (2009), H. 12}, journal = {Elektronik-Journal. 44 (2009), H. 12}, publisher = {-}, isbn = {0013-5674}, pages = {36 -- 38}, year = {2009}, language = {de} } @book{Huening2014, author = {H{\"u}ning, Felix}, title = {The fundamentals of electrical engineering for mechatronics}, publisher = {de Gruyter}, address = {Berlin}, isbn = {978-3-11-034991-7 (Druckausg.)}, pages = {IX, 208 S.}, year = {2014}, language = {en} } @inproceedings{Huening2014, author = {H{\"u}ning, Felix}, title = {Power semiconductors : key components for HEV/EV}, series = {FISITA 2014 World Automotive Congress : 2 - 6 June, Maastricht, the Netherlands International Federation of Automotive Engineering Societies}, booktitle = {FISITA 2014 World Automotive Congress : 2 - 6 June, Maastricht, the Netherlands International Federation of Automotive Engineering Societies}, publisher = {KIVI}, address = {[s.l.]}, pages = {1 USB-Speicherstick}, year = {2014}, language = {en} } @book{Huening2016, author = {H{\"u}ning, Felix}, title = {Sensoren und Sensorschnittstellen}, publisher = {De Gruyter Oldenbourg}, address = {Berlin}, isbn = {978-3-11-043854-3}, pages = {VII, 237 S. : Ill., graph. Darst.}, year = {2016}, language = {de} } @inproceedings{Huening2016, author = {H{\"u}ning, Felix}, title = {Power Semiconductors for the automotive 48V board net}, series = {PCIM Europe 2016 Conference Proceedings}, booktitle = {PCIM Europe 2016 Conference Proceedings}, publisher = {VDE Verl.}, address = {Berlin}, isbn = {978-3-8007-4186-1}, pages = {1963 -- 1969}, year = {2016}, language = {en} } @book{Huening2018, author = {H{\"u}ning, Felix}, title = {Embedded Design For IoT With Renesas Synergy}, publisher = {Renesas Electronics}, address = {D{\"u}sseldorf}, pages = {143 S.}, year = {2018}, language = {en} } @book{Huening2019, author = {H{\"u}ning, Felix}, title = {Embedded Systems f{\"u}r IoT}, publisher = {Berlin, Heidelberg}, address = {Springer Vieweg}, isbn = {978-3-662-57900-8}, doi = {10.1007/978-3-662-57901-5}, pages = {VIII, 195 Seiten}, year = {2019}, language = {de} } @article{Huening2019, author = {H{\"u}ning, Felix}, title = {Nachr{\"u}stm{\"o}glichkeiten von Dieselfahrzeugen aus technischer Sicht}, series = {Zeitschrift f{\"u}r Verkehrsrecht : NZV}, journal = {Zeitschrift f{\"u}r Verkehrsrecht : NZV}, number = {1}, publisher = {C.H.Beck}, pages = {27 -- 32}, year = {2019}, language = {de} } @inproceedings{Huening2021, author = {H{\"u}ning, Felix}, title = {Sustainable changes beyond covid-19 for a second semester physics course for electrical engineering students}, series = {Blended Learning in Engineering Education: challenging, enlightening - and lasting?}, booktitle = {Blended Learning in Engineering Education: challenging, enlightening - and lasting?}, isbn = {978-2-87352-023-6}, pages = {1405 -- 1409}, year = {2021}, abstract = {The course Physics for Electrical Engineering is part of the curriculum of the bachelor program Electrical Engineering at University of Applied Science Aachen. Before covid-19 the course was conducted in a rather traditional way with all parts (lecture, exercise and lab) face-to-face. This teaching approach changed fundamentally within a week when the covid-19 limitations forced all courses to distance learning. All parts of the course were transformed to pure distance learning including synchronous and asynchronous parts for the lecture, live online-sessions for the exercises and self-paced labs at home. Using these methods, the course was able to impart the required knowledge and competencies. Taking the teacher's observations of the student's learning behaviour and engagement, the formal and informal feedback of the students and the results of the exams into account, the new methods are evaluated with respect to effectiveness, sustainability and suitability for competence transfer. Based on this analysis strong and weak points of the concept and countermeasures to solve the weak points were identified. The analysis further leads to a sustainable teaching approach combining synchronous and asynchronous parts with self-paced learning times that can be used in a very flexible manner for different learning scenarios, pure online, hybrid (mixture of online and presence times) and pure presence teaching.}, language = {en} }