@article{JanThimoBauerBieleetal.2019, author = {Jan Thimo, Grundmann and Bauer, Waldemar and Biele, Jens and Boden, Ralf and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Hercik, David}, title = {Capabilities of Gossamer-1 derived small spacecraft solar sails carrying Mascot-derived nanolanders for in-situ surveying of NEAs}, series = {Acta Astronautica}, volume = {156}, journal = {Acta Astronautica}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0094-5765}, doi = {10.1016/j.actaastro.2018.03.019}, pages = {330 -- 362}, year = {2019}, language = {en} } @incollection{Janser2013, author = {Janser, Frank}, title = {Zukunftssicherung im Mittelstand - Kooperation zwischen der Stacke Tresorbau GmbH und der Fachhochschule Aachen}, series = {Innovation durch Kooperation : wie der Mittelstand durch Zusammenarbeit mit den Hochschulen seine Wettbewerbsf{\"a}higkeit steigert : Festschrift f{\"u}r Prof. Dr. rer. nat. Johannes Gartzen / Thomas Gartzen, Ute Gartzen (Hrsg.)}, booktitle = {Innovation durch Kooperation : wie der Mittelstand durch Zusammenarbeit mit den Hochschulen seine Wettbewerbsf{\"a}higkeit steigert : Festschrift f{\"u}r Prof. Dr. rer. nat. Johannes Gartzen / Thomas Gartzen, Ute Gartzen (Hrsg.)}, publisher = {Apprimus Verlag}, address = {Aachen}, isbn = {978-3-86359-136-6}, pages = {179 -- 183}, year = {2013}, language = {de} } @book{JanserHavermann2012, author = {Janser, Frank and Havermann, Marc}, title = {Inkompressible Str{\"o}mungen}, publisher = {Mainz}, address = {Aachen}, isbn = {978-3-86130-446-3}, pages = {189 S. : Ill., graph. Darst.}, year = {2012}, language = {en} } @book{JanserHavermann2015, author = {Janser, Frank and Havermann, Marc}, title = {Inkompressible Str{\"o}mungen}, edition = {3. Aufl.}, publisher = {Verlagshaus Mainz GmbH}, address = {Aachen}, isbn = {978-3-86130-446-3}, pages = {VIII, 83 S. : Ill ; Diagramme}, year = {2015}, language = {de} } @book{JanserHavermannHoeveleretal.2016, author = {Janser, Frank and Havermann, Marc and Hoeveler, Bastian and Hertz, Cyril}, title = {Inkompressible Profil- und Tragfl{\"u}gelaerodynamik}, series = {Str{\"o}mungslehre und Aerodynamik ; Band 2}, journal = {Str{\"o}mungslehre und Aerodynamik ; Band 2}, edition = {1. Auflage}, publisher = {Verlagshaus Mainz GmbH}, address = {Aachen}, isbn = {978-3-8107-0261-6}, pages = {XIII, 208 Seiten}, year = {2016}, language = {de} } @book{JanserHavermannHoeveleretal.2023, author = {Janser, Frank and Havermann, Marc and Hoeveler, Bastian and Hertz, Cyril and Bergmann, Ole}, title = {Str{\"o}mungslehre und Aerodynamik : inkompressible Profile und Tragfl{\"u}gelaerodynamik, Band 2}, edition = {4. Auflage}, publisher = {Mainz}, address = {Aachen}, isbn = {978-3-8107-0261-6}, pages = {XIII, 211 Seiten}, year = {2023}, abstract = {Das vorliegende Buch dient als Grundlage f{\"u}r die Bachelor- und Master-Ausbildung von Studierenden im Fachgebiet Str{\"o}mungslehre und Aerodynamik. Im hier behandelten Teilbereich der inkompressiblen Profile und Tragfl{\"u}gelaerodynamik werden schwerpunktm{\"a}ßig die folgenden Themen besprochen: - Profilaerodynamik - Tragfl{\"u}gelaerodynamik - Flugzeugpolare - Methoden zur Flugbereichserweiterung - Schwebeschub und Schwebeleistung - Propellerblattaerodynamik - Numerische Methoden zur Tragfl{\"u}gelberechnung}, language = {de} } @inproceedings{JeanPierrePBaqueBillietal.2018, author = {Jean-Pierre P., de Vera and Baque, Mickael and Billi, Daniela and B{\"o}ttger, Ute and Bulat, Sergey and Czupalla, Markus and Dachwald, Bernd and de la Torre, Rosa and Elsaesser, Andreas and Foucher, Fr{\´e}d{\´e}ric and Korsitzky, Hartmut and Kozyrovska, Natalia and L{\"a}ufer, Andreas and Moeller, Ralf and Olsson-Francis, Karen and Onofri, Silvano and Sommer, Stefan and Wagner, Dirk and Westall, Frances}, title = {The search for life on Mars and in the Solar System - strategies, logistics and infrastructures}, series = {69th International Astronautical Congress (IAC)}, booktitle = {69th International Astronautical Congress (IAC)}, pages = {1 -- 8}, year = {2018}, abstract = {The question "Are we alone in the Universe?" is perhaps the most fundamental one that affects mankind. How can we address the search for life in our Solar System? Mars, Enceladus and Europa are the focus of the search for life outside the terrestrial biosphere. While it is more likely to find remnants of life (fossils of extinct life) on Mars because of its past short time window of the surface habitability, it is probably more likely to find traces of extant life on the icy moons and ocean worlds of Jupiter and Saturn. Nevertheless, even on Mars there could still be a chance to find extant life in niches near to the surface or in just discovered subglacial lakes beneath the South Pole ice cap. Here, the different approaches for the detection of traces of life in the form of biosignatures including pre-biotic molecules will be presented. We will outline the required infrastructure for this enterprise and give examples of future mission concepts to investigate the presence of life on other planets and moons. Finally, we will provide suggestions on methods, techniques, operations and strategies for preparation and realization of future life detection missions.}, language = {en} } @inproceedings{KallweitSchleupenDahmannetal.2016, author = {Kallweit, Stephan and Schleupen, Josef and Dahmann, Peter and Bagheri, Mohsen and Engemann, Heiko}, title = {Entwicklung eines Kletterroboters zur Diagnose und Instandsetzung von Windenergieanlagen (SMART)}, series = {Automatisierung im Fokus von Industrie 4.0 : Tagungsband AALE 2016 ; 13. Fachkonferenz, L{\"u}beck}, booktitle = {Automatisierung im Fokus von Industrie 4.0 : Tagungsband AALE 2016 ; 13. Fachkonferenz, L{\"u}beck}, publisher = {DIV Deutscher Industrieverlag GmbH}, address = {M{\"u}nchen}, isbn = {978-3-8356-7312-0}, pages = {207 -- 212}, year = {2016}, language = {de} } @inproceedings{KapoorBollerGiljohannetal.2010, author = {Kapoor, Hrshi and Boller, Christian and Giljohann, Sebastian and Braun, Carsten}, title = {Strategies for structural health monitoring implementation potential assessment in aircraft operational life extension considerations}, series = {2nd International Symposium on NDT in Aerospace : November 22-24, 2010 Hamburg, Germany}, booktitle = {2nd International Symposium on NDT in Aerospace : November 22-24, 2010 Hamburg, Germany}, publisher = {Dt. Gesellschaft f{\"u}r Zerst{\"o}rungsfreie Pr{\"u}fung}, address = {Berlin}, organization = {Deutsche Gesellschaft f{\"u}r Zerst{\"o}rungsfreie Pr{\"u}fung}, isbn = {978-3-940283-28-3}, pages = {9}, year = {2010}, language = {en} } @inproceedings{KapoorBraunBoller2010, author = {Kapoor, Hrshi and Braun, Carsten and Boller, Christian}, title = {Modelling and optimisation of maintenance intervals to realize structural health monitoring applications on aircraft}, series = {Structural health monitoring 2010 : proceedings of the Fifth European Workshop on Structural Health Monitoring held at Sorrento, Naples, Italy, June 28 - July 4, 2010 ; [EWSHM]}, booktitle = {Structural health monitoring 2010 : proceedings of the Fifth European Workshop on Structural Health Monitoring held at Sorrento, Naples, Italy, June 28 - July 4, 2010 ; [EWSHM]}, editor = {Casciati, Fabio}, publisher = {DEStech Publ.}, address = {Lancaster, Pa.}, isbn = {978-1-60595-024-2}, pages = {55 -- 63}, year = {2010}, language = {en} } @misc{KeimerGirbigMayntzetal.2022, author = {Keimer, Jona and Girbig, Leo and Mayntz, Joscha and Tegtmeyer, Philipp and Wendland, Frederik and Dahman, Peter and Fisher, Alex and Dorrington, Graham}, title = {Flight mission optimization for eco-efficiency in consideration of electric regeneration and atmospheric conditions}, series = {AIAA AVIATION 2022 Forum}, journal = {AIAA AVIATION 2022 Forum}, publisher = {AIAA}, address = {Reston, Va.}, doi = {10.2514/6.2022-4118}, year = {2022}, abstract = {The development and operation of hybrid or purely electrically powered aircraft in regional air mobility is a significant challenge for the entire aviation sector. This technology is expected to lead to substantial advances in flight performance, energy efficiency, reliability, safety, noise reduction, and exhaust emissions. Nevertheless, any consumed energy results in heat or carbon dioxide emissions and limited electric energy storage capabilities suppress commercial use. Therefore, the significant challenges to achieving eco-efficient aviation are increased aircraft efficiency, the development of new energy storage technologies, and the optimization of flight operations. Two major approaches for higher eco-efficiency are identified: The first one, is to take horizontal and vertical atmospheric motion phenomena into account. Where, in particular, atmospheric waves hold exciting potential. The second one is the use of the regeneration ability of electric aircraft. The fusion of both strategies is expected to improve efficiency. The objective is to reduce energy consumption during flight while not neglecting commercial usability and convenient flight characteristics. Therefore, an optimized control problem based on a general aviation class aircraft has to be developed and validated by flight experiments. The formulated approach enables a development of detailed knowledge of the potential and limitations of optimizing flight missions, considering the capability of regeneration and atmospheric influences to increase efficiency and range.}, language = {en} } @phdthesis{Keinz2018, author = {Keinz, Jan}, title = {Optimization of a Dry Low NOx Micromix Combustor for an Industrial Gas Turbine Using Hydrogen-Rich Syngas Fuel}, publisher = {Universit{\´e} Libre de Bruxelles - Brussels School of Engineering Aero-Thermo-Mechanics}, address = {Br{\"u}ssel}, year = {2018}, language = {en} } @inproceedings{KemperHellenbroichEsch2009, author = {Kemper, Hans and Hellenbroich, Gereon and Esch, Thomas}, title = {Concept of an innovative passenger-car hybrid drive for European driving conditions}, series = {Hybrid vehicles and energy management : 6th symposium ; 18th and 19th February 2009, Stadthalle Braunschweig}, booktitle = {Hybrid vehicles and energy management : 6th symposium ; 18th and 19th February 2009, Stadthalle Braunschweig}, publisher = {Gesamtzentrum f{\"u}r Verkehr (GZVB)}, address = {Braunschweig}, isbn = {978-3-937655-20-8}, pages = {264 -- 287}, year = {2009}, abstract = {The downsizing of spark ignition engines in conjunction with turbocharging is considered to be a promising method for reducing CO₂ emissions. Using this concept, FEV has developed a new, highly efficient drivetrain to demonstrate fuel consumption reduction and drivability in a vehicle based on the Ford Focus ST. The newly designed 1.8L turbocharged gasoline engine incorporates infinitely variable intake and outlet control timing and direct fuel injection utilizing piezo injectors centrally located. In addition, this engine uses a prototype FEV engine control system, with software that was developed and adapted entirely by FEV. The vehicle features a 160 kW engine with a maximum mean effective pressure of 22.4 bar and 34 \% savings in simulated fuel consumption. During the first stage, a new electrohydraulically actuated hybrid transmission with seven forward gears and one reverse gear and a single dry starting clutch will be integrated. The electric motor of the hybrid is directly connected to the gear set of the transmission. Utilizing the special gear set layout, the electric motor can provide boost during a change of gears, so that there is no interruption in traction. Therefore, the transmission system combines the advantages of a double clutch controlled gear change (gear change without an interruption in traction) with the efficient, cost-effective design of an automated manual transmission system. Additionally, the transmission provides a purely electric drive system and the operation of an air-conditioning compressor during the engine stop phases. One other alternative is through the use of CAI (Controlled Auto Ignition), which incorporates a process developed by FEV for controlled compression ignition.}, language = {en} } @article{KezerashviliDachwald2021, author = {Kezerashvili, Roman Ya and Dachwald, Bernd}, title = {Preface: Solar sailing: Concepts, technology, and missions II}, series = {Advances in Space Research}, volume = {67}, journal = {Advances in Space Research}, number = {9}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2021.01.037}, pages = {2559 -- 2560}, year = {2021}, language = {en} } @article{KhayyamJamaliBabHadiasharetal.2020, author = {Khayyam, Hamid and Jamali, Ali and Bab-Hadiashar, Alireza and Esch, Thomas and Ramakrishna, Seeram and Jalil, Mahdi and Naebe, Minoo}, title = {A Novel Hybrid Machine Learning Algorithm for Limited and Big Data Modelling with Application in Industry 4.0}, series = {IEEE Access}, journal = {IEEE Access}, publisher = {IEEE}, address = {New York, NY}, isbn = {2169-3536}, doi = {10.1109/ACCESS.2020.2999898}, pages = {1 -- 12}, year = {2020}, abstract = {To meet the challenges of manufacturing smart products, the manufacturing plants have been radically changed to become smart factories underpinned by industry 4.0 technologies. The transformation is assisted by employment of machine learning techniques that can deal with modeling both big or limited data. This manuscript reviews these concepts and present a case study that demonstrates the use of a novel intelligent hybrid algorithms for Industry 4.0 applications with limited data. In particular, an intelligent algorithm is proposed for robust data modeling of nonlinear systems based on input-output data. In our approach, a novel hybrid data-driven combining the Group-Method of Data-Handling and Singular-Value Decomposition is adapted to find an offline deterministic model combined with Pareto multi-objective optimization to overcome the overfitting issue. An Unscented-Kalman-Filter is also incorporated to update the coefficient of the deterministic model and increase its robustness against data uncertainties. The effectiveness of the proposed method is examined on a set of real industrial measurements.}, language = {en} } @article{KhayyamJamaliBabHadiasharetal.2020, author = {Khayyam, Hamid and Jamali, Ali and Bab-Hadiashar, Alireza and Esch, Thomas and Ramakrishna, Seeram and Jalili, Mahdi and Naebe, Minoo}, title = {A Novel Hybrid Machine Learning Algorithm for Limited and Big Data Modeling with Application in Industry 4.0}, series = {IEEE Access}, volume = {8}, journal = {IEEE Access}, number = {Art. 9108222}, publisher = {IEEE}, address = {New York, NY}, issn = {2169-3536}, doi = {10.1109/ACCESS.2020.2999898}, pages = {111381 -- 111393}, year = {2020}, abstract = {To meet the challenges of manufacturing smart products, the manufacturing plants have been radically changed to become smart factories underpinned by industry 4.0 technologies. The transformation is assisted by employment of machine learning techniques that can deal with modeling both big or limited data. This manuscript reviews these concepts and present a case study that demonstrates the use of a novel intelligent hybrid algorithms for Industry 4.0 applications with limited data. In particular, an intelligent algorithm is proposed for robust data modeling of nonlinear systems based on input-output data. In our approach, a novel hybrid data-driven combining the Group-Method of Data-Handling and Singular-Value Decomposition is adapted to find an offline deterministic model combined with Pareto multi-objective optimization to overcome the overfitting issue. An Unscented-Kalman-Filter is also incorporated to update the coefficient of the deterministic model and increase its robustness against data uncertainties. The effectiveness of the proposed method is examined on a set of real industrial measurements.}, language = {en} } @inproceedings{KleineKallweitMichauxetal.2016, author = {Kleine, Harald and Kallweit, Stephan and Michaux, Frank and Havermann, Marc and Olivier, Herbert}, title = {PIV Measurement of Shock Wave Diffraction}, series = {18th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2016, Lissabon}, booktitle = {18th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2016, Lissabon}, pages = {1 -- 14}, year = {2016}, language = {en} } @inproceedings{KnoblochKowalskiBoesigeretal.2011, author = {Knobloch, V. and Kowalski, Julia and B{\"o}siger, P. and Kozerke, S.}, title = {Probabilistic Streamline Estimation from Accelerated Fourier Velocity Encoded Measurements}, series = {Proceedings of the 19th ISMRM International Society for Magnetic Resonance in Medicine}, booktitle = {Proceedings of the 19th ISMRM International Society for Magnetic Resonance in Medicine}, pages = {1215 -- 1215}, year = {2011}, language = {de} } @article{KochBoehnischVerdoncketal.2024, author = {Koch, Christopher and B{\"o}hnisch, Nils and Verdonck, Hendrik and Hach, Oliver and Braun, Carsten}, title = {Comparison of unsteady low- and mid-fidelity propeller aerodynamic methods for whirl flutter applications}, series = {Applied Sciences}, volume = {14}, journal = {Applied Sciences}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app14020850}, pages = {1 -- 28}, year = {2024}, abstract = {Aircraft configurations with propellers have been drawing more attention in recent times, partly due to new propulsion concepts based on hydrogen fuel cells and electric motors. These configurations are prone to whirl flutter, which is an aeroelastic instability affecting airframes with elastically supported propellers. It commonly needs to be mitigated already during the design phase of such configurations, requiring, among other things, unsteady aerodynamic transfer functions for the propeller. However, no comprehensive assessment of unsteady propeller aerodynamics for aeroelastic analysis is available in the literature. This paper provides a detailed comparison of nine different low- to mid-fidelity aerodynamic methods, demonstrating their impact on linear, unsteady aerodynamics, as well as whirl flutter stability prediction. Quasi-steady and unsteady methods for blade lift with or without coupling to blade element momentum theory are evaluated and compared to mid-fidelity potential flow solvers (UPM and DUST) and classical, derivative-based methods. Time-domain identification of frequency-domain transfer functions for the unsteady propeller hub loads is used to compare the different methods. Predictions of the minimum required pylon stiffness for stability show good agreement among the mid-fidelity methods. The differences in the stability predictions for the low-fidelity methods are higher. Most methods studied yield a more unstable system than classical, derivative-based whirl flutter analysis, indicating that the use of more sophisticated aerodynamic modeling techniques might be required for accurate whirl flutter prediction.}, language = {en} } @inproceedings{KohlbergerWildKasperetal.2021, author = {Kohlberger, David-Sharif and Wild, Dominik and Kasper, Stefan and Czupalla, Markus}, title = {Modeling and analyses of a thermal passively stabilized LEO/GEO star tracker with embedded phase change material applying the Infused Thermal Solutions (ITS) method}, series = {ICES202: Satellite, Payload, and Instrument Thermal Control}, booktitle = {ICES202: Satellite, Payload, and Instrument Thermal Control}, publisher = {Texas Tech University}, address = {Lubbock, Tex.}, pages = {12 Seiten}, year = {2021}, abstract = {Phase change materials offer a way of storing excess heat and releasing it when it is needed. They can be utilized as a method to control thermal behavior without the need for additional energy. This work focuses on exploring the potential of using phase change materials to passively control the thermal behavior of a star tracker by infusing it with a fitting phase change material. Based on the numerical model of the star trackers thermal behavior using ESATAN-TMS without implemented phase change material, a fitting phase change material for selected orbits is chosen and implemented in the thermal model. The altered thermal behavior of the numerical model after the implementation is analyzed for different amounts of the chosen phase change materials using an ESATAN-based subroutine developed by the FH Aachen. The PCM-modelling-subroutine is explained in the paper ICES-2021-110. The results show that an increasing amount of phase change material increasingly damps temperature oscillations. Using an integral part structure some of the mass increase can be compensated.}, language = {en} }