@article{HeinrichsWeck1981, author = {Heinrichs, Horst and Weck, H.}, title = {Efficient finite-element structural analysis by interactive graphic mesh generation}, series = {CIRP Annals. 30 (1981), H. 1}, journal = {CIRP Annals. 30 (1981), H. 1}, pages = {279 -- 284}, year = {1981}, language = {en} } @article{HaselgruberMautnerThiele2010, author = {Haselgruber, Nikolaus and Mautner, Karin and Thiele, Jan}, title = {Usage Space Analysis for Reliability Testing}, series = {Quality and Reliability Engineering International}, volume = {26}, journal = {Quality and Reliability Engineering International}, number = {8}, publisher = {Wiley}, address = {New York}, issn = {1099-1638}, doi = {10.1002/qre.1155}, pages = {877 -- 885}, year = {2010}, abstract = {During the development process of a complex technical product, one widely used and important technique is accelerated testing where the applied stress on a component is chosen to exceed the reference stress, i.e. the stress encountered in field operation, in order to reduce the time to failure. For that, the reference stress has to be known. Since a complex technical product may fail regarding numerous failure modes, stress in general is highly dimensional rather than scalar. In addition, customers use their products individually, i.e. field operation should be described by a distribution rather than by one scalar stress value. In this paper, a way to span the customer usage space is shown. It allows the identification of worst case reference stress profiles in significantly reduced dimensions with minimal loss of information. The application example shows that even for a complex product like a combustion engine, stress information can be compressed significantly. With low measurement effort it turned out that only three reference stress cycles were sufficient to cover a broad range of customer stress variety.}, language = {en} } @article{HanrathPlesken1985, author = {Hanrath, Wilhelm and Plesken, Wilhelm}, title = {Group rings and irreducible representations of space groups / by W. Hanrath and W. Plesken}, series = {Journal f{\"u}r die reine und angewandte Mathematik. 362 (1985)}, journal = {Journal f{\"u}r die reine und angewandte Mathematik. 362 (1985)}, isbn = {0075-4102}, pages = {130 -- 140}, year = {1985}, language = {en} } @article{HanrathPlesken1984, author = {Hanrath, Wilhelm and Plesken, Wilhelm}, title = {The lattices of six-dimensional euclidean space}, series = {Mathematics of computation. 43 (1984), H. 168}, journal = {Mathematics of computation. 43 (1984), H. 168}, isbn = {0025-5718}, pages = {573 -- 587}, year = {1984}, language = {en} } @article{Hanrath1989, author = {Hanrath, Wilhelm}, title = {Character tables of some factor groups of space groups}, series = {Perfect groups / Derek F. Holt and W. Plesken}, journal = {Perfect groups / Derek F. Holt and W. Plesken}, publisher = {Clarendon Press}, address = {Oxford}, isbn = {0-19-853559-7}, pages = {357 -- 359}, year = {1989}, language = {en} } @article{HaagZontarSchleupenetal.2014, author = {Haag, S. and Zontar, D. and Schleupen, Josef and M{\"u}ller, T. and Brecher, C.}, title = {Chain of refined perception in self-optimizing assembly of micro-optical systems}, series = {Journal of sensors and sensor systems}, volume = {3}, journal = {Journal of sensors and sensor systems}, number = {1}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {2194-878X}, doi = {10.5194/jsss-3-87-2014}, pages = {87 -- 95}, year = {2014}, abstract = {Today, the assembly of laser systems requires a large share of manual operations due to its complexity regarding the optimal alignment of optics. Although the feasibility of automated alignment of laser optics has been shown in research labs, the development effort for the automation of assembly does not meet economic requirements - especially for low-volume laser production. This paper presents a model-based and sensor-integrated assembly execution approach for flexible assembly cells consisting of a macro-positioner covering a large workspace and a compact micromanipulator with camera attached to the positioner. In order to make full use of available models from computer-aided design (CAD) and optical simulation, sensor systems at different levels of accuracy are used for matching perceived information with model data. This approach is named "chain of refined perception", and it allows for automated planning of complex assembly tasks along all major phases of assembly such as collision-free path planning, part feeding, and active and passive alignment. The focus of the paper is put on the in-process image-based metrology and information extraction used for identifying and calibrating local coordinate systems as well as the exploitation of that information for a part feeding process for micro-optics. Results will be presented regarding the processes of automated calibration of the robot camera as well as the local coordinate systems of part feeding area and robot base.}, language = {en} } @article{Grundmann1992, author = {Grundmann, Reinhard}, title = {Design Criteria for Aeroacoustic Wind Tunnels}, year = {1992}, language = {en} } @article{GlowaniaGriesSchoeneetal.2011, author = {Glowania, Michael and Gries, Thomas and Schoene, Jens and Schleser, Markus and Reisgen, Uwe}, title = {Innovative coating technology for textile reinforcements of concrete applications}, series = {13th International Congress on Polymers in Concrete : 10 - 12 February 2010, Funchal, Madeira, Portugal.(Key engineering materials. Vol. 466)}, journal = {13th International Congress on Polymers in Concrete : 10 - 12 February 2010, Funchal, Madeira, Portugal.(Key engineering materials. Vol. 466)}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, organization = {International Congress Polymers in Concrete <13, 2010, Funchal, Madeira>}, isbn = {978-3-03785-008-4}, issn = {1013-9826 (E-Journal) ; 0252-1059 (Print)}, pages = {167 -- 173}, year = {2011}, language = {en} } @article{GebhardtSchmidtHoetteretal.2010, author = {Gebhardt, Andreas and Schmidt, Frank-Michael and H{\"o}tter, Jan-Steffen and Sokalla, Wolfgang and Sokalla, Patrick}, title = {Additive Manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry}, series = {Physics Procedia}, volume = {5}, journal = {Physics Procedia}, number = {2}, isbn = {1875-3892}, pages = {543 -- 549}, year = {2010}, language = {en} } @article{GebhardtSchmidt2002, author = {Gebhardt, Andreas and Schmidt, Frank-Michael}, title = {Practical experiences with making and finishing of coloured models using 3D printing}, year = {2002}, language = {en} } @article{GebhardtFateri2013, author = {Gebhardt, Andreas and Fateri, Miranda}, title = {3D printing and its applications}, series = {RTejournal - Forum f{\"u}r Rapid Technologie}, volume = {10}, journal = {RTejournal - Forum f{\"u}r Rapid Technologie}, number = {1}, publisher = {Fachhochschule Aachen}, address = {Aachen}, issn = {1614-0923}, url = {http://nbn-resolving.de/urn:nbn:de:0009-2-35626}, year = {2013}, abstract = {Eine zunehmende Anzahl von Artikeln in Publikumszeitschriften und Journalen r{\"u}ckt die direkte Herstellung von Bauteilen und Figuren immer mehr in das Bewusstsein einer breiten {\"O}ffentlichkeit. Leider ergibt sich nur selten ein einigermaßen vollst{\"a}ndiges Bild davon, wie und in welchen Lebensbereichen diese Techniken unseren Alltag ver{\"a}ndern werden. Das liegt auch daran, dass die meisten Artikel sehr technisch gepr{\"a}gt sind und sich nur punktuell auf Beispiele st{\"u}tzen. Dieser Beitrag geht von den Bed{\"u}rfnissen der Menschen aus, wie sie z.B. in der Maslow'schen Bed{\"u}rfnispyramide strukturiert dargestellt sind und unterstreicht dadurch, dass 3D Printing (oder Additive Manufacturing resp. Rapid Prototyping) bereits alle Lebensbereiche erfasst hat und im Begriff ist, viele davon zu revolutionieren.}, language = {en} } @article{Gebhardt2001, author = {Gebhardt, Andreas}, title = {Rapid Prototyping and PIV}, year = {2001}, language = {en} } @article{Gebhardt2001, author = {Gebhardt, Andreas}, title = {Laserwelding with fillerwire}, series = {LIA handbook of laser material processing / Laser Institute of America}, journal = {LIA handbook of laser material processing / Laser Institute of America}, address = {Orlando, Florida}, isbn = {3-540-41770-2}, year = {2001}, language = {en} } @article{Gebhardt2006, author = {Gebhardt, Andreas}, title = {Generative Manufacturing of Ceramic Parts "Vision Rapid Prototyping"}, year = {2006}, abstract = {Table of Contents Introduction 1. Generative Manufacturing Processes 2. Classification of Generative Manufacturing Processes 3. Application of Generative Processes on the Fabrication of Ceramic Parts 3.1 Extrusion 3.2 3D-Printing 3.3 Sintering - Laser Sintering 3.4 Layer-Laminate Processes 3.5 Stereolithography (sometimes written: Stereo Lithography) 4. Layer Milling 5. Conclusion - Vision}, subject = {Rapid prototyping}, language = {en} } @article{Gebhardt2004, author = {Gebhardt, Andreas}, title = {Rapid Prototyping}, series = {Landolt-B{\"o}rnstein - Group VIII Advanced Materials and Technologies‡Vol. 1 Laser Physics and Applications‡Subvol. C Laser Applications / authors: B{\"a}uerle, D. ...}, journal = {Landolt-B{\"o}rnstein - Group VIII Advanced Materials and Technologies‡Vol. 1 Laser Physics and Applications‡Subvol. C Laser Applications / authors: B{\"a}uerle, D. ...}, publisher = {Heidelberg}, address = {Springer}, isbn = {3-540-00105-0}, pages = {105 -- 123}, year = {2004}, language = {en} } @article{FrohbergAnik1983, author = {Frohberg, Martin G. and Anik, Sabri}, title = {The application of a quadi-chemical lattice model to binary metallic solvents containing oxygen in higher concentrations}, series = {Zeitschrift f{\"u}r Metallkunde}, volume = {74}, journal = {Zeitschrift f{\"u}r Metallkunde}, number = {10}, issn = {0044-3093}, pages = {665 -- 666}, year = {1983}, language = {en} } @article{FrohbergAnik1985, author = {Frohberg, Martin G. and Anik, Sabri}, title = {The calculation of component activities of binary metallic melts from their gas solubilities}, series = {Zeitschrift f{\"u}r Metallkunde}, volume = {76}, journal = {Zeitschrift f{\"u}r Metallkunde}, number = {2}, issn = {0044-3093}, pages = {135 -- 137}, year = {1985}, language = {en} } @article{FrohbergAnik1985, author = {Frohberg, Martin G. and Anik, Sabri}, title = {Thermodynamic relations between component activities and gas solubilities in binary metallic systems}, series = {Berichte der Bunsengesellschaft f{\"u}r physikalische Chemie}, volume = {89}, journal = {Berichte der Bunsengesellschaft f{\"u}r physikalische Chemie}, number = {2}, issn = {0940-483X}, pages = {130 -- 134}, year = {1985}, language = {en} } @article{FranzenPindersPfaffetal.2018, author = {Franzen, Julius and Pinders, Erik and Pfaff, Raphael and Enning, Manfred}, title = {RailCrowd's virtual fleets: Make most of your asset data}, series = {Deine Bahn}, journal = {Deine Bahn}, number = {9}, publisher = {Bahn-Fachverlag}, address = {Berlin}, issn = {0948-7263}, pages = {11 -- 13}, year = {2018}, abstract = {For smaller railway operators or those with a diverse fleet, it can be difficult to collect sufficient data to improve maintenance programs. At the same time, new rules such as entity in charge of maintenance - ECM - regulations impose an additional workload by requiring a dedicated maintenance management system and specific reports. The RailCrowd platform sets out to facilitate compliance with ECM and similar regulations while at the same time pooling anonymised fleet data across operators to form virtual fleets, providing greater data insights.}, language = {en} } @article{FrankoDuKallweitetal.2020, author = {Franko, Josef and Du, Shengzhi and Kallweit, Stephan and Duelberg, Enno Sebastian and Engemann, Heiko}, title = {Design of a Multi-Robot System for Wind Turbine Maintenance}, series = {Energies}, volume = {13}, journal = {Energies}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en13102552}, pages = {Article 2552}, year = {2020}, abstract = {The maintenance of wind turbines is of growing importance considering the transition to renewable energy. This paper presents a multi-robot-approach for automated wind turbine maintenance including a novel climbing robot. Currently, wind turbine maintenance remains a manual task, which is monotonous, dangerous, and also physically demanding due to the large scale of wind turbines. Technical climbers are required to work at significant heights, even in bad weather conditions. Furthermore, a skilled labor force with sufficient knowledge in repairing fiber composite material is rare. Autonomous mobile systems enable the digitization of the maintenance process. They can be designed for weather-independent operations. This work contributes to the development and experimental validation of a maintenance system consisting of multiple robotic platforms for a variety of tasks, such as wind turbine tower and rotor blade service. In this work, multicopters with vision and LiDAR sensors for global inspection are used to guide slower climbing robots. Light-weight magnetic climbers with surface contact were used to analyze structure parts with non-destructive inspection methods and to locally repair smaller defects. Localization was enabled by adapting odometry for conical-shaped surfaces considering additional navigation sensors. Magnets were suitable for steel towers to clamp onto the surface. A friction-based climbing ring robot (SMART— Scanning, Monitoring, Analyzing, Repair and Transportation) completed the set-up for higher payload. The maintenance period could be extended by using weather-proofed maintenance robots. The multi-robot-system was running the Robot Operating System (ROS). Additionally, first steps towards machine learning would enable maintenance staff to use pattern classification for fault diagnosis in order to operate safely from the ground in the future.}, language = {en} }