@inproceedings{JungStaatMueller2014, author = {Jung, Alexander and Staat, Manfred and M{\"u}ller, Wolfram}, title = {Optimization of the flight style in ski jumping}, series = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20 - 25, 2014, Barcelona}, booktitle = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20 - 25, 2014, Barcelona}, editor = {Onate, E.}, organization = {World Congress on Computational Mechanics <11, 2014, Barcelona>}, pages = {799 -- 810}, year = {2014}, language = {en} } @inproceedings{JungStaatMueller2016, author = {Jung, Alexander and Staat, Manfred and M{\"u}ller, Wolfram}, title = {Effect of wind on flight style optimisation in ski jumping}, series = {15th International Symposium on Computer Simulation in Biomechanics ; July 9th-11th 2015, Edinburgh, UK}, booktitle = {15th International Symposium on Computer Simulation in Biomechanics ; July 9th-11th 2015, Edinburgh, UK}, publisher = {The University of Edinburgh ; Loughborough University}, address = {Edinburgh}, pages = {53 -- 54}, year = {2016}, language = {en} } @inproceedings{KahmannHacklWegmannetal.2016, author = {Kahmann, Stephanie and Hackl, Michael and Wegmann, Kilian and M{\"u}ller, Lars-Peter and Staat, Manfred}, title = {Impact of a proximal radial shortening osteotomy on the distribution of forces and the stability of the elbow}, series = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, booktitle = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, editor = {Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, doi = {10.17185/duepublico/40821}, pages = {7 -- 8}, year = {2016}, abstract = {The human arm consists of the humerus (upper arm), the medial ulna and the lateral radius (forearm). The joint between the humerus and the ulna is called humeroulnar joint and the joint between the humerus and the radius is called humeroradial joint. Lateral and medial collateral ligaments stabilize the elbow. Statistically, 2.5 out of 10,000 people suffer from radial head fractures [1]. In these fractures the cartilage is often affected. Caused by the injured cartilage, degenerative diseases like posttraumatic arthrosis may occur. The resulting pain and reduced range of motion have an impact on the patient's quality of life. Until now, there has not been a treatment which allows typical loads in daily life activities and offers good long-term results. A new surgical approach was developed with the motivation to reduce the progress of the posttraumatic arthrosis. Here, the radius is shortened by 3 mm in the proximal part [2]. By this means, the load of the radius is intended to be reduced due to a load shift to the ulna. Since the radius is the most important stabilizer of the elbow it has to be confirmed that the stability is not affected. In the first test (Fig. 1 left), pressure distributions within the humeroulnar and humeroradial joints a native and a shortened radius were measured using resistive pressure sensors (I5076 and I5027, Tekscan, USA). The humerus was loaded axially in a tension testing machine (Z010, Zwick Roell, Germany) in 50 N steps up to 400 N. From the humerus the load is transmitted through both the radius and the ulna into the hand which is fixed on the ground. In the second test (Fig. 1 right), the joint stability was investigated using a digital image correlation system to measure the displacement of the ulna. Here, the humerus is fixed with a desired flexion angle and the unconstrained forearm lies on the ground. A rope connects the load actuator with a hook fixed in the ulna. A guide roller is used so that the rope pulls the ulna horizontally when a tensile load is applied. This creates a moment about the elbow joint with a maximum value of 7.5 Nm. Measurements were performed with varying flexion angles (0°, 30°, 60°, 90°, 120°). For both tests and each measurement, seven specimens were used. Student's t-test was employed to determine whether the mean values of the measurements in native specimen and operated specimens differ significantly.}, language = {en} } @inproceedings{KahmannUschokWegmannetal.2018, author = {Kahmann, Stephanie Lucina and Uschok, Stephan and Wegmann, Kilian and M{\"u}ller, Lars-P. and Staat, Manfred}, title = {Biomechanical multibody model with refined kinematics of the elbow}, series = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, booktitle = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, pages = {11 Seiten}, year = {2018}, abstract = {The overall objective of this study is to develop a new external fixator, which closely maps the native kinematics of the elbow to decrease the joint force resulting in reduced rehabilitation time and pain. An experimental setup was designed to determine the native kinematics of the elbow during flexion of cadaveric arms. As a preliminary study, data from literature was used to modify a published biomechanical model for the calculation of the joint and muscle forces. They were compared to the original model and the effect of the kinematic refinement was evaluated. Furthermore, the obtained muscle forces were determined in order to apply them in the experimental setup. The joint forces in the modified model differed slightly from the forces in the original model. The muscle force curves changed particularly for small flexion angles but their magnitude for larger angles was consistent.}, language = {en} } @inproceedings{KahraBreussKleefeldetal.2024, author = {Kahra, Marvin and Breuß, Michael and Kleefeld, Andreas and Welk, Martin}, title = {An Approach to Colour Morphological Supremum Formation Using the LogSumExp Approximation}, series = {Discrete Geometry and Mathematical Morphology}, booktitle = {Discrete Geometry and Mathematical Morphology}, editor = {Brunetti, Sara and Frosini, Andrea and Rinaldi, Simone}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-57793-2}, doi = {10.1007/978-3-031-57793-2_25}, pages = {325 -- 337}, year = {2024}, abstract = {Mathematical morphology is a part of image processing that has proven to be fruitful for numerous applications. Two main operations in mathematical morphology are dilation and erosion. These are based on the construction of a supremum or infimum with respect to an order over the tonal range in a certain section of the image. The tonal ordering can easily be realised in grey-scale morphology, and some morphological methods have been proposed for colour morphology. However, all of these have certain limitations. In this paper we present a novel approach to colour morphology extending upon previous work in the field based on the Loewner order. We propose to consider an approximation of the supremum by means of a log-sum exponentiation introduced by Maslov. We apply this to the embedding of an RGB image in a field of symmetric 2x2 matrices. In this way we obtain nearly isotropic matrices representing colours and the structural advantage of transitivity. In numerical experiments we highlight some remarkable properties of the proposed approach.}, language = {en} } @article{KaminskyDumontWeberetal.2007, author = {Kaminsky, Radoslav and Dumont, K. and Weber, Hans-Joachim and Schroll, M. and Verdonck, P.}, title = {PIV validation of blood-heart valve leaflet interaction modelling}, series = {The International journal of artificial organs. 30 (2007), H. 7}, journal = {The International journal of artificial organs. 30 (2007), H. 7}, publisher = {-}, pages = {640 -- 648}, year = {2007}, language = {en} } @article{KaminskyKallweitWeberetal.2007, author = {Kaminsky, Radoslav and Kallweit, Stephan and Weber, Hans-Joachim and Claessens, Tom and Jozwik, Krzystof and Verdonck, Pascal}, title = {Flow visualization through two types of aortic prosthetic heart valves using stereoscopic high-speed particle image velocimetry}, series = {Artificial organs. 31 (2007), H. 12}, journal = {Artificial organs. 31 (2007), H. 12}, isbn = {1525-1594}, pages = {869 -- 879}, year = {2007}, language = {en} } @article{KaminskyKallweitWeberetal.2006, author = {Kaminsky, Radoslav and Kallweit, Stephan and Weber, Hans-Joachim and Simons, Antoine and Kramm, K. and Jazwik, K. and Moll, J. and Verdonck, P.}, title = {3D high speed piv assessment of a new aortic heart valve prototype}, series = {Journal of biomechanics. 39 (2006), H. Supplement 1}, journal = {Journal of biomechanics. 39 (2006), H. Supplement 1}, publisher = {-}, isbn = {0021-9290}, pages = {S304 -- S305}, year = {2006}, language = {en} } @book{KaminskyKallweitWeberetal.2006, author = {Kaminsky, Radoslav and Kallweit, Stephan and Weber, Hans-Joachim and Simons, Antoine and Verdonck, Pascal}, title = {Stereo high speed PIV measurements behind two different artificial heart valves}, pages = {9 S. : Ill., graph. Darst.}, year = {2006}, language = {en} } @article{KaminskySimonsGatzweileretal.2005, author = {Kaminsky, Randolph and Simons, Antoine and Gatzweiler, Karl-Heinz and Weber, Hans-Joachim}, title = {Flow visualization by means of PIV of an artificial aortic heart valve fixed into a mock aorta}, series = {Acta Mechanica Slovaka 2-A. 9 (2005)}, journal = {Acta Mechanica Slovaka 2-A. 9 (2005)}, pages = {343 -- 348}, year = {2005}, language = {en} } @article{KaminskyWeberSimonsetal.2005, author = {Kaminsky, Randolph and Weber, Hans-Joachim and Simons, Antoine and Kallweit, Stephan and Kramm, K. and Verdonck, Pascale}, title = {Comparison of the flow downstream two prototypes of a new monoleaflet artificial aortic heart valve by means of PIV visualization}, series = {Computer methods in biomechanics and biomedical engineering. 8 (2005), H. 4, Suppl. 1}, journal = {Computer methods in biomechanics and biomedical engineering. 8 (2005), H. 4, Suppl. 1}, isbn = {1476-8259}, pages = {159 -- 160}, year = {2005}, language = {en} } @article{KappmeyerKotliarLanzl2009, author = {Kappmeyer, K. and Kotliar, Konstantin and Lanzl, I. M.}, title = {Spielen von Blasinstrumenten und Augeninnendruck}, series = {Zeitschrift f{\"u}r praktische Augenheilkunde \& augen{\"a}rztliche Fortbildung : ZPA}, volume = {Bd. 30}, journal = {Zeitschrift f{\"u}r praktische Augenheilkunde \& augen{\"a}rztliche Fortbildung : ZPA}, issn = {1436-0322}, pages = {169 -- 171}, year = {2009}, language = {de} } @article{KaramanidisAlbrachtBraunsteinetal.2011, author = {Karamanidis, Kiros and Albracht, Kirsten and Braunstein, Bjoern and Catala, Maria Moreno and Goldmann, Jan-Peter and Br{\"u}ggemann, Gert-Peter}, title = {Lower leg musculoskeletal geometry and sprint performance}, series = {Gait and Posture}, volume = {34}, journal = {Gait and Posture}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2011.03.009}, pages = {138 -- 141}, year = {2011}, abstract = {The purpose of this study was to investigate whether sprint performance is related to lower leg musculoskeletal geometry within a homogeneous group of highly trained 100-m sprinters. Using a cluster analysis, eighteen male sprinters were divided into two groups based on their personal best (fast: N = 11, 10.30 ± 0.07 s; slow: N = 7, 10.70 ± 0.08 s). Calf muscular fascicle arrangement and Achilles tendon moment arms (calculated by the gradient of tendon excursion versus ankle joint angle) were analyzed for each athlete using ultrasonography. Achilles tendon moment arm, foot and ankle skeletal geometry, fascicle arrangement as well as the ratio of fascicle length to Achilles tendon moment arm showed no significant (p > 0.05) correlation with sprint performance, nor were there any differences in the analyzed musculoskeletal parameters between the fast and slow sprinter group. Our findings provide evidence that differences in sprint ability in world-class athletes are not a result of differences in the geometrical design of the lower leg even when considering both skeletal and muscular components.}, language = {en} } @article{KarnatakKantzBialonski2017, author = {Karnatak, Rajat and Kantz, Holger and Bialonski, Stephan}, title = {Early warning signal for interior crises in excitable systems}, series = {Physical Review E}, volume = {96}, journal = {Physical Review E}, number = {4}, issn = {2470-0053}, doi = {10.1103/PhysRevE.96.042211}, pages = {042211}, year = {2017}, language = {en} } @article{KarschuckFilipovBollellaetal.2019, author = {Karschuck, T. L. and Filipov, Y. and Bollella, P. and Sch{\"o}ning, Michael Josef and Katz, E.}, title = {Not-XOR (NXOR) logic gate based on an enzyme-catalyzed reaction}, series = {International Journal of Unconventional Computing}, volume = {14}, journal = {International Journal of Unconventional Computing}, number = {3-4}, publisher = {Old City Publishing}, address = {Philadelphia}, issn = {1548-7199}, pages = {235 -- 242}, year = {2019}, abstract = {Enzyme-catalyzed reactions have been designed to mimic various Boolean logic gates in the general framework of unconventional biomolecular computing. While some of the logic gates, particularly OR, AND, are easy to realize with biocatalytic reactions and have been reported in numerous publications, some other, like NXOR, are very challenging and have not been realized yet with enzyme reactions. The paper reports on a novel approach to mimicking the NXOR logic gate using the bell-shaped enzyme activity dependent on pH values. Shifting pH from the optimum value to the acidic or basic values by using acid or base inputs (meaning 1,0 and 0,1 inputs) inhibits the enzyme reaction, while keeping the optimum pH (assuming 0,0 and 1,1 input combinations) preserves a high enzyme activity. The challenging part of the present approach is the selection of an enzyme with a well-demonstrated bell-shape activity dependence on the pH value. While many enzymes can satisfy this condition, we selected pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase as this enzyme has the optimum pH center-located on the pH scale allowing the enzyme activity change by the acidic and basic pH shift from the optimum value corresponding to the highest activity. The present NXOR gate is added to the biomolecular "toolbox" as a new example of Boolean logic gates based on enzyme reactions.}, language = {en} } @article{KarschuckPoghossianSeretal.2024, author = {Karschuck, Tobias and Poghossian, Arshak and Ser, Joey and Tsokolakyan, Astghik and Achtsnicht, Stefan and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Capacitive model of enzyme-modified field-effect biosensors: Impact of enzyme coverage}, series = {Sensors and Actuators B: Chemical}, volume = {408}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005 (Print)}, doi = {10.1016/j.snb.2024.135530}, pages = {12 Seiten}, year = {2024}, abstract = {Electrolyte-insulator-semiconductor capacitors (EISCAP) belong to field-effect sensors having an attractive transducer architecture for constructing various biochemical sensors. In this study, a capacitive model of enzyme-modified EISCAPs has been developed and the impact of the surface coverage of immobilized enzymes on its capacitance-voltage and constant-capacitance characteristics was studied theoretically and experimentally. The used multicell arrangement enables a multiplexed electrochemical characterization of up to sixteen EISCAPs. Different enzyme coverages have been achieved by means of parallel electrical connection of bare and enzyme-covered single EISCAPs in diverse combinations. As predicted by the model, with increasing the enzyme coverage, both the shift of capacitance-voltage curves and the amplitude of the constant-capacitance signal increase, resulting in an enhancement of analyte sensitivity of the EISCAP biosensor. In addition, the capability of the multicell arrangement with multi-enzyme covered EISCAPs for sequentially detecting multianalytes (penicillin and urea) utilizing the enzymes penicillinase and urease has been experimentally demonstrated and discussed.}, language = {en} } @article{KarschuckSchmidtAchtsnichtetal.2023, author = {Karschuck, Tobias and Schmidt, Stefan and Achtsnicht, Stefan and Poghossian, Arshak and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Multiplexing system for automated characterization of a capacitive field-effect sensor array}, series = {Physica Status Solidi A}, volume = {220}, journal = {Physica Status Solidi A}, number = {22}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300 (Print)}, doi = {10.1002/pssa.202300265}, pages = {7 Seiten}, year = {2023}, abstract = {In comparison to single-analyte devices, multiplexed systems for a multianalyte detection offer a reduced assay time and sample volume, low cost, and high throughput. Herein, a multiplexing platform for an automated quasi-simultaneous characterization of multiple (up to 16) capacitive field-effect sensors by the capacitive-voltage (C-V) and the constant-capacitance (ConCap) mode is presented. The sensors are mounted in a newly designed multicell arrangement with one common reference electrode and are electrically connected to the impedance analyzer via the base station. A Python script for the automated characterization of the sensors executes the user-defined measurement protocol. The developed multiplexing system is tested for pH measurements and the label-free detection of ligand-stabilized, charged gold nanoparticles.}, language = {en} } @article{KassabHanPoghossianetal.2004, author = {Kassab, T. and Han, Y. and Poghossian, Arshak and Ingebrandt, S. and Offenh{\"a}usser, A. and Sch{\"o}ning, Michael Josef}, title = {Detection of layerby-layer adsorbed polyelectrolytes by means of field-effect based capacitive EIS structures}, series = {Biomedizinische Technik. 49 (2004), H. 2}, journal = {Biomedizinische Technik. 49 (2004), H. 2}, isbn = {0932-4666}, pages = {1034 -- 1035}, year = {2004}, language = {en} } @inproceedings{KatzWillner2006, author = {Katz, Eugenii and Willner, Itamar}, title = {Magneto-controlled quantized electron transfer to surface-confined redox units and metal nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1528}, year = {2006}, abstract = {Hydrophobic magnetic nanoparticles (NPs) consisting of undecanoate-capped magnetite (Fe3O4, average diameter ca. 5 nm) are used to control quantized electron transfer to surface-confined redox units and metal NPs. A two-phase system consisting of an aqueous electrolyte solution and a toluene phase that includes the suspended undecanoatecapped magnetic NPs is used to control the interfacial properties of the electrode surface. The attracted magnetic NPs form a hydrophobic layer on the electrode surface resulting in the change of the mechanisms of the surface-confined electrochemical processes. A quinone-monolayer modified Au electrode demonstrates an aqueous-type of the electrochemical process (2e-+2H+ redox mechanism) for the quinone units in the absence of the hydrophobic magnetic NPs, while the attraction of the magnetic NPs to the surface results in the stepwise single-electron transfer mechanism characteristic of a dry nonaqueous medium. Also, the attraction of the hydrophobic magnetic NPs to the Au electrode surface modified with Au NPs (ca. 1.4 nm) yields a microenvironment with a low dielectric constant that results in the single-electron quantum charging of the Au NPs.}, subject = {Biosensor}, language = {en} } @article{KatzPoghossianSchoening2017, author = {Katz, Evgeny and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Enzyme-based logic gates and circuits - analytical applications and interfacing with electronics}, series = {Analytical and Bioanalytical Chemistry}, volume = {409}, journal = {Analytical and Bioanalytical Chemistry}, publisher = {Springer}, address = {Berlin}, issn = {1618-2650}, doi = {10.1007/s00216-016-0079-7}, pages = {81 -- 94}, year = {2017}, abstract = {The paper is an overview of enzyme-based logic gates and their short circuits, with specific examples of Boolean AND and OR gates, and concatenated logic gates composed of multi-step enzyme-biocatalyzed reactions. Noise formation in the biocatalytic reactions and its decrease by adding a "filter" system, converting convex to sigmoid response function, are discussed. Despite the fact that the enzyme-based logic gates are primarily considered as components of future biomolecular computing systems, their biosensing applications are promising for immediate practical use. Analytical use of the enzyme logic systems in biomedical and forensic applications is discussed and exemplified with the logic analysis of biomarkers of various injuries, e.g., liver injury, and with analysis of biomarkers characteristic of different ethnicity found in blood samples on a crime scene. Interfacing of enzyme logic systems with modified electrodes and semiconductor devices is discussed, giving particular attention to the interfaces functionalized with signal-responsive materials. Future perspectives in the design of the biomolecular logic systems and their applications are discussed in the conclusion.}, language = {en} }